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Abstract: With the slowdown of Moore’s law, many emerging electronic devices and computing
architectures have been proposed to sustain the performance advancement of computing. Among
them, the Ising machine is a non-von-Neumann solver that has received wide attention in recent years.
It is capable of solving intractable combinatorial optimization (CO) problems, which are difficult
to be solve using conventional digital computers. In fact, many CO problems can be mapped to
finding the corresponding ground states of Ising model. At present, Ising machine prototypes based
on different physical principles, such as emerging memristive oscillators, have been demonstrated,
among which the Ising Hamiltonian solver based on the coupled oscillator network simultaneously
holds the advantages of room-temperature operation, compact footprint, low power consumption,
and fast speed to solution. This paper comprehensively surveys the recent developments in this
important field, including the types of oscillators, the implementation principle of the Ising model,
and the solver’s performance. Finally, methods to further improve the performance have also
been suggested.

Keywords: oscillator network; Ising machine; combinatorial optimization; max-cut

1. Introduction

Combinatorial optimization (CO) is an important branch of operations research and
algorithm theory that has a wide spectrum of applications in the real world, including
artificial intelligence (AI), circuit wiring, information network, route planning [1–3], etc.
(Figure 1). Many of these CO problems belong to nondeterministic polynomial (NP)-
completeness or NP-hard problems. In fact, these kinds of problems can be mapped to the
problems of finding the ground state of the Ising Hamiltonian equation. However, it is
generally intractable to solve such problems with traditional digital computers. Besides,
with the increase of the problem’s dimensionality, the required computing power and time
to obtain the global optimal solution will scale up exponentially [2]. Thus, researchers are
looking for effective solutions to large-scale CO problems in the last decades.

With the slowdown of Moore’s law, emerging hardware and computing paradigms
beyond traditional transistor-based von-Neumann architecture are now topical. Different
from the optimization algorithms tailored for digital logic circuits, Ising machines have the
ability to solve the Ising Hamiltonian equation through their internal physical evolution
process, which may yield an optimal solution at a high speed [4]. According to their
physical mechanisms, existing Ising machines can be divided into four categories. The
first one is the D-WAVE quantum annealing Ising machine [5–8] (Figure 2a), in which
superconducting loops serve as spin nodes, and the nodes are coupled to each other
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through Josephson junctions. At the hardware level, the quantum annealing method has
not demonstrated its advantages in real-world applications because this kind of machine
can only work at ultra-low temperatures, which significantly increases the complexity and
cost of the computing systems. The second type of Ising machine utilizes laser pulses
as spins, and the coupling between spins is achieved through field-programmable gate
arrays (FPGAs) [9–12] (Figure 2b). Although coherent optical Ising machines operate at
room temperature, they also have a critical limitation that several kilometers of optical fiber
ring cavity are required for Ising spins. This limits its application scenarios, and efforts
are now being made toward system miniaturization and large-scale integration. Another
promising approach is to implement Ising machines using the complementary metal oxide
semiconductor (CMOS) digital circuits [13–16] (Figure 2c). Hardware accelerators using
SRAM and FPGAs have also been widely studied to solve the Ising model. For example,
a 20k-spin prototype Ising chip was reported by Yamaoka et al. The last is a coupled
oscillator network–based Ising machine, which this paper will focus on. This type of Ising
machine was first proposed by Wang et al. from UC Berkeley in 2017 [17,18], in which
each oscillator acts as a spin node, and the spin state can be represented by the phase of
the oscillator (Figure 2d). The nodes can be coupled through electrical, magnetic, or other
effects. Compared with the first three kinds of Ising machines, Ising machines based on
oscillator networks simultaneously hold the advantages of room-temperature operation,
small size, low power consumption, and fast solution speed, which endows it with great
potential in practical applications.
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Thanks to these advantages of oscillator-network-based Ising machines, there is a
recent surge of interest in this field. This paper has reviewed the development of this field
for the first time, including the merits of different kinds of oscillators and the theoretical
proof on why oscillator networks are equivalent to the corresponding Ising model and their
performances. Finally, methods to improve the performance of this kind of solver are also
discussed.
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2. Theoretical Background
2.1. Types of Oscillators

