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Abstract: Nitinol-shape memory alloys (SMAs) are widely preferred for applications of automobile,
biomedical, aerospace, robotics, and other industrial area. Therefore, precise machining of Nitinol
SMA plays a vital role in achieving better surface roughness, higher productivity and geometrical
accuracy for the manufacturing of devices. Wire electric discharge machining (WEDM) has proven
to be an appropriate technique for machining nitinol shape memory alloy (SMA). The present
study investigated the influence of near-dry WEDM technique to reduce the environmental impact
from wet WEDM. A parametric optimization was carried out with the consideration of design
variables of current, pulse-on-time (Ton), and pulse-off-time (Toff) and their effect were studied
on output characteristics of material removal rate (MRR), and surface roughness (SR) for near-dry
WEDM of nitinol SMA. ANOVA was carried out for MRR, and SR using statistical analysis to
investigate the impact of design variables on response measures. ANOVA results depicted the
significance of the developed quadratic model for both MRR and SR. Current, and Ton were found to
be major contributors on the response value of MRR, and SR, respectively. A teaching–learning-based
optimization (TLBO) algorithm was employed to find the optimal combination of process parameters.
Single-response optimization has yielded a maximum MRR of 1.114 mm3/s at Ton of 95 µs, Toff of
9 µs, current of 6 A. Least SR was obtained at Ton of 35 µs, Toff of 27 µs, current of 2 A with a predicted
value of 2.81 µm. Near-dry WEDM process yielded an 8.94% reduction in MRR in comparison with
wet-WEDM, while the performance of SR has been substantially improved by 41.56%. As per the
obtained results from SEM micrographs, low viscosity, reduced thermal energy at IEG, and improved
flushing of eroded material for air-mist mixture during NDWEDM has provided better surface
morphology over the wet-WEDM process in terms of reduction in surface defects and better surface
quality of nitinol SMA. Thus, for obtaining the better surface quality with reduced surface defects,
near-dry WEDM process is largely suitable.

Keywords: shape memory alloys; nitinol; optimization; near-dry wire electric discharge machining
(WEDM); teaching–learning based optimization (TLBO) algorithm

1. Introduction

The Shape memory alloys (SMA) are shape memory materials that can withstand
immense deformations and yet return to their original shape by applied heat, stress or
magnetic field [1,2]. This type of effect of regaining original shape is known as the shape
memory effect (SME). SMAs exhibit superior thermomechanical properties [3–5]. Superelas-
ticity of SMAs represents the property of regaining the original shape of material with the
removal of applied external force. SMAs are widely preferred for engineering fields such as
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automobile, biomedical, aerospace, robotics [6,7]. Important applications for the industrial
sector are fasteners and couplings generally for the military sector, cellular antennas, etc. [8].
The most commonly used SMAs are NiTi, CuZnAl, CoAl, NiMnGa, CuSn, FeMnSi, ZrCu,
and CuZnNi. However, the instability and poor thermo-mechanic performance of these
copper and iron-based SMAs have restricted their applications in certain areas [1]. Among
others, nickel-titanium alloy also considered Nitinol was already employed in various
engineering and industrial fields due to its enhanced characteristics such as high corro-
sion and wear resistance, biocompatibility, Superelasticity, SME, high strength, etc. [9–11].
Nitinol is also employed in multiple applications of biomedical fields, automotive sector,
sensors, MEMS devices, actuators, structural elements, oil industries, robotics, aerospace
components, etc. [12,13]. Therefore, precise machining of Nitinol SMA plays a vital role in
achieving better surface roughness, higher productivity and geometrical accuracy for the
manufacturing of devices [14,15]. The machinability of Nitinol with conventional methods
was observed to be a non-effective technique due to the formation burrs at the machined
surface, poor surface roughness, and high tool wear [16,17]. One of the prime reasons
behind this was the higher strength and hardening of the nitinol SMA [18,19]. Another
reason which possesses the difficulties includes high chemically active material which in
turn results in tool failure, and low thermal conductivity [20,21].

