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Abstract: Topological metamaterial has been a research hotpot in both physics and engineering due
to its unique ability of wave manipulation. The topological interface state, which can efficiently and
robustly centralize the elastic wave energy, is promising to attain high-performance energy harvesting.
Since most of environmental vibration energy is in low frequency range, the interface state is required
to be designed at subwavelength range. To this end, this paper developed a topological metamaterial
beam with local resonators and studied its energy-harvesting performance. First, the unit cell of this
topological metamaterial beam consists of a host beam with two pairs of parasitic beams with tip
mass. Then, the band structure and topological features are determined. It is revealed that by tuning
the distance between these two pairs of parasitic beams, band inversion where topological features
inverse can be obtained. Then, two sub-chains, their design based on two topologically distinct unit
cells, are assembled together with a piezoelectric transducer placed at the conjunction, yielding the
locally resonant, topological, metamaterial, beam-based piezoelectric energy harvester. After that, its
transmittance property and output power were obtained by using the frequency domain analysis
of COMSOL Multiphysics. It is clear that the subwavelength interface state is obtained at the band-
folding bandgap. Meanwhile, in the interface state, elastic wave energy is successfully centralized at
the conjunction. From the response distribution, it is found that the maximum response takes place on
the parasitic beam rather than the host beam. Therefore, the piezoelectric transducer is recommended
to be placed on the parasitic beam rather than host beam. Finally, the robustness of the topological
interface state and its potential advantages on energy harvesting were studied by introducing a local
defect. It is clear that in the interface state, the maximum response is always located at the conjunction
regardless of the defect degree and location. In other words, the piezoelectric transducer placed at
the conjunction can maintain a stable and high-efficiency output power in the interface state, which
makes the whole system very reliable in practical implementation.

Keywords: piezoelectric energy harvesting; topological metamaterial; interface state; defect

1. Introduction

During the past few decades, micro-scale electronics have been developed quite fast.
More and more low-power consumption devices have been used in the area of wireless
sensors, portable devices, structural health monitoring and the internet-of-things. The
piezoelectric energy harvester has become a promising way of capturing wasted vibration
energy in the environment to provide the sufficient power for small devices [1–3].

To sufficiently harvest vibration energy from the environment, researchers have de-
voted a lot of effort to energy-harvesting structures and circuits. The linear piezoelectric
energy harvester [4] is very stable in generating great power when it resonates. However,
the bandwidth of resonance of a linear system is generally narrow [5]. To enlarge the
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operation bandwidth, there are mainly two categories of methods. The first one is an
adaptive energy harvester [6–9]. The key to the adaptive energy harvester is matching
the natural frequency of the energy harvesting structure with the frequency of vibration
so that the system can exhibit resonance and generate large output power. The second
one is nonlinear energy harvesting, which mainly uses the unique features of nonlinear
systems to attain bandwidth enlargement. For example, based on the duffing oscillator,
monostable vibration energy harvesters (VEHs) [10–13], bistable VEHs [14–16], tristable
VEHs [17–19] and multistable VEHs [20,21] have been developed. The main advantage of
the duffing-type nonlinear VEHs is that the high energy oscillation can exhibit over a very
wide band. More recently, it was also found that the multi-degree-of-freedom nonlinear
VEHs, such as internal resonance based VEHs [22,23] and magnetically coupled VEHs [24]
can further enlarge the operation bandwidth thanks to the multi orbits of high-energy
oscillation. However, those two methods have their own limitations. For the adaptive
energy harvester, the way of tuning natural frequency usually requires external force or
power, which inversely reduces the output power [8]. For the nonlinear energy harvester,
the high energy oscillation is sensitive to the external perturbation, resulting in an easy
jump from a high-energy orbit into a low-energy orbit [25,26].