In general, a physical system that produces periodic outputs can be termed an oscil-
lator. In electronics, oscillators are usually regarded as a circuit component that outputs
a periodic analog electrical voltage or current signal under direct excitation, which has
a wide spectrum of applications such as clocking. According to the circuits and device
physics, they can be divided into resistor–capacitor (RC) oscillators, inductor–capacitor (LC)
oscillators, ring oscillators, phase-transition oscillators, spin torque oscillators, spin Hall
oscillators, etc. In addition, according to the output waveforms, they can be categorized
into three types: sine wave, square wave, or triangle wave oscillators. The performance of
these Ising machines is highly relevant to the type of oscillators, which largely determines
the physical footprint, time to solution, energy consumption, accuracy, and other important
attributes of the solvers.

A RC oscillator, that is, an oscillator composed of an RC frequency selection network
(Figure 3a), is generally suitable for generating low-frequency oscillation signals below
1 MHz (oscillation frequency f0 = 1

2πRC ). Its key merit is that the circuit is simple and also
easy to fabricate. However, in terms of the performance, its frequency selection capability is
relatively limited. In addition, the output signal amplitude is not stable enough. Therefore,
it is typically suitable for applications in which frequency stability is not required.

Like the RC oscillator, the LC oscillator is also very common, which employs a fre-
quency selection network composed of LCs (Figure 3b) and leverages the energy storage
characteristics of capacitors and inductors, alternating between these two types of electro-
magnetic energy. Compared with an RC oscillator, an LC oscillator is generally suitable for
higher-frequency scenarios (oscillation frequency f0 = 1

2π
√

LC
). On one hand, increasing

the oscillation frequency increases the electromagnetic power radiated by the LC circuit.
On the other hand, because the frequency of the LC oscillator is negatively correlated with
the size of the inductor, it needs a large footprint to meet the oscillation conditions at low
frequency; as a result, a larger coil must be used. The high parasitic resistance of such a coil
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will lead to an increase in power consumption. In addition, the large-size inductor is also
not favorable for miniaturization and integration.

A ring oscillator is a closed-loop oscillation circuit composed of an odd number of
inverters (Figure 3c). Its oscillation frequency is determined by the inherent delay time
of the gate circuit and the number of inverters (oscillation frequency f0 = 1

2nt , where t is
the delay time of a single inverter, n is the number of inverters). This kind of oscillators
hold the advantages of simple circuitry and robust oscillation. The ring oscillator is one
of the most compact transistor-based oscillators, which is highly conducive to large-scale
integration. In addition, it also has decent energy consumption, which is comparable to that
of nanoscale oscillators [19]. However, its disadvantage is that the oscillation frequency is
not easy to modulate. In the absence of an external delay network, the oscillation frequency
can only be tuned by changing the number of inverters.

Phase-transition oscillators, as the name suggests, are oscillators made of phase-
transition materials (Figure 3d), which are a type of memristor oscillators [20,21]. The
working principle is that there is a switch-like behavior in these phase-transition materials.
When a current greater than the threshold passes through the phase-transition materials, it
will cause a large and abrupt change in the conductivity. That is, under an applied electric
field, the material undergoes a phase transition from an insulator to a conductor. Conversely,
when the current is less than the threshold, a phase transition from conductor to insulator
takes place. In addition, the phase-transition device can be combined with capacitors or
resistors to implement relaxation oscillators [20,22]. Moreover, there is hysteresis in the
phase-transition process due to the presence of the intrinsic electronic switching time, which
has a significant influence on the oscillation frequency. This phase-transition material–based
oscillator features a simple structure, a compact footprint, and low power consumption.

Spin torque and spin Hall oscillators (Figure 3e) are a new class of nanospintronic
devices with promising applications in information storage, processing, and communica-
tion [23,24]. Its working principle mainly relies on the oscillating magnetic moment of the
ferromagnetic material. Due to the tunnel magnetoresistance effect, the oscillation of the
magnetic moment modulates the resistance of the magnetic tunneling layer, resulting in pe-
riodic oscillations of the output electrical signal. The energy required for these oscillations
is provided by spin-polarized currents flowing through the magnetic layers, typically in
the sub-mA level. Its oscillation frequency can be easily scaled up to the gigahertz range.
Compared with semiconductor-based oscillators, it provides greater tunability, smaller
size, lower power consumption, and higher integration density, showing great potential
in high-speed and high-density computing. It is also one of the most popular physical
implementations of neuromorphic circuits [25].
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2.2. Ising Model and Max-Cut Problem