To overcome difficulties faced during machining of SMAs using traditional techniques,
non-conventional machining techniques are considered good alternatives since the work-
piece and tool are not in contact with each other. Among other methods, Wire electric
discharge machining (WEDM) has proven to be an appropriate technique for machining
nitinol SMAs [22,23]. The WEDM technique works based on spark generation and erosion
between electrode and workpiece [24]. In WEDM process, the material is melted and vapor-
ized by repeated electrical discharges in presence of a suitable dielectric medium [25,26]. It
uses wire as an electrode and the dielectric fluid which firstly acts as an insulator and later
gets ionized by increasing the amount of voltage [27]. This further increases the electrical
discharges (sparks) which in turn helps in increasing the material removal rate (MRR).
Numerical control of the wire electrode has made WEDM process to be vastly suitable for
creating the complex shape profiles of the workpiece [28,29]. Kulkarni et al. [30] employed
WEDM process to study surface integrity aspects for Nitinol SMA. They utilized RSM
models to generating the relationship between design variables and responses. Higher
erosion with good surface morphology was obtained at optimal parameter settings. Thus,
the monitoring and controlling of the machining process should be carried out properly
for better machining efficiency, and to prevent wire breakage and surface quality. WEDM
can provide a good surface finish, and good machining efficiency for machining complex
shapes [31,32]. However, WEDM operation utilizes dielectric fluid which is a key factor
in environmental issues. To overcome this issue, near-dry machining process can be an
efficient and effective way by means of providing negligible health hazards [33]. Near dry
machining replaces the EDM oil with a mixture of compressed air and water [34]. In addi-
tion to the environmental issues, machining characteristics such as productivity and surface
quality should not be compromised. Near dry WEDM (NDWEDM) process was found to be
capable of providing enhanced machining results for machining of hard materials [35,36].
NDWEDM process makes use mixture of minimal dielectric fluid and gas/air. Minimal
use of deionized water along with larger proportion of compressed air/gas was found to
be effective to enhance the NDWEDM performance under eco-friendly atmosphere [37].
Researchers have reported several studies to examine the implications of NDWEDM tech-
nique on machining. A suitable amalgamation of design variables for WEDM can be
achieved by finding an optimal solution to opposing responses [38,39]. To find an optimal
solution for contradictory responses, new optimization techniques were invented wherein
amendment of algorithm-specific parameters is not required [40]. Teaching–learning-based
optimization (TLBO) algorithm is one such technique which does not require fine-tuning
of variables [41,42] and is found to be easy to execute [43]. Researchers have success-
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fully used this techniques in various fields along with problems related to manufacturing
sectors [44,45].

Kumar et al. [33] studied the effect of NDWEDM on nickel-based superalloy-Monel.
They utilized a blend of compressed air and deionized water at a suitable proportion for
obtaining the near-dry condition. Effect of pulse-on-time (Ton), voltage, pulse-off-time
(Toff), and wire feed has been studied for responses of material removal rate (MRR), and
surface roughness (SR). Lower values of Ton are key influencing factors for desired better
surface finish. Comparison of NDWEDM with wet WEDM results yielded substantial
improvement in SR for NDWEDM process. Liu et al. [46] concluded that the machined
trim cut samples of Nitinol using WEDM machining have lower SR and minimal white
layer as compared to main cut Nitinol samples. Dhakar et al. [47] studied near dry EDM
and wet-EDM with inputs of Toff, current, Ton to evaluate the MRR of high-speed steel
(HSS). A correlation between design variables and output parameters for NDEDM and wet
EDM has been developed. The current was established as the largest dominating variable
for enhancing the MRR during near-dry EDM and wet EDM processes. Wet EDM process
was found to produce more gas emission concentration in comparison with NDEDM. For
achieving the required desirable machining performance, Kao et al. [48] have performed
NDWEDM in which a liquid and gas mixture was used as a dielectric fluid and also has the
advantage to modify properties of the dielectric medium and liquid concentration. WEDM
and EDM drilling were examined under all three variants of the EDM process such as dry,
wet, and near-dry EDM. Their obtained results have depicted higher MRR for near dry
WEDM process. Yu et al. [49] compared the dry-EDM machining performance of cemented
carbide with wet EDM technique. Their obtained results have shown an improvement in
machining efficiency and drop-in tool wear rate by implementing dry EDM process. For
obtaining the good machining efficiency at minimal discharge energy and simultaneously
better surface quality with low environmental problems, Boopathi et al. [50] used near dry
EDM for conducting experiments on HSS-M2 with a mixture of liquid with air and liquid
with oxygen as a dielectric medium. The effect of design variables has been studied on
MRR and SR by employing Taguchi method. Their obtained results have shown that the use
of a moderate proportion of air-mist pressure increases MRR with subsequently reduces SR.
Gholipoor et al. [51] have compared output characteristics of MRR, TWR, and SR obtained
by near-dry EDM with wet EDM and dry EDM for machining of SPK steel. Scanning
electron microscopy (SEM) was used to analyse the surface integrity of this process and
compare it to wet and dry EDM processes. SEM micrographs demonstrated that the surface
morphology of obtained surface by NDEDM was better in comparison with the surfaces
obtained at dry and wet EDM process as the surface has largely reduced micro-cracks and
craters with the use of NDEDM technique. Boopathi and Sivakumar [52] optimized the
performance of near-dry WEDM process of HSS by using a multi-objective evolutionary
algorithm. They have utilized air-mist dielectric condition to study the influence of design
variables such as Ton, gap voltage, current, Toff, and current on MRR and SR. ANOVA
results has shown that current was having highest impact on deciding the values of MRR
and SR. Moderate air-mist pressure was found to have substantial effect for increase in MRR
and simultaneous improvement in surface quality. Regression equations were developed
to find correlation between design variables and responses. They employed Pareto fronts
to solve the contradictory situation among responses of MRR, and SR.