Recently, metamaterial has been introduced into vibration energy harvesting ow-
ing to its unique features of wave manipulation. For example, Carrara et al. [27] devel-
oped a defect-metamaterial-based energy harvester by using the defect mode to central-
ize wave energy and improve energy-harvesting efficiency. Tol et al. [28] developed a
gradient-index phononic crystal lens VEH to attain large power over a wide band by
utilizing wave-focusing features. A locally resonant metamaterial VEH was developed
by Gonella et al. [29] to attain concurrent energy harvesting and vibration suppression. It
was found that vibration energy can be suppressed inside the bandgap and harvested
outside the bandgap. To further improve energy harvesting, Hu et al. [30,31] proposed
an internally coupled locally resonant metamaterial VEH and attained four times more
power than that of the conventional meta-VEH. However, one critical problem is free to
be explored. The wave manipulation capability of these aforementioned metamaterials
is sensitive to additional defects induced by material fatigue or external interferences,
especially for the defect mode and Lens-type metamaterial, where local defect may largely
reduce the effectiveness of wave focusing. Therefore, how to improve the robustness of
metamaterial- based VEH is a critical problem to be solved in practical implementation.

More recently, topological metamaterial, developed from the topological insulator in
condensed matter, has shown great advantages on robust wave guiding and manipulation,
owing to topological protection features [32–34]. For example, Wang et al. [32] found
the Fano resonance in a topological metamaterial is robust against random perturbations.
Therefore, topological metamaterial is very promising to maintain robust energy harvest-
ing. Fan et al. [35] proposed an acoustic energy harvester based on a one-dimensional
phononic crystal tube. Lan et al. [36] theoretically studied the potential advantage of
a topological-metamaterial-based vibration energy harvester based on the mass-spring
mode. Ma et al. [37] conducted experimental tests on the energy-harvesting performance
of a topological phononic crystal beam. Wen et al. [38] proposed a topological phononic
plate for robust energy harvesting. All these investigations have shown the topological
metamaterial can attain high output power in the interface state.

However, the main limitation of topological-phononic-crystal based vibration en-
ergy harvesters is the frequency of the interface state of the phononic crystal (PC)-type
VEHs, which is relatively higher than the frequency of most environmental vibrations.
A feasible way to deal with this frequency mismatching problem is by utilizing the sub-
wavelength interface state for low-frequency vibration-energy harvesting. To this end, this
paper proposed a topological metamaterial beam VEH with local resonators to attain the
subwavelength interface and study its energy-harvesting performance, including power
output and robustness. The main contents of this paper are as follows: Section 2 gives the
design process of the unit cell and the topological metamaterial beam VEH. The topological
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property and band inversion features are studied. Section 3 studies the subwavelength
interface state and energy-harvesting performance, following the robustness analysis of a
defected interface state in Section 4. Several meaningful conclusions are drawn in Section 5.

2. Design of a Locally Resonant Metamaterial Beam
2.1. Mass-Spring Model

To design a 1D topological metamaterial, the Su-Schrieffer-Heeger (SSH) model [39]
has been widely used. For example, a topological PC beam was proposed by Yin et al. [40]
based on the SSH model, and the topological edge state was clearly obtained in the ex-
periment. A topological PC rod was studied by Muhammad et al. [41], which is based
on the SSH model as well. To obtain the subwavelength topological interface state, the
local resonator was introduced into the SSH model, yielding a topological locally resonant
metamaterial. The topological interface state in a locally resonant acoustic system was
theoretically obtained by Zhao et al. [42]. It was found that the interface state in the locally
resonant metamaterial takes place in the band-folding bandgap, which is lower than the
locally resonant bandgap. Then, Fan et al. [35]. found that the interface state can be tuned
by adjusting the local resonator, which indicates that the interface state can be obtained in
the subwavelength range in a topological locally resonant metamaterial.

In the SSH model, the metamaterial consists of two topologically distinct sub-chains
and the topological interface state take place at the conjunction of these two sub-chains.
Therefore, in the design of topological metamaterial, the first step is finding two sub-chains
with different topology properties. For one dimensional chain, the topology property can
be determined by the topological invariant Zak phase. Figure 1a shows the unit cell of
the mass-spring model of a topological locally resonant lattice. The unit cell consists of
a diatomic chain with mass-in-mass local resonator. In the theoretical study [42], it is
found that the Zak phase is 0 when k1 > k2, whereas it is π when k1 < k2. Therefore, we
can tune the Zak phase of the unit cell by exchanging the stiffnesses of outer mass (k1
and k2, k1 6= k2). Besides, since the Zak phase is irrelevant with the local resonator, the
parameters of the local resonator in each cell are set to be same. Hence, we can have two
different configurations of unit cells with different topological features. After that, the
second step is fabricating two topologically distinct sub-chains with these two unit-cells,
respectively. Finally, the topological metamaterial is obtained by assembling these two
sub-chains together. Figure 1b depicts the infinitely long system of the mass-spring model
of a topological locally resonant metamaterial.
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2.2. Beam Model