The Ising model is a mathematical model named after the German physicist Ernst Ising.
As early as the 1920s, the Ising model was proposed to describe the formation of magnetic
domains in ferromagnets [26]. It contains a set of discrete variables, si, that describe the
magnetic moment, also known as spin whose value is −1 or +1 to represent spin down
or up, respectively. These magnetic moments are usually arranged by accounting for the
interaction between adjacent spins. The “energy function” (Ising Hamiltonian equation) of
the entire system can be written as follows:

H = − ∑
1≤i≤j≤n

Jijsisj −
n

∑
i=1

hisi (1)

where n represents the number of spins, Jij is the coupling coefficient between adjacent
spins, which describes the polarity and magnitude of the interaction. For example, for each
pair of spins i and j, if Jij > 0 or a ferromagnetic system, the energy of adjacent spins in
the same state is lower, so the spins tend to be aligned in the same direction (Figure 4a). If
Jij < 0, the system is antiferromagnetic; the energy of the adjacent spins in the opposite
direction is lower, so the spins tend to be aligned in the opposite directions (Figure 4b).
Jij = 0 indicates that there is no interaction between spins. hi represents the strength of
the external magnetic field applied to each spin. For some specific problems (e.g., max-cut
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problem), a common simplification is to assume that there is no applied magnetic field, that
is, hi = 0. Using this simplification, the Ising Hamiltonian equation can be written as

H = − ∑
i,j,i<j

Jijsisj (2)
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In fact, many CO problems have been proven to root on this equation. With the appro-
priate coupling coefficients Jij, all of Karp’s 21 NP-complete problems can be translated to
the equivalent Ising Hamiltonian equations [27,28]. The optimal solution is represented by
the spin configuration with the lowest energy Hmin.

The max-cut problem, for example (Figure 5), refers to finding a way to partition
a given weighted graph into two sub-graphs to maximize the sum of the weights of all
edges across two vertex sets (V1, V2) [29]. This is because all edges can be divided into
three categories, namely the group connecting vertices in set V1, the group connecting
vertices in set V2, and the group linking vertices in V1 and those in V2. The sum of the
weights in these three sets are represented by S1, S2, and Scut, respectively. By setting Jij as
the negative value of the edge weight between vertices i and j, we can get

S1 + S2 + Scut = ∑
i,j,i<j

wij = − ∑
i,j,i<j

Jij (3)
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The vertices in two sets can be mapped to different spin values. For example, if
i ∈ V1, then si= +1, if i ∈ V2, then si= −1. Then, the above Ising Hamiltonian equation
can be rewritten as [30] follows:

H = − ∑
i,j,i<j

Jijsisj

= − ∑
i<j,ij∈V1

Jij(+1)(+1)− ∑
i<j,ij∈V2

Jij(−1)(−1)− ∑
i<j,i∈V1,j∈V2

Jij(+1)(−1)

= − ∑
i<j,ij∈V1

Jij− ∑
i<j,ij∈V2

Jij + ∑
i<j,i∈V1,j∈V2

Jij

= S1 + S2 − Scut
= ∑

i,j,i<j
wij − 2Scut

(4)

Therefore, when H is minimized, the sum of the cutting weights will be maximized.
It should be noted that, for the max-cut problem, if the weight of the edge is positive, the
mapped Ising model should be an antiferromagnetic system, that is Jij < 0. If the edge
weight is negative, the mapped Ising model is ferromagnetic, i.e., all spins tend to be in the
same state and the number of edges that have been cut remains 0.

