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Abstract: Polymer nanocomposites have found wide acceptance in research applications as pressure
sensors under the designation of force-sensing resistors (FSRs). However, given the random disper-
sion of conductive nanoparticles in the polymer matrix, the sensitivity of FSRs notably differs from
one specimen to another; this condition has precluded the use of FSRs in industrial applications that
require large part-to-part repeatability. Six Sigma methodology provides a standard framework to
reduce the process variability regarding a critical variable. The Six Sigma core is the DMAIC cycle
(Define, Measure, Analyze, Improve, and Control). In this study, we have deployed the DMAIC cycle
to reduce the process variability of sensor sensitivity, where sensitivity was defined by the rate of
change in the output voltage in response to the applied force. It was found that sensor sensitivity
could be trimmed by changing their input (driving) voltage. The whole process comprised: character-
ization of FSR sensitivity, followed by physical modeling that let us identify the underlying physics
of FSR variability, and ultimately, a mechanism to reduce it; this process let us enhance the sensors’
part-to-part repeatability from an industrial standpoint. Two mechanisms were explored to reduce
the variability in FSR sensitivity. (i) It was found that the output voltage at null force can be used to
discard noncompliant sensors that exhibit either too high or too low sensitivity; this observation is a
novel contribution from this research. (ii) An alternative method was also proposed and validated
that let us trim the sensitivity of FSRs by means of changing the input voltage. This study was carried
out from 64 specimens of Interlink FSR402 sensors.

Keywords: nanocomposites; tactile sensors; force sensors; pressure sensors; sensor phenomena and
characterization; regression analysis; Gaussian distribution

1. Introduction

Force-sensing resistors (FSRs) are typically manufactured from a blend of an insulating
polymer with conductive nanoparticles ([1–6]. The resulting nanocomposite exhibits a
piezoresistive response that can be used to either measure compressive forces [6] or tensile
loads [3,4,7]. Given the low profile and low cost of FSRs, their usage in research and indus-
trial applications is currently increasing [8]. Multiple studies related to gait analysis [9–11],
robotics [12,13], and other disciplines have reported the usage of polymer nanocomposites
to perform strain/stress measurements [14–17].

In recent years, there has been an explosion in the number of studies that have
developed novel techniques for manufacturing conductive polymers composites (CPCs).
Recent studies have incorporated conductive polymers as a replacement for conductive
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particles [18–20]; this is a desirable characteristic given the toxicity of graphene, carbon
nanotubes (CNTs), and carbon black (CB) [21]. Similarly, the introduction of self-healing
properties to the nanocomposite has been also studied by multiple authors [22–24]. Previous
authors’ works have mainly focused on: first, improving the performance of FSRs by
studying the effect of source voltage in the repeatability of measurements [25], and second,
developing tailored driving circuits that can help us to minimize time drift and electrical
hysteresis [26].

Despite the previously mentioned efforts, the overall performance of FSRs and CPCs
still lags behind that of load cells performance in multiple ways. By comparing commercial
FSRs [27–29] with an LCHD-5 load cell from Omega Engineering (Norwalk, CT, USA) [30],
a difference of up to two orders of magnitude is evident in the metrics of hysteresis and
accuracy. Fortunately, studies from Urban et al. [31] and Nguyen and Chauban [32] have
helped to narrow the performance gap between both sensing technologies. However, one
of the most important drawbacks of FSRs, which has not been yet addressed by specific
literature, is the inability to know sensor sensitivity a priori. Given the random dispersion
of conductive nanoparticles along the insulating polymer matrix [33], it is not possible to
determine the resulting sensitivity of a given nanocomposite, i.e., every specimen has a
different sensitivity. This characteristic limits the extensive usage of FSRs since individual
sensor calibration is required before use. This condition is not a major concern when only a
few sensors are required in the final application, but when multiple sensors are required,
sensor characterization is a time-consuming task; ultimately, a more suitable sensing
technology may be preferred instead. Robotic skins and tactile pads are representative
examples of applications requiring multiple sensing points. In these types of deployments,
sensor arrays with multiple tactels are employed to detect shapes and force profiles [34].