To utilize the subwavelength interface state, we developed a topological locally res-
onant metamaterial beam based on the mass-spring model. Figure 2a is the unit cell of
the proposed topological metamaterial beam. It consists of a host beam and two pairs of
parasitic beams. These parasitic beams with a tip mass can be treated as a local resonator.
The resonance frequency of these parasitic beams can be tuned by adjusting the size of the
tip mass. The reason why we use a pair of parasitic beams is to make sure that the parasitic
beam and the host beam exhibit the bending mode at the same time. All these parasitic
beams share the same size, whereas their locations on the host beam are tuned to obtain
different topological features of unit cell. Figure 2b,c gives the side view and front view of
the unit cell. The length of the unit cell is L and the distance of these two pairs of parasitic
beams is Ld. Table 1 lists the parameters of the unit cell. Notably, in the design of unit cell,
the parameter Ld is tuned to obtain different topology features whereas other parameters
are kept constant.
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Figure 2. Unit cell of a locally resonant topological metamaterial beam.

Table 1. Parameters of the unit cell.

Parameters Value Parameters Value

Length of unit cell, L 24 mm Width/Hight of tip mass, hm 7 mm
Width of host beam, b 10 mm Distance between two parasitic beams, ld 4 mm
Height of main/parasitic beam, h 2 mm Material density, ρm 1180 kg/m3

Length of parasitic beam, lb 10 mm Poisson’s ratio, µ 0.3
Length of tip mass, lm 4 mm Yang’s Elastic Modulus, E 2.5 Mpa

Then, the dispersion relation of the proposed unit cell is studied by using COMSOL
Multiphysics. Figure 3 gives the dispersion relation of unit cells with different Ld. For
convenience, configurations C1, C2 and C3 refer to the unit cells with Ld = 3 mm, Ld = 8 mm
and Ld = 13 mm, respectively. It is found that when Ld is 3 mm (Figure 3a), there are two
bandgaps. From the mode of unit cell, it is learned that the upper bandgap induced by
the local resonators is a locally resonant bandgap. The lower one is band folding induced
bandgap, which is also a Bragg scattering (BS) bandgap. This BS bandgap is induced by
the impedance mismatch of the left and right parts of the unit cell. When Ld is tuned to
be 8 mm (Figure 3b), only one bandgap (LR bandgap) is observed. The main reason for
the close of the BS bandgap is that when Ld = 8 mm, the left and right parts of the unit cell
are the same and the impedance mismatch between these two parts disappears. When
Ld is tuned to 13 mm (Figure 3c), it is found that the closed BS bandgap opens again, and
the band structure of Ld = 13 mm is very similar to that of Ld = 3 mm. Then, the topology
feature of the unit cell of the one-dimensional lattice is determined by the Zak phase of
dispersion relation [43], which can be calculated as follows:

θZak
n = −Im

N

∑
i=1
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 1
2ρv2

∫
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[
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where x is the axial coordinate, r is the positions in the cross-sectional plane, ρ = 1.3 kgm−3

is the air density, v = 343 m/s is the speed of sound in the air, N is the point number that we
selected from k = π/L to k = −π/L and un,k(x,r) is the periodic in-cell part of the normalized
Bloch pressure eigenfunction of a state in the nth band with wave vector k. The detail
process of calculating Zak phase follows the method proposed in reference [43].
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Figure 3. Band structures and Zak phase of a locally resonant topological metamaterial beams for
different Ld: (a) Ld = 3 mm, (b) Ld = 8 mm, (c) Ld = 13 mm.