2.3. The Formulation

This section introduces the theoretical formulation of a coupled oscillator network–
based Ising machine and shows how the coupled oscillator networks automatically mini-
mizes the Ising energy to yield the optimal solution. The implementation is mainly based
on the fundamental injection locking (IL) and its variant second-harmonic injection locking
(SHIL) [31–34] (these two phenomena will be discussed in detail subsequently). When an
oscillator is perturbed by an external periodic signal whose frequency is almost twice the
base oscillation frequency, then the oscillator’s phase will be in one of the two steady states,
and the phase difference between the two states is 180◦ [34]. The spin state of each node
in the Ising model can be encoded into the oscillator’s phase, using the two steady states
that represent spin down or up, respectively. When these oscillators are coupled together
in a certain manner, they will affect each other. Since the coupled oscillator network will
automatically lower its total energy, the inherent physical evolution of the system will
automatically solve the Ising Hamiltonian equation. The final steady-state phases of these
oscillators represent the optimal solution (Figure 6).
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We will first mathematically derive the dynamics of a single oscillator. IL is a nonlinear
phenomenon that exists in oscillator systems. The term stands for the fact that the phase of
the oscillator will be pulled or locked by an external periodic perturbation signal. When
the frequency of the external signal is close to the oscillation frequency, this phenomenon is
called IL. If the frequency of the external signal is nearly twice the oscillation frequency,
then it is called SHIL.

A nonlinear oscillator is an autonomous dynamic system; when the oscillator is

influenced by an external perturbation signal
→
b (t), it can be described by the following

differential algebraic equation (DAE) [35]:

d
dt
→
q
(→

x (t)
)
+
→
f
(→

x (t)
)
=
→
b (t) (5)

where
→
q (·) and

→
f (·) represent the nonlinear differential and algebraic parts, respectively.

If the external perturbation is small, the solution,
→
x p(t), in Equation (5) can be simplified

as [36]
→
x p(t) =

→
x s(t + α(t)) (6)

In which,
→
x s(t) with a period T0 is the steady-state solution without any perturbation,

and α(t) represents the phase shift caused by the external signal and satisfies the following
scalar equation:

d
dt

α(t) =
→
v

T
1 (t + α(t)) ·

→
b (t) (7)

Here,
→
v

T
1 is the perturbation projection vector (PPV) of the oscillator. PPV has the same

period as
→
x (t) and is an inherent characteristic of the oscillator. It describes the sensitivity

of the oscillator phase to a perturbation signal. The PPV of different types of oscillators has
been discussed in the literature [33,37].

Assuming that the oscillation frequency is f0, we define a PPV with 1-period

→
v

T
1 (t) =

→
χ( f0t) (8)

When injecting an external periodic signal with a frequency f1 ( f1 ≈ f0), Equation (7)
can be rewritten as

d
dt

α(t) =
→
χ( f0(t + α(t))) ·

→
b ( f1t) (9)

The phase difference between the oscillator and the external signal is defined as

∆φ(t) = φ0(t)− φ1(t) = f0(t + α(t))− f1t (10)

Then, we have

α(t) =
∆φ(t)

f0
+

f1 − f0

f0
t (11)

Combining Equations (9) and (11), we obtain

d
dt

α(t) =
→
χ( f0(t + α(t))) ·

→
b ( f1t) =

1
f0

d
dt

∆φ(t) +
f1 − f0

f0
(12)

Combining Equation (10), we derive

d
dt

∆φ(t) = −( f1 − f0) + f0
→
χ(∆φ(t) + φ1(t)) ·

→
b (φ1(t)) (13)
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In Equation (13), we assume that φ1(t) is a “fast” varying variable and ∆φ(t) is a
“slowly” varying variable. Averaging the “fast” varying φ1(t) and retaining the “slow”
varying ∆φ(t), we define:

g(∆φ(t)) =
1
T1

∫ T1

0
χ(∆φ(t) + φ1(t)) · b(φ1(t))dφ1(t) (14)

Then,
d
dt

∆φ(t) = −( f1 − f0) + f0g(∆φ(t)) (15)

Equation (15) is the generalized Adler’s equation describing the IL phenomenon [33].
Taking the LC oscillator as an example, when an LC oscillator (PPV:

→
χ(t) = −

√
L
C

1
A sin( f0t)) is disturbed by a sinusoidal signal, Equation (15) is transformed

to the Adler’s equation [38]:

d
dt

∆φ(t) = −( f1 − f0)−
I1

I0

f0

2Q
sin(∆φ(t)) (16)

Here, I1 represents the strength of the external signal, I0 is the strength of the oscillator
output current, and Q is the quality factor of the oscillator.