As pointed out by Castellanos-Ramos et al., the characterization of piezoresistive
tactile pads required a complex test bench with an air compressor and tailored hardware;
this was performed to match the specific dimensions of the tactile pad [34]. The aim of
this study is to develop techniques that save time and resources by avoiding individual
sensor calibration. In this research, we address such a concern by using the Lean Six Sigma
Methodology (LSSM) to a group of 64 specimens of commercial FSRs, manufactured by
Interlink Electronics, Inc. (Westlake Village, CA, USA) [27].

It must be stated that the application of the LSSM to FSRs represents a novelty. By
looking up the following keyword combinations in the Scopus search engine without
year constraints: Six Sigma and FSR, Six Sigma and polymer composite, Six Sigma and
piezoresistive sensor, a total of 68 entries were found. Most of the entries found were
inaccurate because Sigma is used to designate sensors’ sensitivity. Only six studies truly
reported the use of LSSM [35–40], but most of them reported calibration procedures for
pressure-sensing equipment in automotive applications.

The rest of this paper is organized as follows: Section 2 briefly describes the theoretical
foundations of the Lean Six Sigma methodology and the physical modeling of FSRs, the
experimental setup for gathering sensor data is described in Section 3, followed by the
application of the LSSM in Section 4. Conclusions are addressed in Section 5.

2. Theoretical Foundations
2.1. Application of the Six Sigma Methodology

Readers may refer to Appendix A for a theoretical description of the Lean Six Sigma
methodology (LSSM). In this section, we describe the application of the LSSM to our
study case. The goal of this research is to reduce the sensitivity dispersion of FSRs by
adjusting their driving voltage and/or by discarding noncompliant sensors. As previously
mentioned, the reduction in sensitivity dispersion avoids individual sensor calibration,
which ultimately saves time and resources.

In order to reduce sensitivity dispersion, we have deployed the core of the LSSM,
i.e., the DMAIC cycle (Define, Measure, Analyze, Improve, and Control). The Six Sigma
methodology can be implemented during any phase of product development, manufac-
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turing, and later deployment into the final application [41]. The current research only
considered the application of the LSSM to reduce FSR variability, as measured from their
sensitivity; this is known in industry as the enhancing of part-to-part repeatability [27]. In
this study, we only considered compensation techniques into the last stage of final applica-
tion deployment. However, several authors have explored different methods during sensor
fabrication, such as addition of surfactants [42] and the application of magnetic fields to
reduce the percolation threshold [43]. Given the fact that we only applied compensation
techniques into the last stage of final application deployment, the ultimate goal of Six Sigma
reduction was partially achieved.

In order to obtain a Six Sigma reduction in sensitivity dispersion, it is required to
apply the DMAIC cycle from the reception of raw materials, followed by rigorous control of
sensor manufacturing and assembly; this whole process, although possible, would require
separate research.

In this study, the DMAIC was deployed by measuring the output voltage at null force
(Uo

0N) for each sensor as received from the manufacturer. Later, we correlated Uo
0N with

sensor sensitivity and developed a statistical model to trim the driving voltage of the FSRs;
this process required a thorough understanding of the sensing mechanism of FSRs, which
are discussed in Section 2.2. Specific details of the DMAIC cycle are later addressed in
Section 4.

2.2. Physical Modeling of Force-Sensing Resistors

Multiple authors have studied the underlying physics of CPCs under different me-
chanical and electrical conditions, such as compressed/uncompressed operation [44–46],
sourcing at low/high voltages [47,48], and finite element analysis by considering changes
in particle dimension and spatial distribution [49,50]. The aforementioned studies agree on
the fact that piezoresistivity mainly originates from two phenomena: quantum tunneling
occurring among adjacent conductive particles separated by the insulating polymer, and
constriction resistance occurring at clusters of multiple particles. Each phenomenon is
subsequently described.