Till now, most of the research has been performed on studying the effect of near-dry
WEDM variables and their impact on machining characteristics for steels and other alloys.
However, to the best of the authors’ knowledge, experimental investigations, and multi-
objective optimization of near-dry WEDM process for nitinol SMA not yet conveyed. The
current study investigated the performance of near-dry WEDM process with consideration
of WEDM parameters of Ton, Toff, and current for Nitinol SMA. Box–Behnken design was
utilized to conduct the experiments and mathematical correlations were developed between
output characteristics (MRR and SR) and design variables. ANOVA was carried out for
MRR, and SR using statistical analysis to investigate the impact of design variables on
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response measures. ANOVA results depicted the significance of the developed quadratic
model for both MRR and SR. Current, and Ton were found to be major contributors on
the response value of MRR, and SR, respectively. TLBO algorithm has been executed for
single-objective and multi-objective optimization of MRR, and SR. Near-dry WEDM process
yielded an 8.94% reduction in MRR in comparison with wet-WEDM, while the performance
of SR has been substantially improved by 41.56%. Lastly, scanning electron microscopy was
utilized to study the surface morphology of obtained surfaces from near-dry WEDM and
wet WEDM. Thus, for obtaining the better surface quality with reduced surface defects,
near-dry WEDM process is largely suitable. Authors believes that current study will be
useful for machining of nitinol SMA for acquiring good surface quality.

2. Materials and Methods

Concord WEDM DK 7732 machine was employed in the present work to conduct the
experiments by using near-dry WEDM process which is an advanced variant of WEDM
technique. Nitinol rod with 10 mm diameter were considered as work material in the
present study. The selected work material of nitinol contains 55.8% of nickel and reminder
is titanium. Molybdenum wire having a diameter of 0.18 mm was selected as a tool material.
With respect to the use of dielectric medium, WEDM process consists of three main process
namely, wet-WEDM, dry WEDM, and near dry WEDM. In case wet WEDM process, only
dielectric has been used, while dry WEDM makes use of only compresses gas as dielectric
medium. Near dry WEDM process consist of both these medium, i.e., minimum quantity of
dielectric fluid and compressed gas. In current study, a mixture of dielectric fluid (minimum
quantity of liquid) and compressed air was used as an air-mist dielectric medium. Figure 1
shows a schematic diagram of near-dry WEDM experimental setup.
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Based on the machine limits, preliminary trials, and recent literature conducted on
machining of near-dry WEDM and nitinol SMA, and preliminary experimentations, Ton,
Toff and Current were selected as design variables for studying their effects on MRR, and
SR. The three levels of design variables for Ton includes 35, 65, and 95 µs; Toff includes
9, 18, and 27 µs; Current includes 2, 4, and 6 A. The experimental matrix was formed by
using the Box–Behnken design (BBD) technique. By following the BBD matrix, 15 trails
were completed with the variation in design variables at three levels. BBD design of
RSM was used to obtain an optimum response by using a series of designed experiments.
Another purpose of implementing BBD design was to develop mathematical correlations
between input and output parameters [53]. RSM was employed for the reduction in the
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experimental trials which avoids additional time and cost required for material [54,55]. To
study the statistical analysis of design variables for responses of MRR, and SR, Minitab 17
was employed.

By following the BBD design matrix, experimental trials were performed thrice by
taking average value of repetitions. As per Equation 1, the material erosion rate was
evaluated in mm3/s.

MRR =
∆W ∗ 1000

ρ ∗ t
(1)

where ∆W represents eroded material in gram, t depicts the time in second, and ρ represents
the density of the nitinol SMA (6.5 g/cm3).

SR was determined by employing Mitutoyo make Surftest SJ-410 with the consider-
ation of 0.8 mm as cut-off length. Measurement of SR was performed thrice at various
locations by taking average value of repetitions. SEM was employed to investigate the effect
of near-dry WEDM and wet WEDM processes on surface morphology. TLBO algorithm
developed by Vivek and Vimal [56] was employed to find the optimal combination of
process parameters. TLBO operates on the principle of teaching and learning activities of
students in a group. During the execution of the algorithm, the teacher tries to achieve the
performance of class students adjacent to the student securing the highest grade by means
of shifting the means of topper student grade. During the teacher phase, teacher guides the
students of class. Learner phase consists of an interaction of students among themselves.
Working principle of TLBO technique was depicted in Figure 2.

Micromachines 2022, 13, 1026 6 of 21 
 

 

 
Figure 2. TLBO algorithm [57]. 

3. Results and Discussions 
Table 1 depicts the experimental matrix as per the selected Box–Behnken design, de-

sign variables with their levels and evaluated readings of MRR, and SR. A mathematical 
relationship between design variables and responses has been developed by using RSM 
approach and by employing Minitab v17 (Bangalore, India). ANOVA was then carried 
out by using Minitab v17 for statistical analysis and to investigate the impact of design 
variables on response measures. Further, main effect plots were used to understand the 
influence of design variables on deciding the values of MRR, and SR. These main effect 
plots highlight the suitable levels of design variable for a specifically required output.  

Table 1. The experimental matrix as per BBD and response measures of MRR, and SR. 

Run Order 
Ton 
(µs) 

Toff 
(µs) 

Current 
(A) 

MRR 
(mm3/s) 

SR 
(µm) 

1 65 27 6 0.91295 4.77 
2 65 27 2 0.73005 3.08 
3 35 18 2 0.68045 3.41 
4 35 27 4 0.62155 3.32 
5 65 9 2 0.90365 3.59 

Figure 2. TLBO algorithm [57].