It is found that the Zak phase of the BS bandgap (θZak) of configuration C1(Ld = 3 mm)
is π, whereas that of configuration C3 (Ld = 13 mm) is 0, which indicates that configurations
C1 and C3 are topologically distinct. To further study the topology features of these two
configurations, the effect of Ld on the band edge of the BS bandgap and the corresponding
eigenmodes is studied. Figure 4 shows that when Ld increases from 2 mm to 14 mm, the
bandwidth of the BS bandgap starts to decrease at the beginning and becomes zero at
8 mm; after that, the BS bandgap reopens and the bandwidth increases as well. From
the eigenmodes, it is found that for configuration C1, the eigenmode at the upper edge is
asymmetrical with respect to the central cross-sectional plane of the unit cell, whereas the
eigenmode at the lower edge is symmetrical with respect to the central cross-sectional plane.
For configuration C3, it is exactly the opposite. The upper edge is symmetrical whereas
the lower edge is asymmetrical. This implies that the symmetry of band edge states can be
reversed by tuning Ld. Such a feature is called a band inversion, which is an analogue to
the band inversion process in quantum physics.
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Figure 4. Eigenfrequencies and eigenmodes of the band edges as a function of Ld: (a) first eigenmode
at Ld = 3 mm, (b) second eigenmode at Ld = 3 mm, (c) first eigenmode at Ld = 13 mm, (d) second
eigenmode at Ld = 13 mm.
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Based on the Zak phase analysis and the band inversion property, a topological
metamaterial can be designed based on these two unit cells. Figure 5 describes the formation
of a topological locally resonant metamaterial beam. At first, the unit cells C1 and C3 are
used to construct two different sub-chains. Then, these two sub-chains are connected to
obtain the topological metamaterial beam.
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Figure 5. Mass-spring model and beam model of a locally resonant topological metamaterial: (a) and
(b) are two different unit cells with different topology features, and (c) is the topological locally
resonant metamaterial beam.

3. Subwavelength Interface State and Energy Harvesting

To study the dynamics and energy harvesting performance of the proposed system,
numerical simulations on the transmittance and output power are conducted. The cell
numbers of left and right sub-metamaterials are five. The whole system is designed to be
a cantilever metamaterial beam. The left boundary is a fixed end whereas the right one
is a free end. The material of the beam is resin, which is widely used in 3D printing. The
piezoelectric transducer placed at the conjunction is connected with a pure resistance load
R. The size of the piezoelectric transducer (PZT-5H) is 5 mm × 8 mm × 1 mm. The whole
system is driven by base acceleration excitation. The excitation point is the left fixed end
whereas the detection point is the right free end. The transmittance of this topological
metamaterial is simulated by the frequency domain analysis of COMSOL Multiphysics. The
algorithm used is Multifrontal Massively Parallel sparse direct solver (MUMPS), a default
method in the frequency domain analysis of COMSOL Multiphysics.

Figure 6 shows the transmittance and strain distribution of this topological meta-
material VEH. Two bandgaps are clearly obtained. The first bandgap is from 565 Hz to
678 Hz, which is the band-folding-induced BS bandgap. The second bandgap is from
713 Hz to 987 Hz, which is the locally resonant bandgap induced by the parasitic beams.
The topological interface state takes place at 607 Hz. From the displacement distribution,
it is learned that the elastic wave can be quickly suppressed in both BS bandgap and LR
bandgap (Figure 6b,d). However, in the interface state (Figure 6c), the elastic wave is suc-
cessfully centralized at the conjunction, resulting in a large amplitude response. Therefore,
a piezoelectric transducer is placed at the conjunction to maximize the output power. From
the response distribution, it is learned that the parasitic beam owes a larger deformation
than the host beam. Therefore, the piezoelectric transducer is mounted on the parasitic
beam rather than the host beam. Then, it is found that large output power is obtained at
the interface state, as shown in Figure 7a. By tuning the load resistance, the output power
can be maximized, and the peak power reaches 214.2 µW at 200 kΩ (Figure 7b). Therefore,
we can conclude that the interface state can be used to efficiently harvest the low frequency
vibration energy by a topological locally resonant metamaterial beam.
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Figure 6. Transmittance and response distribution of the proposed topological metamaterial beam:
(a) is the transmittances at the interface and free end; (b–d) are the response distributions at different
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Figure 7. Voltage and optimal power of the proposed topological metamaterial beam: (a) Frequency-
voltage response; (b) resistance versus power.