2.2.1. Quantum Tunneling as a Source of Piezoresistivity

This conduction mechanism can be explained from widely known equations by Sim-
mons that describe the tunneling current between electrodes separated by a thin insulating
film [51]. When operating at voltages near zero, a tunneling barrier of thickness (s), with an
input applied voltage (U), exhibits a current density (J) equal to:

J(U, s) =
3e2√2mVa

2h2s
U exp

(
−4πs

h
√

2mVa

)
(1)

where (h) is the Planck constant, (Va) is the height of the insulating potential barrier and
(m), (e) are the electron mass and charge, respectively. However, if U >> Va/e, the current
density can be obtained from the following expression:

J(U, s) =
2.2e3U2

8πhVas2 exp
(
− 8πs

2.96heU

√
2mVa3

)
(2)

For the sake of this paper, the full set of equations for the intermediate voltage ranges
are not presented since they are not required, but they can be found in the original study
from Simmons [51]. Note that regardless of the applied voltage, U, current density changes
in a negative exponential fashion with the interparticle separation, i.e., this observation
also holds for the intermediate voltage equations not included in this study. Similarly,
when operating at high input voltages, a change in U impacts current density (and also the
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sensor’s sensitivity) in a nonlinear fashion. Under a compression regime, it is possible to
relate s with the external applied force (F) as next:

s(F) = so(1− F/(AM)) (3)

where (so) is the uncompressed interparticle separation, (A) is the sensor area, and (M) is
the compressive modulus of the nanocomposite. It is possible to substitute (3) into (1) and
(2) to obtain unified equations that relate current density with the external applied force.

Figure 1 shows the tunneling phenomenon occurring in multiple spots along the
nanocomposite. In practice, the net tunneling resistance (Rtun) is originated from the
multiple parallel and series connections that occur in the 3D polymer matrix. Unfortunately,
an explicit expression for Rtun can only be found for voltages near zero using (1), but when
U >> Va/e, an explicit relationship for U/J cannot be found since U appears as part of the
argument in the exponential function, see (2).

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 17 
 

 

(and also the sensor’s sensitivity) in a nonlinear fashion. Under a compression regime, it 
is possible to relate s with the external applied force (F) as next: 

))/(1()( AMFsFs o −=  (3)

where (so) is the uncompressed interparticle separation, (A) is the sensor area, and (M) is 
the compressive modulus of the nanocomposite. It is possible to substitute (3) into (1) and 
(2) to obtain unified equations that relate current density with the external applied force. 

Figure 1 shows the tunneling phenomenon occurring in multiple spots along the 
nanocomposite. In practice, the net tunneling resistance (Rtun) is originated from the 
multiple parallel and series connections that occur in the 3D polymer matrix. Unfortu-
nately, an explicit expression for Rtun can only be found for voltages near zero using (1), 
but when U >> Va/e, an explicit relationship for U/J cannot be found since U appears as 
part of the argument in the exponential function, see (2). 

 
Figure 1. Sketch of a nanocomposite comprising randomly spaced conductive particles in an insu-
lating polymer matrix; the material is sandwiched between metallic electrodes and subjected to an 
external compressive force (F). Quantum tunneling conduction is shown as double dashed line 
paths; they connect isolated particles, thus creating the tunneling resistance. Greyed diamond ar-
rows mark the constriction resistance occurring between adjacent particles (as well as between 
electrode and particles in contact); they create the constriction resistance (Rc). Particles located too 
far from each other fail to create a conduction path. 

For most CPCs involving conductive nanoparticles, the height of the potential bar-
rier is, at most, 0.57 eV for a Sn–Pb/PS nanocomposite [52], where PS stands for polysty-
rene. Later, in Section 4, we demonstrate that the optimal operating range for the Inter-
link sensors is accessible for voltages around 3 V. By taking the largest case of Va = 0.57 
eV, we can straightforwardly discard (1) as a valid model since it only holds for voltages 
near 0 V. On the other hand, Equations (2) and (3) are better suited to modeling the pie-
zoresistive response of Interlink sensors when predominantly operating under quantum 
tunneling regime; this occurs because (2) holds when U >> Va/e, which is the working 
case since U is around 3 V and Va = 0.57 eV. 

Finally, it must be clarified that current density can be converted to current by con-
sidering the effective tunneling area. Nonetheless, the effective tunneling area is not the 
same as the sensor area, A, because electrons flow only through some regions of the 
polymer with high particle concentration; see Figure 1. A comprehensive discussion of 
Simmons’s equations for modeling piezoresistive sensors was performed by the authors 
in a previous study [25]. Such study experimentally determined the effective tunneling 
area, as well as the whole set of parameters considered in (1)‒(3). 