When several oscillators are coupled together, the oscillator of interest is subject to the
injection of output signals of other oscillators according to Equation (16):

d
dt
(
φi(t)− φj(t)

)
=

d
dt
(
φi(t)− f jt

)
= −

(
f j − fi

)
− 1

N

N

∑
j=1

Kij sin
(
φi(t)− φj(t)

)
(17)

Then,
d
dt

φi(t) = fi −
1
N

N

∑
j=1

Kij sin
(
φi(t)− φj(t)

)
(18)

Equation (18) is known as the Kuramoto model [39], where N is the number of
oscillators and Kij represents the coupling coefficient between the oscillators.

In addition, when the oscillator is locked by an external signal, ∆φ(t) will become a
constant, d

dt ∆φ(t) = 0, according to Equation (15):

f1 − f0

f0
= g(∆φ(t)) (19)

From Equation (19), the range of IL and the phase difference between the oscillators
can be easily determined.

The total energy is determined by the Lyapunov equation [40]:

d∆φ(t)
dt

= − ∂E
∂∆φ(t)

(20)

The derivative of energy with respect to time is

∂E
∂t

=
∂E

∂∆φ(t)
d∆φ(t)

dt
= −(d∆φ(t)

dt
)

2

≤ 0 (21)

From Equation (21), it can be seen that this system has a tendency to reduce the energy
over time automatically.

When d∆φ(t)
dt = 0, ∂E

∂∆φ(t) = 0, the period of g(∆φ(t)) in Figure 7a is 2π. There are two
intersection points representing a maximum value and a minimum value of the system
energy in Figure 7b. However, which point represents the steady (or unsteady) state
depends on the polarity of the injected signal (coupling coefficient between oscillators).
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Assuming that there are two LC oscillators with the same oscillation frequency,

E(∆φ(t)) = −1
2

Kij cos
(
φi(t)− φj(t)

)
(22)

It can be seen from Equation (22) that, if Kij is positive, which means that there is a
positive coupling between oscillators, the system’s energy reaches the minimum when
φi(t) − φj(t) = 0, and their phases will tend to be the same (Figure 8a). However, if
Kij is negative, which means that there is a negative coupling between oscillators, the
energy takes the minimum value when φi(t)− φj(t) = π, and their phases will tend to
be opposite (Figure 8b). When multiple oscillators are interfaced to each other through
negative coupling, the phase of each oscillator and its neighbors tend to be opposite, and
their phases cannot stay binary (0/π) under mutual interaction (Figure 8d). In this case,
SHIL is required.
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When the oscillator is subjected to an external perturbation signal of about twice the
base frequency ( f1 ≈ 2 f0), the generalized SHIL Adler’s equation is [34]

d
dt

∆φ(t) = −
(

1
2

f1 − f0

)
+ f0g(∆φ(t)) (23)



Micromachines 2022, 13, 1016 11 of 19

In which,

g(∆φ(t)) =
1

2T1

∫ 2T1

0
χ

(
∆φ(t) +

1
2

φ1(t)
)
· b(φ1(t))dφ1(t), ∆φ(t) = φ(t)− 1

2
φ1(t) (24)

In order to study its periodicity, the PPV and injection signal were expanded using
Fourier series:

χ

(
∆φ(t) +

1
2

φ1(t)
)
=

∞

∑
k=−∞

χkej2πk(∆φ(t)+ 1
2 φ1(t)), b(φ1(t)) =

∞

∑
l=−∞

blej2πlφ1(t) (25)

Then,

g(∆φ(t)) =
∞

∑
l=−∞

χ−2lble−j2π2l∆φ(t) (26)

where χ and b are the Fourier coefficients. From Equation (26), we know that the period of
g(∆φ(t)) is half of the oscillator’s period. When locked by the injection signal, d

dt ∆φ(t) = 0,
then, we have

1
2 f1 − f0

f0
= g(∆φ(t)) (27)

Assuming that f1 = 2 f0, according to the Lyapunov equation, the total energy of the
system is

E(∆φ(t)) = f0

∞

∑
l=−∞

χ−2lbl
j2π2l

e−j2π2l∆φ(t) (28)