Micromachines 2022, 13, 1026 6 of 19

3. Results and Discussions

Table 1 depicts the experimental matrix as per the selected Box–Behnken design,
design variables with their levels and evaluated readings of MRR, and SR. A mathematical
relationship between design variables and responses has been developed by using RSM
approach and by employing Minitab v17 (Bangalore, India). ANOVA was then carried
out by using Minitab v17 for statistical analysis and to investigate the impact of design
variables on response measures. Further, main effect plots were used to understand the
influence of design variables on deciding the values of MRR, and SR. These main effect
plots highlight the suitable levels of design variable for a specifically required output.

Table 1. The experimental matrix as per BBD and response measures of MRR, and SR.

Run Order Ton
(µs)

Toff
(µs)

Current
(A)

MRR
(mm3/s)

SR
(µm)

1 65 27 6 0.91295 4.77
2 65 27 2 0.73005 3.08
3 35 18 2 0.68045 3.41
4 35 27 4 0.62155 3.32
5 65 9 2 0.90365 3.59
6 65 9 6 0.88660 5.14
7 95 27 4 0.96255 4.52
8 65 18 4 0.77655 3.92
9 95 18 2 0.99355 3.86
10 35 18 6 0.77655 4.72
11 65 18 4 0.78895 3.81
12 35 9 4 0.72230 4.36
13 65 18 4 0.77035 3.86
14 95 18 6 1.04005 5.19
15 95 9 4 1.03695 4.41

3.1. Generation of Non-Linear Regression Equations for Responses

A mathematical correlation has been developed between design variables and response
measured with the help of RSM approach. Regression equations were generated by using
Minitab v17 software. Equations (2) and (3) depicts the generated regression equations
for MRR, and SR, respectively, by employing the stepwise approach which eliminates
the non-significant terms from the model as they do not have any meaningful impact on
response values.

MRR = 1.0813 +0.00079·Ton − 0.02512·Toff − 0.1338·Current

+0.000040·Ton·Ton + 0.000265· Toff·Toff + 0.01456

· Current·Current − 0.000207· Ton·Current + 0.002777

· Toff·Current

(2)

SR = 5.379 − 0.04107 ·Ton − 0.0944·Toff − 0.046·Current + 0.000238·Ton

·Ton + 0.0517· Current·Current + 0.001065· Ton· Toff
(3)

3.2. ANOVA for MRR and SR

ANOVA was carried out for MRR, and SR by using Minitab v17 for statistical analysis
and to investigate the impact of design variables on response measures. A confidence
level of 5% was employed to investigate the effect of design variables [58]. To have a
significance of an input variable on the output variable, it is desired to have the P-value
be less than 0.05 [59,60]. Table 2 shows the ANOVA for the response measure of MRR. A
stepwise approach with α value equivalent to 0.15 was developed which eliminates the
non-significant terms having from the model as they do not have any meaningful impact
on response values. ANOVA results of Table 2 describe the statistical significance of the
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quadratic model of MRR as the regression model term, linear model, square interaction,
and 2-way interactions are all significant. In addition to this, the non-significance of lack of
fit with a P-value of 0.257 signified the robustness and adequacy of the developed model
for MRR [57]. According to P-values, statistically significant factors include all the linear
terms such as Ton, Toff, current; all square terms Ton × Ton, Toff × Toff, current × Current;
interaction term Toff × Current. A major contributor to deciding the response value of MRR
was found to be Ton followed by Toff, and current. R2 value adjacent to one is considered
as acceptability of regressions to predict the response value. The obtained values of R2

with 0.99447 and Adj. R2 with 0.9876 depicts the adequacy and fitness of the model. The
standard deviation of 0.0147 has been observed for MRR response. It reveals that theoretical
maximum deviation for MRR will be only 0.0147 from the mean value of MRR.

Table 2. ANOVA for MRR.

Source DF SS MS F P Significance

Model 8 0.242278 0.030285 139.89 0.000 #
Linear 3 0.214690 0.071563 330.56 0.000 #

Ton 1 0.189805 0.189805 876.73 0.000 #
Toff 1 0.012993 0.012993 60.01 0.000 #

Current 1 0.011893 0.011893 54.93 0.000 #
Square 3 0.016978 0.005659 26.14 0.001 #

Ton × Ton 1 0.004727 0.004727 21.83 0.003 #
Toff × Toff 1 0.001698 0.001698 7.84 0.031 #

Current × Current 1 0.012530 0.012530 57.88 0.000 #
2-Way Interaction 2 0.010610 0.005305 24.50 0.001 #

Ton × Current 1 0.000615 0.000615 2.84 0.143 *
Toff × Current 1 0.009995 0.009995 46.17 0.000 #

Error 6 0.001299 0.000216 #
Lack of fit 4 0.001120 0.000280 3.12 0.257 *
Pure error 2 0.000179 0.000090

Total 14 0.243577

R2 = 99.47%; R2 (Adj.) = 98.76%; # = Significant term; * = Non-Significant term.