2.2.2. Constriction Resistance as a Source of Piezoresistivity 
The constriction resistance (Rc) originates at two different spots: first, at the incom-

plete percolation paths located along the polymer matrix; these are the particle‒particle 
interactions, and second, at the sensor boundary where electrode‒particle interactions 
occur; both cases are shown in Figure 1. For particles with diameters ranging from a 

Figure 1. Sketch of a nanocomposite comprising randomly spaced conductive particles in an insu-
lating polymer matrix; the material is sandwiched between metallic electrodes and subjected to an
external compressive force (F). Quantum tunneling conduction is shown as double dashed line paths;
they connect isolated particles, thus creating the tunneling resistance. Greyed diamond arrows mark
the constriction resistance occurring between adjacent particles (as well as between electrode and
particles in contact); they create the constriction resistance (Rc). Particles located too far from each
other fail to create a conduction path.

For most CPCs involving conductive nanoparticles, the height of the potential barrier
is, at most, 0.57 eV for a Sn–Pb/PS nanocomposite [52], where PS stands for polystyrene.
Later, in Section 4, we demonstrate that the optimal operating range for the Interlink
sensors is accessible for voltages around 3 V. By taking the largest case of Va = 0.57 eV, we
can straightforwardly discard (1) as a valid model since it only holds for voltages near 0 V.
On the other hand, Equations (2) and (3) are better suited to modeling the piezoresistive
response of Interlink sensors when predominantly operating under quantum tunneling
regime; this occurs because (2) holds when U >> Va/e, which is the working case since U is
around 3 V and Va = 0.57 eV.

Finally, it must be clarified that current density can be converted to current by consid-
ering the effective tunneling area. Nonetheless, the effective tunneling area is not the same
as the sensor area, A, because electrons flow only through some regions of the polymer
with high particle concentration; see Figure 1. A comprehensive discussion of Simmons’s
equations for modeling piezoresistive sensors was performed by the authors in a previous
study [25]. Such study experimentally determined the effective tunneling area, as well as
the whole set of parameters considered in (1)–(3).

2.2.2. Constriction Resistance as a Source of Piezoresistivity

The constriction resistance (Rc) originates at two different spots: first, at the incomplete
percolation paths located along the polymer matrix; these are the particle-particle inter-
actions, and second, at the sensor boundary where electrode-particle interactions occur;
both cases are shown in Figure 1. For particles with diameters ranging from a hundred
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nanometers to tens of micrometers, the contact size is comparable with the mean free path
of electrons, thus causing a restriction to free electron motion [53]. According to the model
developed by Mikrajuddin et al. [54], when operating under compression regime, the
constriction resistance changes in an inversely proportional fashion with the applied force:

Rc(F) ∝ Ro/F (4)

The constant (Ro) depends on the particles physical dimensions, Poisson ratio of the
material, and elasticity modulus. For simplicity purposes, the exact expression is not
presented here as it comprises a piecewise function for the elastic and inelastic interaction
occurring at the interface; such an explanation falls out the scope of this article. However,
we must emphasize that the constriction resistance is a voltage-independent phenomenon.

By recalling Figure 1, we note that Rc originates at multiple spots along the nanocom-
posite, therefore, we can only measure the net contribution of the multiple series-connected
and parallel-connected constriction resistances, i.e., Rc forms an intricate network of re-
sistances. The net contribution of the multiple constriction resistances, Rc, is henceforth
designated as the contact resistance (Rcon). We will no longer use Rc in this manuscript.

2.2.3. Combining Tunneling and Contact Resistances

Sensor resistance (RFSR) is calculated by summing the contribution of the tunneling
and the contact resistance as follows:

RFSR = Rtun + Rcon (5)

Equation (5) was initially proposed by Kalantari et al. [45], and was later embraced by
the authors [25].

