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Abstract: Electromagnetic (EM) absorbers and emitters have attracted much interest because of their
versatile applications. A photonic heterostructure composed of silicon carbide (SiC) layer/germanium
(Ge) cavity/distributed Bragg reflector (DBR) has been proposed. Selective emission properties have
been investigated through rigorous coupled wave analysis (RCWA) method. The results illustrate
that Tamm phonon-polaritons can be excited, and the magnetic field is partially centralized at the
junction of Ge cavity and SiC film, aimed to improve the interactions of photon–phonon. The
absorptivity/emissivity of the structure can be better optimized by controlling the coupling of
surface modes with the incident wave. Near-unity absorption can be achieved through optimizing
the SiC grating/Ge cavity/distributed Bragg reflector (DBR) multilayer structure with geometrical
parameters of ds = 0.75 µm, dg = 0.7 µm, d1 = 1.25 µm and d2 = 0.75 µm, respectively. Physical
mechanism of selective emission characteristics is deliberated. In addition, the simulation results
demonstrate that the emitter desensitizes to the incidence angle and polarization state in the mid-
infrared (MIR) range. This research ameliorates the function of the selective emitters, which provides
more efficient design for SiC-based systems.

Keywords: Tamm phonon-polaritons; selective emission; distributed Bragg reflector (DBR); rigorous
coupled wave analysis (RCWA)

1. Introduction

Mid-infrared (MIR) electromagnetic (EM) absorbers/emitters have attracted great
interest due to their intrinsic bountiful physical mechanisms and important practical
applications in molecule fingerprinting [1], radiative cooling [2], as well as diagnostic tools
in medical science [3]. Wavelength selective MIR absorber/emitter is absolutely essential
for investigating the pertinent physics with optical components, such as sources, detectors,
sensors and beam-steering devices [4–11].

Plasmonic structures show sharp and strong resonance because of the excitation of
surface plasmon polariton (SPP) modes, which have been widely studied both theoreti-
cally and experimentally [12–14]. However, one of the existing problems is that they are
highly sensitive to angle of incidence and polarization state. The other point is that the
inherent optical loss related to the fast scattering lifetimes of plasmons impose unavoidable
limitations on their appliance in the MIR range [15]. It is fortunate that polar dielectrics
provide a chance to concurrently actualize sub-diffraction limitation and low loss in MIR
through excitation of surface phonon polaritons (SPhPs). The SPhPs mode is generated
by the coupling of the strong EM fields and phonons (vibrations in crystal lattices) of the
polar crystal [16–18].

Quite recently, a hybrid structure that can support optical Tamm states (OTSs) has
been proposed and investigated as a wavelength selective thermal emitter in the MIR
range [19,20]. The OTS corresponds to the narrow-gap resonant mode with the localization
of strong EM fields on the interface of a heterogeneous structure, resulting in an ultra-
narrow emission peak. One type of OTS, named as Tamm plasmon polariton (TPP), can
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appear on the interface of a photonic crystal with a metal layer [21–23]. In contrast to
SPP, the TPPs are standing waves that can be excited simultaneously under TE and TM
polarizations. Moreover, the in-plane wave vector of TPPs is smaller than that of light in
vacuum, leading to the direct optical excitation. Similar to TPPs, Tamm phonon-polaritons
(TPhPs) have been predicted, which stem from the photonic band gap of the multi-porous
multilayer and the coupling of phonon polaritons in silicon carbide (SiC) [24]. TPhPs could
greatly improve the performance of narrow-band thermal emitters due to the significant
enhancement of electric field and quality factor [24].

In this paper, we present a wavelength-tunable narrow-band emitter combined with
SiC film or gratings at the top of a distributed Bragg reflector (DBR) structure that is
composing of alternatively superposing germanium/zinc selenide (Ge/ZnSe) layers. TPhPs
can be excited by tuning the coupling between the photonic crystal bandgap and the
phonon polaritions excitations in the polar dielectric SiC film, and TPhPs can exist in both
Transverse Electric (TE), Transverse Magnetic (TM) polarization states. Ge and ZnSe are
selected to comprise the DBR since they offer a contrast of refractive index to achieve a
broad photonic stopband, and a high reflectivity which is possible to be accomplished with
only five layers of the overlapping films. In the numerical experiment, the refractive index
of Ge is taken from Palik’s handbook of optical constants, nGe = 4.0037 [25]. The optical
characteristics of the ZnSe is taken from Ref. [26], the refractive index used is nZnSe = 2.3950
for the ZnSe layer at normal incidence. Thickness of each DBR layer is set to one-quarter of
the valid optical length of the central wavelength, the thickness of the Ge layer is 0.75 µm
and the thickness of the ZnSe layer is 1.25 µm.