Statistical analysis from ANOVA for SR was shown in Table 3. Non-significant terms
from the model have been eliminated by following the stepwise approach with an α value
equivalent to 0.15 as these eliminated terms do not have any meaningful impact on response
values. ANOVA results of Table 3 describe the statistical significance of the quadratic model
of SR as the regression model term, linear model, square interaction, and 2-way interactions
are all significant. In addition to this, the non-significance of lack of fit with a P-value
of 0.193 signified the robustness and adequacy of the developed model for MRR [61].
According to P-values, statistically significant factors include all the linear terms Ton, Toff,
current; square terms Ton × Ton, current × current; interaction term Ton × Toff. A major
contributor to deciding the response value of MRR was found to be currently followed by
Ton and then Toff. R2 value close to unity is considered as acceptability of regressions to
predict the response value. The obtained values of R2 (0.9855) and Adj. R2 (0.9746) closed to
unity has depicted the adequacy and fitness of the model. The standard deviation of 0.1048
has been observed for SR response. It reveals that theoretical maximum deviation for MRR
will be only 0.1048 from the mean value of SR. These obtained results from ANOVA for
both the responses of MRR and SR have suggested the suitability of the developed model
for the prediction of upcoming response measures. However, it is mandatory to validate
the results obtained from ANOVA by generating the residual plots.
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Table 3. ANOVA for SR.

Source DF SS MS F P Significance

Model 6 5.95782 0.99297 90.40 0.000 #
Linear 3 5.31992 1.77331 161.45 0.000 #

Ton 1 0.58861 0.58861 53.59 0.000 #
Toff 1 0.40951 0.40951 37.28 0.000 #

Current 1 4.32180 4.32180 393.48 0.000 #
Square 2 0.30727 0.15364 13.99 0.002 #

Ton × Ton 1 0.17047 0.17047 15.52 0.004 #
Current × Current 1 0.15874 0.15874 14.45 0.005 #
2-Way Interaction 1 0.33063 0.33063 30.10 0.001 #

Ton × Toff 1 0.33063 0.33063 30.10 0.001 #
Error 8 0.08787 0.01098 #

Lack of fit 6 0.08180 0.01363 4.49 0.193 *
Pure error 2 0.00607 0.00303

Total 14 6.04569

R2 = 98.55%; R2 (Adj.) = 97.46%; # = Significant term; * = Non-Significant term.

3.3. Residual Plots for MRR and SR

Figure 3a,b depict the residual plots for response variables. Successful verification of
residual plots produces the successful outcomes from ANOVA results [62,63]. Residual
plots consist of four plots such as normal probability, versus fits, histogram, and versus
order plot. From Figure 3a,b, the normal probability shows the plot between the percentages
versus the residual. Normality plot verifies that entire the residuals are on a straight
line. This shows that the model assumptions are correct, and the errors are normally
distributed [64]. Randomized residuals were observed in the versus plot which suggests
the suitability of the test [65]. Figure 3a,b validate the results of versus fits plot for both
the responses. The histogram has shown a parabolic curve which depicted verification
of ANOVA results [66]. In the last plot of residual versus observation orders, the absence
of any pattern fulfils the key requirement of significant ANOVA [67]. Figure 3a,b do not
depict any kind of formation of pattern for all responses which suggest good ANOVA
results. Therefore, ANOVA test results can now be treated as effective and fit for developed
regression models as residual plots has fulfilled the assumptions.

3.4. Effect of WEDM Variables on Responses

Main effect plots were derived by using Minitab v17 to investigate the impact of
WEDM parameters on MRR, and SR. Desired output performance (maximum/minimum) of
the responses in the selected levels can be efficiently represented by these main effect plots.
By considering the requirement of higher productivity, the objective for MRR response
was considered as maximization. Lower SR is anticipated for a better surface quality. So,
minimization criteria were assigned to the SR response. The X-axis depicts the individual
variable while Y-axis represents the output responses of MRR and SR.