As demonstrated in the next section, the random dispersion of conductive nanoparti-
cles creates a specific sensor response in which either Rtun or Rcon dominates for a given
specimen. If particles are grouped in clusters separated by the insulating polymer, then
Rtun dominates, but if particles are in direct contact (forming percolation paths), then Rcon
dominates. A discussion regarding the influence of U over Rtun and Rcon can be found in
previous works [25].

3. Materials and Methods

In previous work [55], the experimental setup was thoroughly described; therefore,
only a brief description is presented here.

3.1. Mechanical Setup

The mechanical setup comprised a tailored test bench capable of handling up to
16 Interlink FSR402 sensors simultaneously; this let us speed up the characterization process
by avoiding single-sensor measurement [55]. Forces were applied from a linear motor and
a spring. An LCHD-5 load cell was deployed to close the force loop [30].

3.2. Electrical Setup

An amplifier in inverting configuration was used as the interface circuit; see Figure 2.
This setup was preferably chosen over a voltage divider because the amplifier let us control
the voltage across the sensor at any time. Analog multiplexers were deployed to enable
time-multiplexed readings of the 16 FSRs. From the amplifier output voltage (Uo), we could
determine sensor resistance, RFSR, given the amplifier model:

Uo = −(R f /RFSR) ·U (6)
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Figure 2. Electrical setup for driving the FSRs. The input voltage (U) was implemented from a
digital-to-analog converter (DAC) to enable sensor characterization at multiple voltages.

From (6), we can either use RFSR or Uo as the variable to measure. However, Uo was
preferably chosen over RFSR, because the former exhibited a linear relationship with the
applied force, F. The feedback resistor (Rf) was set to 560 Ω for all the experimental tests in
this study. The acquisition system comprised a 16-bit analog-to-digital converter (ADC)
model NI-9205 and a 16-bit digital-to-analog converter (DAC) model NI-9263; the former
was required for measuring Uo, whereas the latter was employed to generate multiple U
values. The system controller was the CRIO-9035 running LabVIEW Real Time.

3.3. Methods

Each step of the DMAIC cycle is briefly described in Table 1. A thorough description
of the process is presented in the rest of the manuscript.

Table 1. Summary of the DMAIC cycle with a brief description of each step.

Step of the Cycle Description

Define Sensitivity (m) of 64 specimens of commercial FSRs, model Interlink FSR402 [27].
A total of 48 sensors were considered for the DMAI stages and 16 for the C stage.

Measure
Sensitivity was measured in force steps of 1 N, starting at 0 N up to 20 N. A total
of 19 input voltages (U) were considered: 0.25 V, 0.5 V, 0.75 V, and 1 V. Above 1 V,

voltage increments of 0.5 V were applied up to 8.5 V.

Analyze Evaluation of the experimental data in perspective of the underlying physics of
FSRs. Four claims were stated to ease the analysis and to derive conclusions.

Improve
The improve step comprised two stages: finding the optimal input voltage that
minimizes dispersion in sensitivity, proposing and test two different methods to

reduce the dispersion in sensitivity.

Control Validate the two methods developed in the improve stage using 16 sensors.

Given the DMAIC cycle, we defined sensor sensitivity (m) as the variable to study with
units of volts per Newton. The sensitivity measurements were performed at multiple input
voltages as described in Table 1. From the 64 sensors at 19 different voltages, a total of
1216 sensitivities were collected. No lot control was considered for the 64 sensors; this is
important to note because the manufacturer has stated different part-to-part repeatability
for single-lot sensors [27]. Given the setup of Figure 2, sensitivity was obtained from a
least-squares fitting process with general formula:

Uo = mF + b (7)

where (b) was the y-intercept resulting from the fit. It must be clarified that b was not
considered in this study; instead, we measured the output voltage at 0 N (Uo

0N). The
reasoning behind this decision is provided in the next step. The analysis stage comprised an
extensive evaluation of the experimental data in perspective of the theoretical foundations
from Section 2. Before discussing the experimental data, we had to develop the following
theoretical claims:
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(i) Regardless of U, larger compressive forces increase the current density as the
interparticle separation is reduced and the contact resistance is lowered; see (1)–(5). (ii) For
null applied force, incremental U yields larger current density, thus Uo

0N is increased as well;
see (2). However, we must recall that the constriction resistance is a voltage-independent
phenomenon, thus changing U does not modify Rcon; see (4). (iii) By taking the derivative
of J(U,s(F)) with respect to F, we note that for the same force profile, the derivative increases
for larger U. The rate of change between J(U,s(F)) and F determines sensor sensitivity as it
relates the change in sensor current with the input force; this statement only applies for
the tunneling resistance. Claim (iii) can be summarized as follows: larger U yields greater
sensitivity, whereas reducing U diminishes sensor sensitivity.