Additional Ge layer is introduced in the middle of the top SiC film/gratings and
the bottom DBR, and the thickness of spacer layer (Ge nanocavity) is denoted as ds. The
function of Ge spacer layer is equivalent to an optical cavity in the multilayer structure. The
coupling between the TPhPs and cavity modes has been tuned by varying the thickness of
optical cavity. The optical characteristics of resonance modes and its geometric correlation
are systematically investigated. The induced absorptivity (i.e., emissivity) is demonstrated
analytically by controlling the resonance of surface modes. It also demonstrated the
polarization- and incident angle-independent emissivity.

2. Materials and Methods

The proposed multilayer structure can be denoted by silicon carbide (SiC) layer/
germanium (Ge) cavity/distributed Bragg reflector (DBR) as shown in Figure 1. The
multilayer structure is fabricated by chemical vapor deposition (CVD), which uses SiC as
the substrate under low pressure vacuum conditions. The source gas is transported through
the carrier gas into the reaction chamber, then it is rapidly pyrolyzed into an intermediate
gas that diffuses onto the surface of the substrate, where it is adsorbed and undergoes a
series of inhomogeneous reactions to produce the epitaxial layer, and it is characterized by
Fourier Transform infrared spectroscopy (FTIR) microscopy. All SiC wafers in this paper
are research grade and are manufactured by Tinker Heta Semiconductor Co., Ltd. in Beijing,
China, with a purity of 99.95%. ZnSe is vapor deposited by high purity argon carrying
zinc vapor into the reaction chamber with excess selenium vapor and is manufactured by
Hangzhou Kaiyada Semiconductor Materials Co., Ltd. (Hangzhou, China) with a purity of
99.99%. Additionally, Ge is also made by Hangzhou Kaiyada Semiconductor Materials Co., Ltd.,
with purity up to 99.99%.
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Figure 1. Cross-section view of the thermal emitter based on SiC film with DBR reflector. 

  

Figure 1. Cross-section view of the thermal emitter based on SiC film with DBR reflector.

Polar dielectrics can stimulate surface phonon polaritons (SPhPs) mode, which is the
result of coupling between the surface electromagnetic modes (photons) and the lattice
vibrational modes (optical phonons) of polar materials. SPhPs is formed on the surface of
polar dielectrics and inherently exhibit longer scattering lifetimes than SPPs, resulting in
lower optical losses. The real part of the dielectric function of the SiC is negative within
the Restsrahlen range [27,28]. The wavelength-relative dielectric constant of the SiC can be
represented in the terms of the Drude−Lorentz model [29,30].

εSiC = ε∞
ω2 −ω2
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whereωLO andωTO stand for the vertical and horizontal light phonon frequencies, with
value of 972 cm−1 and 796 cm−1, respectively; ε∞ is intercalated as the high-frequency
dielectric permittivity, γ is defined as the damping ratio caused by vibration and harmonic
wave, and ω is the frequency of the incident light. ε∞ is selected for 6.5, and γ is chosen to
be 3.75 cm−1 [31].

The absorption can be obtained by the formula of A = 1 − R, where A and R stand
for absorptance and reflectance, respectively. On the basis of Kirchhoff’s law, the thermal
emission on the plane surface is equivalent to its absorption. This means that one can calcu-
late the reflectance (R) to simulate thermal emission indirectly through rigorous coupled
wave analysis (RCWA) calculation [32,33] and also through theoretical models [34,35]. The
reflectance of the DBR is different for odd and even numbers of stacks, and the reflectance
of an odd number of layers can be calculated by the following equation.
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where n1 and n2 are the refractive indices of the first and second layers in the DBR, n0 and
n3 are the refractive indices of the incident and emitted media, respectively, and N is the
number of periods.

3. Results
3.1. Selective Emission with Multilayer Planar Thin Films

Emitter with narrower bandwidth owns great potential for applications as optical
filters, detectors and biosensors. Figure 2 illustrates the emission spectra and reflection
spectra with different numbers of DBR pairs (N) under normal incidence. The emitter
with 4 pairs provides much narrower emission spectra compared to the emitter with
3 DBR pairs, while the intensity of the emission peak increases from 70% to 91%. With the
increase of N, the intensity of resonance reflectivity decreases slowly while the resistance
band of DBR reflection spectrum decreases. The space of DBR becomes larger, the energy
confined around the DBR decreases with the result that more energy is radiated out, and
the emission spectrum and reflection spectrum gradually blue-shifts. The intensity of
resonance emissivity will increase to nearly 100% when N = 7. Nevertheless, an optimal
number of DBR pairs usually exists for consideration of the thickness of the whole structure.
Near perfect narrowband absorption (emission) at λ = 12.8 µm can be realized when N = 5.
Additionally, N will be fixed at 5 in the following study with the aim of investigate the
influence of other geometric structure parameters on the performance.
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Figure 2. (a) Emissivity at normal incidence for TM polarization with different number of distributed
Bragg reflector (DBR) pairs (N). (b) Reflectivity at normal incidence for TM polarization with different
number of distributed Bragg reflector (DBR) pairs (N). The other parameters are chosen as t = 0.45 µm,
ds = 0.75 µm, d1 = 1.25 µm and d2 = 0.75 µm.