Figure 4a shows the influence of the Ton on MRR and SR. Both the selected responses
MRR, and SR were observed to be increased with the rise in Ton from 35 µs to 95 µs. As per
ANOVA, Ton was having most dominating factor in affecting the MRR response. MRR was
increased from 0.7002 mm3/s to 1.0082 mm3/s with a subsequent rise in Ton. The reason
for the increase in MRR is the efficient flushing at the interelectrode gap (IEG) owing to
the substantial flushing pressure during NEWEDM process [68]. This efficient flushing
further enhanced spark formations which in turn increased the MRR [69]. Recurring spark
formation leads to the melting and vaporization of work material thereby, erosion rate
during machining [70]. Increased Ton subsequently enriches thermal energy which in turn
enhances the sparking frequency [71,72]. This is the additional factor for obtaining higher
MRR. An extensive conducted by Boopathi [34] has concluded similar observations for
increased MRR with rise in Ton value. SR was increased with rise in Ton value. Production
of higher frequency sparks and thermal energy due to the escalation in the value of Ton
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has generated larger and deeper craters on the work surface [73,74]. Kumar et al. [33] has
found a similar trend of increased SR with rise in Ton. The formations of larger craters
diminish the surface quality and thus, SR also increased during the NDWEDM process [75].
This showed the different levels of Ton for acquiring the higher MRR and lower SR. For
obtaining higher MRR and lower SR, desired levels of Ton were established as 95 µs, and
35 µs, respectively.
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The impact of the design variable Toff on MRR and SR can be observed in Figure 4b.
The declining trend can be seen for both responses of MRR, and SR with an increasing
value of Toff. Increasing pulse duration Toff from 9 µs to 27 µs has reduced MRR from
0.8873 mm3/s to 0.8067 mm3/s and improved SR from 4.37 µm to 3.92 µm. The reason
for such declined value of MRR was due to the reduction in sparking frequency. Toff
depicts the interval between the occurrences of two successive sparks [76]. Thus, an
increase in Toff will have a negative effect on sparking between IEG. Reduction in sparking
subsequently reduces the melting and vaporization of work material and thus, the erosion
rate diminishes by leading to lower MRR [77]. Results obtained in present work are in line
with the conclusion drawn by Manjaiah et al. [8] for drop in MRR. On the other hand, a
rise in Toff has a positive effect on the SR of work material. Declined sparking in IEG also
drops the temperature owing to a rise in Toff. This will further reduce the thermal and
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discharge energy and will create smaller craters [78]. Due to this reason, the quality of the
work surface has been improved and a smooth surface was obtained by observing a drop
in SR value [79]. Fuse et al. [80] has shown a similar trend of drop in SR value with increase
in Toff. This showed the different levels of Toff for acquiring the higher MRR and lower SR.
The desired levels of Toff were established as 9 µs, and 27 µs for MRR, and SR, respectively.
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Figure 4c represented the influence of the current on MRR and SR. Both the selected
responses MRR, and SR were observed to be increased with the rise in current from 2 A
to 6 A. As per ANOVA, the current was the most influential factor in the SR response.
Increasing current from 2 A to 6 A has improved MRR from 0.8113 mm3/s to 0.9041 mm3/s
and decreased the quality of the surface by increasing SR from 3.49 µm to 4.95 µm. The
reason behind the improvement in MRR values is discharge energy. Enhancement in
current further improved the discharge energy. It is further converted into thermal energy
which enhances the sparking frequency during NDWEDM [81]. The formation of recurring
spark leads to the melting and vaporization of work material thereby, erosion rate during
machining [82]. Thus, MRR was improved with a rise in current. Similar conclusion was
drawn in the study carried out by Dhakar et al. [47]. For SR response, the current was
found to be the highest contributing factor. A negative effect of a rise in the current on SR
can be seen in Figure 4c. As escalation in current gives rise to thermal energy, bigger and
deeper craters get formed on work material [83]. Thus, a drop in SR with rising in current
was depicted due to the formation of tiny craters. This main effect plot has shown the
different levels of current for acquiring the higher MRR and lower SR. For obtaining higher
MRR and lower SR, desired levels of current were established as 6 A, and 2 A, respectively.

3.5. Optimization Using TLBO Technique

TLBO algorithm has been executed for single-objective and multi-objective optimiza-
tion of MRR, and SR. TLBO is one such technique which does not require fine-tuning of
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variables, and found to be easy to execute. Results of main effect plots have depicted
extreme opposite levels of design variables to attain anticipated levels of responses. In the
present study, the objective for MRR response was considered as maximization by con-
sidering the requirement of higher productivity. On the other hand, minimization criteria
were assigned to SR response as lower SR is always desirable to acquire a better quality
of the machined components. TLBO algorithm is fast and easy to implement. During
the execution of the algorithm, MRR, and SR were considered positive entities. Levels of
design variables employed during execution of TLBO include Ton: 35 µs ≤ Ton ≥ 95 µs;
Toff: 9 µs ≤ Toff ≥ 27 µs; Current: 2 A ≤ current ≥ 6 A.

Results of single-response optimization have been represented in Table 4. Single-
response optimization has yielded a maximum MRR of 1.114 mm3/s at Ton of 95 µs, Toff
of 9 µs, current of 6 A. Least SR was obtained at Ton of 35 µs, Toff of 27 µs, current of
2 A with the predicted value of 2.81 µm. Validation trials of these optimized results were
carried out by performing the experiments at the obtained design variables. Predicted
and actual determined values from trials were represented in Table 4. It can be observed
that all the experimentally obtained response measures were in line with the predicted
results showing a minimum error within the acceptable range. This has shown acceptability
of proposed regression models with TLBO for the near-dry WEDM process. However,
single-response optimal results have shown extreme opposite levels of design variables
for attaining maximum MRR, and minimum SR. The suitable amalgamation of design
variables for WEDM can be achieved by finding an optimal solution to opposing responses.
To find the optimal solution for contradictory responses, a set of non-dominated optimum
solutions provided by Pareto fronts has proven to be very effective. From Pareto fronts,
user can select any optimal value as per their requirement with near-dry WEDM.

Table 4. TLBO results for individual response objectives.