(iv) It is clear from Figure 1 that both piezoresistive phenomena occur simultaneously
under any applied stress. Nonetheless, the experimental data support the hypothesis that
one phenomenon usually dominates over the other for a given sensor. For example: when
the contact resistance dominates, the percolation paths are the main source of piezoresistiv-
ity; whereas quantum tunneling is less important. Under this scenario, Uo

0N is large but m
is small. To understand this, we must compare (2) and (3) with (4) as follows: given the
predominant percolation paths along the FSR, a large Uo

0N is naturally expected because
these paths tend to easily transport electrons from one electrode to the other, however,
when an external force is applied, the change in resistance is small as predicted by (4),
i.e., the contact resistance changes with the inverse of the applied force. In contrast, when
quantum tunneling dominates, the percolation paths are incomplete or nonexistent; in
this case, (2) and (3) instead play a major role. Under this scenario, a small increment in
s—caused by an external force—results in a dramatic change in current density due to
the exponential dependence in (2) and (3); this can be understood as a large sensitivity.
Nonetheless, when quantum tunneling dominates and the sensor is unloaded, Uo

0N is
small because there are not percolation paths that connect both electrodes.

Experimental results supporting previous statements are next presented. Thereafter,
improve and control stages are described.

4. Results

Figure 3 shows the experimental data for two specimens at different input voltages.
The claims (i)–(iv) from Section 3 can be validated with the results reported in this figure,
as follows: (i) larger forces increase Uo; (ii) for a given sensor, increasing U, also increases
Uo

0N, and similarly, (iii) larger U increases m as well. Finally, (iv) if Uo
0N is large, then

percolation dominates and m is usually small. The opposite case can be also observed in
Figure 3; if Uo

0N is small, then quantum tunneling dominates, and m is generally large.
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Figure 3. Plots of the output voltage (Uo) as a function of the applied force (F) for two different
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tunneling dominates is shown with blue square markers. Data taken at (left) U = 3 V and (right)
U = 6 V.
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From the experimental data resulting at each input voltage, we obtained sensor
sensitivity for each specimen; then, we calculated the mean (µ) and standard deviation,
σ, at each U using a probability fit to a Gaussian distribution. Previously, we applied
Anderson-Darling tests to verify the null hypothesis to different probability distributions;
the Gaussian distribution was the most likely distribution for each dataset.

As a part of the improve stage, the ratio of µ/σ as a function of U is shown in Figure 4;
this chart lets us assess which input voltage naturally yields the highest part-to-part
repeatability. The quotient µ/σ is known in literature as the inverse of the coefficient of
variation. Note that at U = 3 V, the dispersion in sensitivity is the lowest. Hence, we can
state that when operating Interlink sensors at 3 V, part-to-part repeatability is naturally
maximized. We focus on this start point to further reduce σ. As previously mentioned,
this study comprised the application of compensation techniques at the last stage of final
application deployment, therefore, we could only trim U to target a desired sensitivity for a
given sensor; see claim (iii) from the Methods section. In practice, it was possible to change
U by means of a DAC; see Figure 2.
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4.1. Sensor Classification on the Basis of the Output Voltage at Null Force

From the experimental data taken at U = 3 V, we plotted in Figure 5 each sensor
sensitivity, m, with its corresponding output voltage at null force, Uo

0N. Later, the experi-
mental data were fitted to a Gaussian probability distribution resulting in a mean value of
µ3V = 0.0735 V/N with standard deviation σ3V = 0.019 V/N.