The function of Ge spacer layer is equivalent to an optical cavity in the multilayer
structure. The emissivity as a function of wavelength and ds is plotted in contour Figure 3,
the emission can be significantly changed by adjusting ds. A splitting effect can be observed,
and perfect absorption is achieved with ds = 0.75 µm. The coupling between the TPhPs and
cavity modes has been tuned by varying ds. At different values of ds, there is an anticrossing
between the two modes, leading to different Rabi-like splitting values for the modes.
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Figure 3. Emission spectra of the design with different ds under normal incidence for TM polarization
with 5 DBR pairs when t = 0.45 µm, d1 = 1.25 µm and d2 = 0.75 µm.

To check the tunability of the resonance, effects of structural parameters on the emis-
sion spectrum is evaluated. Perfect absorption can be achieved by optimizing t, d1 and d2.
The absorption will be influenced by t, and the resonance emission red-shifts when t varies
from 0.3 µm through 0.6 µm, as seen from Figure 4a. The maximum peak absorptance
decreases with increasing t. The optimal value of t is chosen as 0.45 µm. As seen from
Figure 4b, the absorptance band presents a red-shift as d1 increases. Moreover, the reso-
nance emission meets a splitting with increasing d2, as depicted in Figure 4c. The position
and intensity of the absorption peak can be adjusted with the changing of the incident
angle, which is extremely important for MIR emission. Figure 5a,b show the relationship
between the emission spectra and the incident angle under TE and TM polarizations. As
on can see in Figure 5a, when incident angle varies from 0◦ to 40◦, the absorption intensity
is very stable with a narrowing bandwidth. The absorption intensity reduces rapidly with
the incident angle over 60◦. The emission spectra under TM polarization is illustrated
in Figure 5b. Intuitively, a flat and near-perfect absorption band appears in the vicinity
of 12.8 µm. In order to better understand the response, Figure 5c,d describe the angular
distribution of thermal emission of the structure at different wavelength. It is shown that a
wide emission in the normal direction and the angular width can reach 50◦.
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Figure 4. (a) Emission spectra of SiC film with different t under normal incidence for TM polarization
when ds = 0.75 µm, d1 = 1.25 µm and d2 = 0.75 µm with 5 DBR pairs. (b) Emission spectra with different
d1 under normal incidence for TM polarization when t = 0.45 µm, ds = 0.75 µm and d2 = 0.75 µm with
5 DBR pairs. (c) Emission spectra with different d2 under normal incidence for TM polarization when
t = 0.45 µm, ds = 0.75 µm and d1 = 1.25 µm with 5 DBR pairs.
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3.2. Selective Resonance Response with SiC Gratings 
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polarization-correlation emission rate, selective resonance and high radiation directional 
property [33,36]. Figure 7 shows a diagrammatic drawing of the photonic Tamm structure, 
which is composed of a one-dimensional (1D) periodic SiC grating deposited onto a 
ZnSe/Ge-based DBR (consisting of 5 pairs of ZnSe/Ge alternances with λ/4 layer thickness 
and center wavelength λBragg = 12 μm) with an additional Ge spacer layer. The structure is 

Figure 5. Emission spectra of SiC−based structure with 5 DBR pairs when t = 0.45 µm, ds = 0.75 µm,
d1 = 1.25 µm and d2 = 0.75 µm for TE− (a) and TM− (b) polarization. Angle distribution of the
emission with 5 DBR pairs with t = 0.45 µm, ds = 0.75 µm, d1 = 1.25 µm and d2 = 0.75 µm at λ = 12.79
µm and λ = 12.794 µm are illustrated for TE− (c) and TM− (d) polarizations, severally.