It can be seen from Figure 9a that there are 4 intersection points, which represent the
two maxima and two minima of the system energy in Figure 9b, respectively. The phase
difference between the two minima is π.
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When an oscillator network is perturbed by an injection signal with a frequency of
f1, where f1 = 2 f0, each oscillator will be simultaneously affected by the external signal
and the output signals of the other oscillators. Supposing that the oscillator network has a
consistent frequency and that the LC oscillators are perturbed by a sinusoidal signal, then,

dφi(t)
dt

= −
Kij

N

N

∑
j=1

sin
(
φi(t)− φj(t)

)
− Ks sin(2(φi(t)− φ1(t))) (29)
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The system’s energy is

E = −
Kij

N

N

∑
j=1

cos
(
φi(t)− φj(t)

)
− 1

2
Ks cos(2(φi(t)− φ1(t))) (30)

where Ks represents the relative strength of the externally injected signal. From the
above analysis, when the oscillator is locked by an external signal with double frequency,
φi(t)−]φ1(t) = 0/π, then φi(t)− φj(t) = 0/π. In addition, let Kij = NJij, then,

E = −
N

∑
i,j,i 6=j

Jij cos
(
φi(t)− φj(t)

)
− 1

2
NKs (31)

Equation (31) is very similar to the original Ising Hamiltonian equation. When
φi(t) − φj(t) = 0, sisj = −1, while φi(t) − φj(t) = π, sisj = −1. What should be em-
phasized is that even under the influence of the injection signal with twice the frequency,
when Kij (Jij) is positive or the coupling between oscillators is positive, the system’s energy
reaches the minimum when φi(t)− φj(t) = 0. Therefore, the phase of the coupled oscilla-
tors will still tend to be consistent, which is equivalent to a ferromagnetic system. If Kij is
negative, there is a negative coupling between oscillators, the system is equivalent to an
antiferromagnetic system and the phases of the connected oscillators will tend to be oppo-
site. In addition, the system’s energy will automatically decrease with time, which proves
that this system can be used as an Ising machine to automatically solve the Hamiltonian
equation using its inherent physical evolution. In general, for a complex system, there are
many local minima in this equation as shown in Figure 10. The system may fall into one
of the local optimal solutions during the state evolution. Simply relying on this dynamic
process cannot guarantee that the global optimal solution can be acquired. The system also
needs some sort of help (for example, tunable noise) to escape from the local optimum.
The annealing process, featuring a gradually decaying noise, will increase the probability
of reaching the global optimum [18,22]. When design such Ising machines, in addition to
the properties of the oscillators, we should also consider the coupling strength between
oscillators as well as the strength of external injection signals and noise, which are the three
main parameters that will affect the performance of this kind of Ising machine.
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3. Experimental Demonstrations

