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Abstract: Polylactide-based piezoelectric nanogenerators were designed and fabricated with im-
proved piezoelectric performances by blending polylactide with hydroxyapatite. The addition of
hydroxyapatite significantly improves the crystallinity of polylactide and helps to form hydrogen
bonds, which further improved the piezoelectric output performance of these piezoelectric nanogen-
erators with over three times the open circuit voltage compared with that of pure-polylactide-based
devices. Such excellent piezoelectricity of hydroxyapatite/polylactide-based nanogenerators give
them great potential for energy harvesting fields.
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1. Introduction

With the energy crisis and environmental pollution become more and more serious,
people have demanded and explored renewable energy technology to support our soci-
ety [1–3]. One possible approach is using solar energy, biofuel, water, and wind energy
to replace the traditional petrochemical resources. Another possible way is to develop
ambient energy harvesting devices to satisfy the requirements of microwatts for low-power
electronics. Large amounts of ambient mechanical energy exist in our living surroundings,
such as vibration, noise, human breath, walking, and hand waving. Although the devel-
opment of mechanical energy is valuable, such kinds of mechanical energy were not fully
used until the invention of piezoelectric nanogenerators (PENGs) [4–7].

PENGs can convert ambient mechanical energy to electricity based on piezoelectric ma-
terials. In 2008, Wang and his colleagues developed the first PENG using a ZNO nanowire
array [8]. Since then, many researchers have developed different kinds of nanogenerators
based on piezoelectric materials. Piezoelectric materials primarily include inorganic and
organic materials. Generally, the inorganic materials, such as lead zirconate titanate, possess
higher piezoelectric constants, but are rigid and easy to break. The organic materials, such
as Poly (vinylidene fluoride) (PVDF) and its copolymer, have lower piezoelectric constants,
but are flexible, allowing large deformation. With the rapid development of wearable
and implantable devices, the requirements for flexibility and biocompatibility in PENGs
have been raised [9,10]. Thus, organic piezoelectric materials have attracted attention in
recent years.

Compared with the most used and mature organic piezoelectric materials, PVDF,
polylactide (PLLA) possesses several advantages, such as high biocompatibility, no require-
ment of poling to achieve piezoelectric performances, high heat-resistant properties, and
renewable origins [11–13]. However, its relatively low piezoelectric constant has seriously
limited its application in PENGs. Researchers have made efforts to improve the piezo-
electric constants. By using different fabricated methods, including electro-spun or cast
coating, or forming different structures, such as cantilevers or films, several PLLA-based
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nanogenerators have been made [14–18]. However, the piezoelectric constant improvement
of PLLA is still limited.

Blending with a functional filler is an easy and effective way to improve the perfor-
mances of polymers. However, little work has used fillers to improve the piezoelectric
performances of PLLA. Meanwhile, a filler should not decrease the biocompatibility of
PLLA. Thus, in this work, the biocompatible filler hydroxyapatite (HA) was blended with
PLLA to improve its piezoelectric performance. The addition of HA significantly improved
the β-phase crystal crystallinity of PLLA and further increased the piezoelectric output of
the HA/PLLA PENG.

2. Experiment
2.1. Preparation of HA/PLLA Composite Films

HA (Chengdu Organic Chemicals Co., Ltd., Chengdu, China) and PLLA (NatureWorks,
2003D) were dispersed in trichloromethane (CHCl3). The mixed solution was magnetic-
stirred and scrap-coated onto a silver nanowire with polyethylene terephthalate (PET) film.
Then, the wet film was placed in a vacuum oven to evaporate the solution and form a
10 µm-thick composite film.

The composite film was annealed at 140 ◦C for 30 min. The pure PLLA film and
composite films with HA contents of 10% wt, 20% wt, and 30% wt were prepared and
named PLLA, 10%-HA/PLLA, 20%-HA/PLLA, and 30%-HA/PLLA, respectively.

2.2. Preparation of HA/PLLA PENG

Copper electrodes were magnetron-sputtered onto the prepared HA/PLLA composite
film with silver nanowire on the PET film. The copper electrodes and the silver nanowire
on the PET film serve as top and bottom electrodes, respectively. Then, a plastic cover
was attached as packaging. The preparation process of the HA/PLLA PENGs is shown in
Figure 1.
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Figure 1. Optical images of rGO/PVDF-TrFE WNGs.

2.3. Characterization and Measurements

The FTIR spectra of the composite films were obtained using a Bruker Tensor 27 spec-
trometer. The spectra were obtained in the range from 4000 cm−1 to 500 cm−1. The X-ray
diffraction (XRD) measurements were performed on a D/Max2500 VB2t/PC X-ray diffrac-
tometer (Rigaku, Japan) for a 2θ range of 5–50◦. The energy harvesting performance, including
the output voltage and load resistance behavior, of PLLA and HA/PLLA PENG was assessed
using a high-speed-acquired card (NI 9308), as shown in Figure 2.
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Figure 2. The evaluating system of PENG output performances.