To prove the formation of OTS, the field intensity distribution (|Hy|) at the peak
wavelength is calculated and depicted in Figure 6. The dotted lines show the boundaries of
different layers. As shown in illustration, the magnetic field is mostly restricted around
the boundary, and the strength is enhanced by more than 80 times. Both the absorp-
tion position within the bandgap and strongly confined magnetic field demonstrate the
presence of OTS at the top interface, which can administer to the strong enhancement of
light–matter interactions.
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3.2. Selective Resonance Response with SiC Gratings

It has been demonstrated that gratings can be stacked on top of DBR to enhance the
polarization-correlation emission rate, selective resonance and high radiation directional
property [33,36]. Figure 7 shows a diagrammatic drawing of the photonic Tamm struc-
ture, which is composed of a one-dimensional (1D) periodic SiC grating deposited onto a
ZnSe/Ge-based DBR (consisting of 5 pairs of ZnSe/Ge alternances with λ/4 layer thickness
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and center wavelength λBragg = 12 µm) with an additional Ge spacer layer. The structure
is defined in terms of period p, grating ridge width w, grating thickness dg, and filling
factor f = w/p. θ is the angle of the incident beam. The multi-layer architecture could be
manufactured by means of chemical vapor deposition, and the one-dimensional lattice of
SiC gratings could be patterned with electron beam lithography.
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Variations of the structural parameters will affect the spectra characteristics of the
resonance. Figure 8a displays the calculated results through varying the grating period (p)
between 1.5 and 2.5 µm, with filling factor f = 0.5, and the grating height (dg) = 700 nm.
The other parameters are the same as used in Figure 2. It is clearly that the maximum
emissivity can be achieved with p = 2 µm, when it is in resonance. As p increases further,
the grating produces plane waves propagating at the interface, and the interference pattern
produced by the plane waves produces a maximum in the field superimposed on the
grating structure. This produces a Joule effect, increasing losses and thus leading to a
reduction in emissivity. The similar effects have been observed on the change of f and dg,
as illustrated in Figure 8b,c.
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Figure 8. (a) Emission spectra under normal incidence for TM polarization with 5 DBR pairs when
f = 0.5 and dg = 0.7 µm with grating period p of 1.5 µm, 2 µm, 2.5 µm, respectively. (b) Emission
spectra under normal incidence for TM polarization with 5 DBR pairs with p = 2 µm and dg = 0.7 µm
when f = 0.3, f = 0.4, f = 0.5, f = 0.6, respectively. (c) Emission spectra under normal incidence for TM
polarization with 5 DBR pairs with p = 2 µm and f = 0.5 with grating depth dg =0.3 µm, dg = 0.5 µm,
dg = 0.7 µm, dg = 0.9 µm, respectively.

Figure 9a,b present the wavelength and angle-dependent emission of the SiC-based
structure with p = 2 µm, f = 0.5, dg = 0.7 µm and ds = 0.75 µm. Near-unity absorption for
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both TE and TM polarization has been achieved for angles less than 80◦. For angles larger
than 80◦, the intensity of resonance decreases significantly for TE polarization, while can be
perfectly kept under TM polarization. Figure 9c,d describes the angular distribution of the
emission for two different wavelengths. As expected from the results, the proposed design
shows a wide emission in the normal direction and the angular width reaches 80◦. In both
polarization states, narrowband emission can be maintained at various incident angles.
Compared with the structure based on SiC planar film, the angular width of the emission
increases to 80◦ and the intensity increases from 96.74% to 99.54%. Therefore, gratings can
be stacked to maintain high emission for all angles and both polarization states.
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Figure 9. Emission spectra of SiC gratings−based structure with 5 DBR pairs when p = 2 µm, f = 0.5
and dg = 0.7 µm for TE− (a) and TM− (b) polarization. Angle distributions of the emission at
λ = 12.949 µm and λ = 12.363 µm are shown for TE− (c) and TM− (d) polarizations, respectively.

Figure 10 demonstrates the magnetic field profile |Hy| of the surface modes under
resonance condition (λ = 12.36 µm) at θ = 0◦. The strong magnetic field is centralized within
the grooves of the SiC grating. The analyte can penetrate into the grooves readily, thus
gathers over the grating. The reduction of analyte concentration within the grooves causes
small disturbance of the refractive index that demonstrates the potential utilization of the
presented structure as the sensor.
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4. Conclusions

We propose a wavelength tunable and narrow-band emitter by means of combining
SiC film and gratings at the top of the classical DBR structure that is composed of alternative
germanium/zinc selenide (Ge/ZnSe) layers. The optical property of resonance modes and
its geometric dependence on the hybrid structure are systematically investigated. The inten-
sified absorptivity (i.e., emissivity) of the designed wavelength is demonstrated analytically.
By controlling the coupling of surface modes with the incident wave, we illustrate in detail
the intensified absorptivity (i.e., emissivity) of the designed wavelength. The results also
show that the emitter demonstrates emissivity insensitivity to polarization and incident
angle. We find that the structure can achieve perfect thermal emission (absorption) in the
MIR range through the use of the Tamm state as well as its local enhancement features
of magnetic field. This structure can provide important guidance for the design of new
thermal emitters for energy conversion and other applications.
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