In 2017, Wang et al. demonstrated for the first time that a self-sustaining LC oscillator
network can be used as an Ising machine. They also showed how the global Lyapunov
function of the oscillator phase macromodel can be mapped to the corresponding Ising
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equation [17,18]. Moreover, they also used this type of Ising machine to solve large-scale
max-cut problems. Among the 54 G-set problems, 38 secured optimal solutions, illustrating
its promising performance. It was also found that using different types of oscillators or
injection signals with different waveforms may increase the probability of successfully ob-
taining the global optimal solution. However, increasing the frequency deviation between
oscillators will degrade the performance. Fortunately, if such deviation is within a certain
range, this shortcoming could be compensated for by using tunable oscillators or by increas-
ing the coupling strength between oscillators. In addition, it is also very important to use
an optimized noise annealing process. Compared with other types of Ising machines, this
oscillatory Ising machine had a better solution quality and obtained more cutting weight
in dealing with many max-cut problems. In addition, through theoretical analysis, it was
also shown that the convergence rate of the system’s energy function remained unchanged
upon increment of the problem size [18] (Figure 11a). In addition, the solving speed was
faster than that of other solvers, which makes it advantageous for solving large-scale CO
problems. However, it should be noted that, in practice, the total computation time is also
related to the annealing process. Since increasing the problem size will increase the number
of local minima, the solution time may also increase [22,41] (Figure 11b). The computation
time is mainly determined by the oscillation frequency; therefore, increasing the oscillation
frequency is beneficial for improving the solving speed [17,18,41]. In terms of hardware
implementation, Wang et al. demonstrated an inverter cross-coupled LC oscillator network,
physically realizing a prototype Ising machine with up to 240 spin nodes and programma-
bility [42] (Figure 11c). As for this machine, the oscillation frequency was about 1 MHz,
and the power consumption of the whole device was about 5 W. The programmability was
realized by an adjustable digital potentiometer, and male and female pin connectors were
used to control the coupling polarity. This physical Ising machine prototype successfully
solved several randomly generated Ising problems, and the measured performance was
better than that of the best algorithm solver SDP. In a similar work, a network consist-
ing of four fully coupled LC oscillators was also demonstrated [41]. However, the low
oscillation frequency and large physical dimension of LC oscillators are not conducive to
system integration.
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Compared with LC oscillators, ring oscillators can easily achieve higher working
frequencies and can be easily integrated. Ahmed et al. fabricated a programmable network
consisting of 560 coupled ring oscillators and successfully realized a fully integrated chip-
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scale Ising machine [3,43]. Each oscillator and its adjacent oscillators were negatively
coupled using a set of anti-parallel connected inverters (Figure 12a), and the coupling
coefficient could be easily adjusted by the control signal for real-time programming, which
enables it to solve a variety of max-cut problems with different sizes. Experiments showed
that the success rate of this Ising machine in solving max-cut problems was as high as
82–100%. Compared with commercial software, the solving speed was 104–106 times faster,
while the power consumption of the entire Ising machine was only 23 mW, corroborating
its great potential for practical applications.
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Recently, Moy et al. reported a 1968-node coupled King’s graph ring oscillator–based
Ising machine with five-level coupling strengths [44]. Here, the programmability was
implemented by the transmission gates. Each gate could be separately turned on/off
to enable the five coupling states. In addition to using inverters, the negative coupling
weight could also be realized by the cross-coupling configuration because of the 180◦ phase
difference between the adjacent nodes of the ring oscillators (Figure 12b). This Ising chip
has excellent performance as it features a computation accuracy over 95% for randomly
generated CO problems with an average power of 42 mW and an overall computation time
for the global optimal solution of only 50 ns.

Dutta et al. developed a phase-transition nano-oscillator network using VO2 memris-
tors and investigated the impact of the coupling coefficients, the power of injection signals,
and the annealing noise on solver’s performance [22,45,46]. It was found that enhancing the
coupling strength between these oscillators would increase the energy exchange efficiency,
thereby increasing the success probability of synchronization (Figure 13a). To ensure that
the oscillator network has a binarized phase, the intensity of the injected disturbance signal
should be greater than a certain threshold, below which a stable solution cannot exist
(Figure 13b). This is due to the fact that the phases of the oscillators will fluctuate randomly
under the influence of noise, so the strength of the injected signal will affect the energy
barrier between the energy minima at the same time. When there is a weak injection pertur-
bation, they can easily jump out from the minimum, and the phases cannot be locked to the
lowest energy state under the influence of noise. When the intensity of the injection signal
increases, the height of the energy barrier between the minima also increases (Figure 13c);
this will weaken the influence of noise and keep the states more stable. However, on the
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other hand, the intensity should not be too large. This is because when the energy barrier is
too large, the state or phases may be trapped in a local minimum and will not have enough
energy to escape, resulting in a “freeze-out effect”, which is not favorable for the system to
reach the ground state [46]. In addition, the authors also employed the annealing process
to effectively improve the success probability (Figure 13d). With a progressively increasing
intensity of the perturbation signal and a decreasing noise, the probability of the system
reaching the ground state will greatly increase [22]. Therefore, this work suggests that the
system design should take the coupling strength between oscillators and the power of the
injected signal and noise into consideration.
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In terms of novel nanospintronic oscillators, McGoldrick et al. theoretically analyzed
the performance of the Ising machine based on the electrically coupled spin Hall nano-
oscillators and established a theoretical model to describe the process of IL phenomenon
based on spin Hall oscillators [47]. They also pointed out that its computation speed could
be reduced to the nanosecond scale thanks to the increase of the oscillator frequency. In
addition to using electrical coupling, nanospintronic oscillators can also couple through the
interaction of spin waves or magnetic dipoles [48–51]. Houshang et al. reported a 2× 2 spin
Hall nano-oscillator array (Figure 14) coupled through magnetic dipoles, which successfully
solved several max-cut problems [52]. Direct coupling can simplify the network structure
to a large extent, and it is also beneficial for system footprint reduction. However, due to
the attenuation of spin waves during propagation and the limited propagation distance, an
oscillator can only couple with the adjacent oscillators, and the coupling strength between
them is not easy to modulate [48]. Thus far, it is still difficult to achieve global coupling
through direct coupling, and the number of oscillators is also limited.