Criteria
Design Variables Predicted Results Experimental Results % Deviation

Ton Toff Current MRR SR MRR SR MRR SR

Maximization of MRR 95 9 2 1.114 3.80 1.119 3.69 4.55 2.98

Minimization of SR 35 27 2 0.599 2.81 0.608 2.85 1.54 1.75

Multi-response TLBO (MOTLBO) algorithm has been utilized to produce the simulta-
neous optimal levels of MRR, and SR. Fifty Pareto optimal points were generated and each
Pareto point depicts the distinctive optimal result. Table 5 represents the generated solu-
tions from the MOTLBO algorithm along with the values of design variables. Pareto curve
has also been generated to understand the behavior of variation of MRR, and SR response
measures. Figure 5 denotes the generated Pareto graph from unique and independent val-
ues of MRR, and SR. The nature of the Pareto curve depicts the conflicting nature between
MRR and SR. Pursuant to this Pareto points will be useful selecting the corresponding
levels of NDWEDM variables. By picking five random points from Table 5, validation
trials of these optimized results were carried out. For all the performed experiments, an
acceptable error of less than 5% was noticed among predicted and experiment trials. Thus,
the obtained results have established an acceptability of the developed regression models
with TLBO technique for near-dry WEDM process.
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Table 5. Non-dominated unique solutions obtained from TLBO.

Sr. No. Ton
(µs)

Toff
(µs)

Current
(A)

MRR
(mm3/s)

SR
(µm)

1 35 27 2 0.599 2.80

2 95 9 2 1.114 3.80

3 93 9 2 1.098 3.78

4 90 9 2 1.075 3.74

5 76 11 2 0.948 3.60

6 78 9 2 0.990 3.64

7 87 9 2 1.053 3.71

8 42 27 2 0.623 2.85

9 39 27 2 0.612 2.83

10 64 26 2 0.730 3.16

11 84 9 2 1.031 3.68

12 71 22 2 0.798 3.36

13 81 9 2 1.010 3.66

14 74 13 2 0.909 3.56

15 75 12 2 0.929 3.58

16 77 10 2 0.969 3.62

17 49 27 2 0.651 2.91

18 58 27 2 0.693 3.03

19 46 27 2 0.639 2.88

20 56 27 2 0.683 3.00

21 71 16 2 0.855 3.48

22 67 18 2 0.810 3.40

23 85 9 2 1.038 3.69
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Table 5. Cont.

Sr. No. Ton
(µs)

Toff
(µs)

Current
(A)

MRR
(mm3/s)

SR
(µm)

24 74 15 2 0.885 3.52

25 45 27 2 0.635 2.87

26 50 26 2 0.661 2.97

27 69 27 2 0.753 3.23

28 73 18 2 0.846 3.46

29 67 27 2 0.742 3.19

30 75 17 2 0.869 3.51

31 72 13 2 0.897 3.54

32 74 12 2 0.922 3.57

33 80 9 2 1.003 3.65

34 94 9 2 1.106 3.79

35 71 27 2 0.765 3.27

36 54 27 2 0.674 2.97

37 63 27 2 0.719 3.11

38 67 17 2 0.821 3.42

39 60 27 2 0.703 3.06

40 66 27 2 0.736 3.17

41 59 27 2 0.698 3.05

42 74 26 2 0.789 3.35

43 70 17 2 0.838 3.45

44 55 27 2 0.679 2.99

45 71 15 2 0.866 3.50

46 71 20 2 0.815 3.41

47 72 27 2 0.771 3.29

48 89 9 2 1.068 3.73

3.6. Comparison Study Near-Dry WEDM with Wet WEDM Process

To investigate the performance of the NDWEDM process with wet WEDM, a case
study has been considered with the objective function as represented in the equation. For
assigning the identical significance to both the responses MRR, and SR, a multi-response
optimization methodology was utilized with an equal weight of 0.5 to output responses by
using the TLBO algorithm.

Obj = w1·(MRR) + w2·(SR) (4)

The objective function has yielded optimized values of MRR, and SR as 0.815 mm3/s,
and 3.41 µm, respectively, at design variables of Ton of 71 µs, Toff of 20 µs, current of 2 A.
validation trial was again conducted for the verification of these results and it has shown the
actual MRR, and SR of 0.829 mm3/s, and 3.29 µm, respectively. Now, for the comparison of
these obtained results from the NDWEDM process, another experiment was carried out
at the same set of parameters by using the wet-WEDM process. During the wet-WEDM
process supply of air has been removed and only deionized water was used as a medium.
Experimental results obtained from the wet-WEDM process have produced MRR, and SR of
0.761 mm3/s, and 5.63 µm, respectively. A small reduction in MRR with a decrease of 8.94%
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has been observed for the NDWEDM process in comparison with wet-WEDM. Higher MRR
for the wet-WEDM process was due to the fact that dielectric fluid is having higher thermal
conductivity as compared to the air-mist mixture [51]. Lower thermal conductive materials
are having less impact on melting and vaporization during the machining process [33].
This in turn reduces the rate of erosion and thus, MRR. Another reason for higher MRR in
the case of wet-WEDM is that it has improved sparking frequency as compared to near-dry
WEDM. The reason for this is that NDWEDM provides dielectric fluid in the form of small
droplets [48]. However, the performance of SR has been substantially improved by 41.56%
with the use of the NDWEDM process. This is due to the fact that the lower viscosity of the
NDWEDM process reduces the current density [33]. This in turn results in the formation of
tiny shallow craters and produces better surface quality [84]. Another reason for lower SR
during NDWEDM was due to improved flushing of debris particles from IEG [85,86].