3. Results and Discussion

The crystalline behavior of the HA/PLLA composite films were explored using XRD.
In Figure 3a, diffraction peaks of PLLA were found at 2θ = 17.1◦and 19.3◦, corresponding
to the (200) and (203) planes of the α-phase crystal, respectively. Meanwhile, with the
addition of HA, the intensity of these two peaks became weak, and a new diffraction peak
was found at 2θ = 31.2◦ for the HA/PLLA composite films, which corresponded to the (003)
plane of the β-phase crystal. With the content of HA increasing to 30 wt%, the intensity
of the diffraction peaks of the α-phase crystal continued to decrease, while the intensity
of the diffraction peaks of the β-phase crystal increased. Such phenomena indicated that
the addition of HA to PLLA may help to enhance the transformation of β-phase crystal
to α-phase crystal [19,20]. It is well known that the piezoelectricity of PLLA originates
from the orientation of C=O dipoles. Since the β-phase crystal in PLLA often forms when
the PLLA backbones are in a parallel state, the C=O dipoles are in a high-orientation state.
Thus, the higher content of β-phase crystals in PLLA may help to enhance the output
performances of the HA/PLLA PENG.
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Figure 3. The (a) XRD and (b) FTIR spectra of PLLA and HA/PLLA composite films.

FTIR was used to investigate the interactions between HA and PLLA. In Figure 3b, the
characteristic peak at 2875 cm−1 and 2985 cm−1 is due to the symmetric and asymmetric
stretching of methylene groups in PLLA. The characteristic peak around 1700 cm−1 was
attributed to the carbonyl groups in the ester bonds of PLLA. In addition, two new char-
acteristic peaks were found around at 3400 cm−1 and 960 cm−1, respectively, due to the
addition of HA to PLLA. Among them, the characteristic peak at 955 cm−1 belongs to the β-
phase crystal in PLLA. The intensity of such a characteristic peak increased with higher HA
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content, implying that the β-phase crystal content increased with increasing HA content.
The characteristic peak at 3400 cm−1 was attributed to hydrogen bonds between carbonyl
in PLLA and the hydroxy in HA. Meanwhile, with higher HA content, the characteristic
peak at 3400 cm−1 gradually moved to a lower wave number area, which confirmed the
formation of stronger hydrogen bonds. Such interfacial interactions between PLLA and
HA may help to improve the piezoelectric output of the HA/PLLA PENG.

The interfacial interactions and cross-section morphology of the HA/PLLA composites
were further investigated by SEM. In Figure 4, the light phase is the HA filler and the dark
phase is the PLLA matrix. The SEM images with different magnifications show that the HA
dispersed uniformly in the PLLA matrix. At higher magnification, we can see that the HA
bonded well with the PLLA matrix with indistinct edges, indicating interfacial interactions
between HA and PLLA, which is accordance with the FTIR analysis.
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The output performances of the HA/PLLA PENGs are provided in Figure 5. Under the
same impact conditions, the PLLA PENG output only 1 mV voltage. With the addition of
HA to PLLA, the output voltage improved significantly, reaching the maximum voltage of
~3.4 mV when the HA content was 20%, which was over three times that of the pure-PLLA
PENG. According to the XRD and FTIR analysis, the addition of HA to PLLA may help to
form β-phase crystals and hydrogen bonds between PLLA and HA, which may improve
the piezoelectric output of the HA/PLLA PENGs. However, with further increase in HA
content, the output voltage of HA/PLLA PENG decreased to 0.7 mV, which was possibly
due to the aggregation of the HA filler in the PLLA matrix.

As the HA-20/PLLA showed the optimum piezoelectric output, the impedance prop-
erties of HA-20/PLLA PENG were further investigated. With the increase in load resistance
from 0 to 120 MΩ, the output voltage increased from 0 to 4 V. Meanwhile, the output current
decreased from 0.35 mA to 0.04 mA. According to the test results, the maximum power of
HA-20/PLLA PENG was 5 µW when the load resistance was 1.3 MΩ. The durability of
HA-20/PLLA PENG is provided in Figure 5. After 5000 impact cycles, the output voltage
of HA-20/PLLA PENG remained constant, implying its good durability.
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Figure 5. The output performances and durability of PLLA and HA/PLLA PENG.

As numerous types of mechanical energy exist in our daily life, such as human walking
or finger beating, the conversion of such mechanical energy to electric power using PENG
is meaningful. To verify the practical application of HA/PLLA PENGs, we study the
output performance of HA/PLLA PENGs under human motion conditions. In Figure 6b,
the stress–strain curves of HA/PLLA PENG are provided, indicating its brittle fracture
behavior and poor strain. The HA/PLLA PENG can output about 0.2 V and 6 V voltage
under beating and treading conditions, respectively, which are higher values than those of
the PLLA PENG. Such output voltage can supply some low-power electric devices.
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4. Conclusions

In this paper, a novel PENG was prepared based on HA/PLLA composite films. The
addition of HA to PLLA significantly improves the crystallinity of PLLA, and helps to form
hydrogen bonds between PLLA and HA, both of which may increase the piezoelectric
output of HA/PLLA PENGs. The HA/PLLA PENG with 20 wt% HA showed over three
times the output voltage of neat PLLA PENG. The practical energy harvesting application
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of HA/PLLA for low-power electric devices was confirmed by finger beating and foot
treading conditions.
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