4. Robustness to Local Defect

Since the most attractive feature of the interface state is topological protection, it is
reasonable to study the effect of the local defect on the dynamics and energy-harvesting
performance of the subwavelength interface state. The local defect is introduced by decreas-
ing the thickness of the beam at the nth cell. The length of defect is set to be Sd = 2.4 mm,
whereas the thickness and location of the defect is varied to evaluate the effect of the defect.
First, the effect of the defect’s thickness is studied. The defect is assumed to be located at the
conjunction of the topological metamaterial beam, as shown in Figure 8a. The thicknesses
of defects are set to be 0 mm, 0.25 mm, 0.5 mm, 0.75 mm and 1 mm, respectively. Then, the
output voltages of the interface states of these defected topological metamaterial beams
are obtained and shown in Figure 8d. It is clearly found that as the defect’s thickness
increases, the interface state will shift to the lower frequency, whereas the output voltage
will increase gradually. The potential reason for the decreasing resonance frequency is due
to the reduced stiffness at the conjunction. Figure 8b,c compares the displacement distri-
bution of the interface state of the topological metamaterial beam with/without defected
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conjunction. It is revealed that both of them have the maximum response at the conjunction
position, which indicates that the wave energy is successfully localized at the conjunction
by both the perfect and defected interface states. From the perspective of energy harvesting,
introducing a defect at the conjunction can help the interface state by concentrating more
energy at the interface, which is beneficial to improve the output voltage.
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Then, the effect of defect position on the dynamics and performance is evaluated.
In this case, the position of defect is set to be the 5th, 6th, 7th, 8th and 9th cell, respec-
tively, whereas the thickness and length of the defect are kept constant with hd = 1 mm,
Sd = 2.4 mm. Figure 9a gives the frequency–voltage relations of these topological metamate-
rial beams with the defect located at different positions. It is clearly found that as the defect
moves away from the conjunction, the resonance peak of interface state tends to approach
the interface state of a perfect topological beam without defect, and the output voltage
decreases as well. From the perspective of energy harvesting, the defect is preferred to be
arranged at the conjunction to maximize the energy-harvesting efficiency of the interface
state. Moreover, it is interestingly found in Figure 9b that although the defect locates at
different places, the maximum responses of these different defected interface states all take
place at the conjunction, which indicates that the wave localization ability of the interface
state is insensitive to the local defect, showing strong robustness towards the local defect.
In practical application, local defects induced by material fatigue, manufacture precision
and external interferences are very common and can be harmful by significantly reducing
the energy-harvesting efficiency. By using the topological metamaterial, the high-energy-
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harvesting performance can be guaranteed since the elastic wave energy can always be
centralized to the place where the piezoelectric transducer is located.
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5. Results

Robustness is one of the most critical problems for energy harvesters based on wave
focusing/localization. Topological interface state is a novel and emerging method to
focus wave with high robustness, owing to its topological protection feature. Therefore,
topological metamaterial-based VEH can be a potential solution to robust energy harvesting.
Meanwhile, the topological interface state is preferred to be designed at the subwavelength
range since the frequency of the environmental vibration is relatively low. To this end,
this paper introduced the locally resonant topological metamaterial into low frequency
vibration energy harvesting. A topological metamaterial beam with local resonators was
proposed based on the mass-spring model and the topological features were determined.
Then, the dynamics and energy harvesting performance of subwavelength interface state
was studied. Moreover, a local defect was introduced into the proposed metamaterial VEH
to evaluate the robustness. From the analysis and comparison, several useful conclusions
are obtained:

(1) The subwavelength topological interface state can effectively localize the elastic wave
energy at the conjunction, resulting in a significant improvement of output power.

(2) Since the maximum deformation takes place at the local resonator rather than host
beam, the piezoelectric transducer is recommended to be bonded at the parasitic beam.

(3) The wave energy is always localized at the conjunction in the interface state regardless
of the location and degree of local defect, which indicates that the proposed topological
metamaterial beam owns a very good robustness to local defect and can be a promising
solution to achieve robust vibration energy harvesting in practical implementation.
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