Table 1 compares and summarizes the performance of different types of oscillator-
network-based Ising machines. Overall, it can be seen that the solving speed of this kind of
Ising machines is relatively fast, and the time to produce optimal solution can be scaled
down to nanoseconds with an overall power consumption of a few milliwatts. In addition,
programmable coupling weights make oscillator-network-based Ising machines capable
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of solving different CO problems. However, in terms of hardware implementation, the
number of oscillators is still relatively small.
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Table 1. Performance of different types of oscillator-network-based Ising machines.

Type of
Oscillator

Oscillation
Frequency

Number of
Nodes

Coupling
Method

Coupling
Weight

Solution
Time

Power
Consumption

Success
Probability Reference

LC 1 MHz 240 R Programmable 1 ms 5 W / [42]
LC 50 kHz 4 R Programmable 100 µs / 98% [41]

Ring 118 MHz 560 Inverter Programmable 200 ns 23 mW 82–100% [3]

Ring 1 GHz 1968 Transmission
gates Programmable 50 ns 42 mW 89–100% [44]

Schmitt-
trigger 45 kHz 30 C Programmable / 1.76 mW 72% [53]

VO2 phase-
transition 500 MHz 8 C No 30 µs 2.56 mW 96% [22]

Spin Hall * / 100 C No 6.8 µs 11.5 mW / [47]

Spin Hall 7.8 GHz 4 Magnetic
dipole Programmable / 144 mW / [52]

* Simulation result.

4. Conclusions

Thanks to the unique advantages of these oscillator-network-based Ising machines in
solving intractable CO problems, this research area is receiving increasing attention. In this
paper, the research progress in this field was surveyed for the first time. Firstly, the pros and
cons of different types of oscillators were discussed. Secondly, the theoretical formulation
of the Ising model was derived, and the mapping between the coupled oscillator networks
under SHIL and the Ising machine for solving max-cut problem was discussed. Last, the
implementation and performance of the existing oscillator-network-based Ising machines
were summarized.

Compared with other types of Ising solvers, oscillator-network-based Ising machines
have shown their advantages in fast solving speed and low power consumption. Although
many breakthroughs have been made in this direction, the oscillator-network-based Ising
machines are still relatively primitive compared to well-developed digital systems in terms
of performance, hardware cost, and complexity. Performance-wise, there is large room for
improvement. For example, the dynamic properties of oscillators have a profound influence
on the performance of the Ising machine. Thus, there is a constant pursuit for faster, more
compact, and less noisy oscillators. Hardware cost-wise, CMOS-based oscillators are
relatively expensive in terms of fabrication. A possible solution is to employ emerging
memristive nanoscale oscillators. However, such oscillators may suffer from intrinsic
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stochasticity, making it difficult to keep the oscillating frequency of memristive nanoscale
oscillators in the network precisely the same using conventional fabrication techniques.
Such frequency deviation may significantly impact the system performance by degrading
the success rate of hitting the global optimum. Hardware complexity-wise, the current
coupling weights are either not reconfigurable (e.g., capacitors) or bulky (e.g., external
potentiometer). Implementing programmable weights using nonvolatile memristors is a
promising solution to reduce the physical system footprint and idle power, while adapting
to different tasks. Furthermore, small-scale prototypical hardware demonstrations based on
different types of oscillators have proved this concept, while large-scale implementations
are still rare and mostly simulation based.

As CO problems are quickly growing in the era of Big Data and Internet of Things
(IoT), novel hardware Ising solvers are of great interest to both academia and industry.
In the near future, coupled oscillator network–based Ising machines with the advantages
of high integration density, low power consumption, and fast solving speed are likely to
have a wide spectrum of applications in mobile edge devices and data centers, which are
expected to have a transformative impact on the computing technology.
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