3.7. Surface Morphology of Near-Dry WEDM and Wet WEDM Process

The surface morphology of the machined surface plays an important role to under-
stand the significance of design variables and the machining process. Machined surfaces
obtained at design variables of Ton of 71 µs, Toff of 20 µs and current of 2 A were selected
to study the surface morphology of both the processes of NDWEDM and wet-WEDM.
Figure 6a,b depict the SEM images for the machined surface obtained by using the wet-
WEDM and NDWEDM processes, respectively. Figure 6a shows the large presence of
surface defects such as globules and deposition of solidified material, micro-voids, and
micro-cracks. This was due to the high thermal energy generated during the wet-WEDM
process [34]. This high thermal energy generated enhances the intensity of the spark and
thus, it produces a higher temperature at IEG. This in turn evaporates more material and
generates high surface deviations in the form of micro-voids, deposition of solidified mate-
rial, and micro-cracks [87,88]. On the other hand, the machined surface produced by using
the NDWEDM process, as per Figure 6b, depicts lower surface deviations. This is due to the
fact that the lower viscosity of the NDWEDM process reduces the current density [89]. This
in turn results in the formation of tiny shallow craters and produces better surface quality
by reducing the surface defects such as micro-voids, deposition of solidified material, and
micro-cracks [84]. Another reason behind this was the improved flushing of debris particles
from IEG [51]. Therefore, low viscosity, reduced thermal energy at IEG, and improved
flushing of eroded material for air-mist mixture during NDWEDM have provided better
surface morphology over the wet-WEDM process in terms of reduction in surface defects
and better surface quality of nitinol SMA.
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4. Conclusions

In current study, near-dry machining process was used to overcome the environmental
issues by means of providing negligible health hazards. Parametric optimization was
carried out by employing the TLBO algorithm. The influence of near-dry WEDM technique
was studied to relieve environmental issues related to wet WEDM with the consideration of
Ton, Toff, and current as design variables. Following significant conclusions can be drawn
from the present study.

• The mathematical non-linear regression equations obtained from experimental results
were found to be effective for prediction of responses.

• ANOVA results depicted the statistical significance of the quadratic model for both
responses MRR, and SR as the regression model term, linear model, square interaction,
and 2-way interactions are all significant. A major contributor to deciding the response
value of MRR was found to be Ton followed by Toff, and current, while for SR, the
current was having a major contributing element followed by Ton and then Toff.

• R2 values closed to unity signified the adequacy and fitness of the MRR, and SR
model. Non-significance of lack of fit for both MRR and SR has again signified the
robustness and adequacy of the developed model. All four residual plots for MRR
and SR have verified the good statistical analysis for ANOVA and the outcome of
developed regression equations.

• TLBO algorithm has been executed for single-objective and multi-objective optimiza-
tion of MRR, and SR. Single-response optimization has yielded a maximum MRR of
1.114 mm3/s at Ton of 95 µs, Toff of 9 µs, current of 6 A. Least SR was obtained at Ton
of 35 µs, Toff of 27 µs, current of 2 A with the predicted value of 2.81 µm.

• Pareto fronts presented a trade-off between two conflicting objectives, and manufac-
turers can select any point on the front.

• The objective function for near-dry WEDM has yielded optimized values of MRR, and
SR as 0.815 mm3/s, and 3.41 µm, respectively, at design variables of Ton of 71 µs, Toff
of 20 µs, current of 2 A. Experimental results obtained from the wet-WEDM process
have produced MRR, and SR of 0.761 mm3/s, and 5.63 µm, respectively.

• Near-dry WEDM process yielded a small reduction in MRR with an 8.94% decrease in
comparison with wet-WEDM. However, the performance of SR has been substantially
improved by 41.56%.

• SEM micrographs were used to study the surface morphology of obtained surfaces
from near-dry WEDM and wet WEDM. Low viscosity, reduced thermal energy at IEG,
and improved flushing of eroded material for air-mist mixture during NDWEDM
has provided better surface morphology over the wet-WEDM process in terms of
reduction in surface defects and better surface quality of nitinol SMA.

• Thus, for obtaining the better surface quality with reduced surface defects, near-dry
WEDM process is largely suitable. Authors believes that current study will be useful
for machining of nitinol SMA for acquiring good surface quality.
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Nomenclature

ANOVA Analysis of variance
BBD Box–Behnken design
DF Degree of freedom
DOE Design of Experiments
EDM Electrical Discharge Machining
IEG Inter-electrode gap
MOTLBO Multi-objective teaching–learning based optimization
MRR Material removal rate (mm3/s)
NDEDM Near dry electrical discharge machining
NDWEDM Near dry wire electrical discharge machining
RSM Response surface methodology
SEM Scanning electron microscope
SMA Shape memory alloy
SMAs Shape memory alloys
SME Shape memory effect
SR Surface roughness (µm)
TEM Transmission electron microscope
TLBO Teaching–Learning based optimization
Ton Pulse on time (µs)
Toff Pulse off time (µs)
t Time in seconds
WEDM Wire electric discharge machine
ρ Density in g/cm3
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