As predicted by claim (iv), we observed that sensors exhibiting a large Uo
0N tend to

show a low m, and that similarly, sensors with a small Uo
0N tended to show a large m. In

other words, Uo
0N is approximately related to sensor sensitivity. To the best of the authors’

knowledge, this observation has not been published elsewhere in specialized literature,
but it represents a powerful tool, as described in the next paragraph. For compensation
purposes in the improve stage, we have segmented the dataset from Figure 5 into three
regions according to Uo

0N: (A) sensors where quantum tunneling dominates that meet the
criteria Uo

0N < Uth
low, (B) sensors where quantum tunneling and contact resistance have

similar weight, and (C), sensors where contact resistance dominates that meet the criteria
Uo

0N > Uth
high. The procedure for setting the threshold voltages (Uth

low, Uth
high) is described

in the next section.
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µ3V = 0.0735 V/N, and standard deviation, σ3V = 0.019 V/N. Low threshold voltage (Uth

low) and
high threshold voltage (Uth

high) were defined for classification purposes. Data were taken at U = 3 V
for 48 sensors.

The Importance of Uo
0N for assessing sensor’s sensitivity is twofold. First, Uo

0N can
be measured at negligible cost after product manufacturing, i.e., a simple driving circuit is
required with no mechanical setup, see Figure 2. Second, we can discard non-compliant
sensors based on Uo

0N measurements; this ultimately enhances part-to-part repeatability
as described next: by keeping the sensors that meet the criteria Uth

high < Uo
0N < Uth

low, we
retain the sensors from Region (B) and discard the sensors from Regions (A) and (C). In
practice, this implies that 19 out of the 48 sensors are discarded and 29 are kept; it must be
emphasized that the sensors from Region (B) represent our desired target, for this reason,
we discard the noncompliant sensors belonging to Regions (A) and (C).

Subsequently, we perform a new fit to a Gaussian distribution from the 29 selected
sensors that results in the mean µB = 0.0718 V/N with standard deviation σB = 0.0142 V/N.
Note that µB slightly changed from the previously reported value of µ3V = 0.0735 V/N,
but that σB decreased 25% from its original value of σ3V = 0.019V/N. From a Six Sigma
standpoint, this represents a 1.5σ improvement. Finally, the quotient µB/σB can be recalcu-
lated with the 29 selected sensors as 5.05, which is greater than the value of 3.87 reported
in Figure 4. This simple procedure is useful for enhancing part-to-part repeatability, but
unfortunately, it occurs at the cost of discarding sensors, which unavoidably represents
material waste. Therefore, in the next section, we introduce an alternative compensation
technique for the sensors in Regions (A) and (C).

Before proceeding with the compensation technique, we must recall the random
distribution of nanoparticles along the polymer matrix. This fact unavoidably causes some
specimens from Region (B) to show either a sensitivity larger than µ3V + σ3V or lower than
µ3V − σ3V; the physical reasons for this behavior are manifold, but we can point out some
of them: a given specimen may have a particle count below average; thus, sensitivity is
lowered. Another possible reason is the random spacing of clusters that creates isolated
conglomerates in the polymer matrix; these separated clusters are just too far from each
other to enable quantum tunneling. See Figure 1 for a schematic representation of this.

4.2. Compensation Technique to Enhance Part-to-Part Repeatability

Following the improve stage; new driving voltages must be found for the sensors belong-
ing to Regions (A) and (C), see Figure 5; this procedure is supported by claim (iii). By doing
this, we can closely match each specimen’s sensitivity with µ3V, i.e., the target sensitivity.
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For the sensors belonging to Region (A), we must find a new U that lowers the
sensitivity of each specimen. In this case, the new U must be lower than 3 V. For the sensors
belonging to Region (C), the opposite occurs; the new input voltage must be higher than
3 V to increase their sensitivity. As stated in claim (ii), a change in U also modifies Uo

0N;
this is not a problem itself because Uo

0N can be measured anytime in the final application.
In order to find a relationship among m, Uo

0N, and U, we plotted them together in
Figure 6 for the sensors belonging to Region (A). Then, a least-squares fit was applied
to find a numerical expression that relates these three variables. The best, yet simplest,
function was found to be:

U = a · Ûo
0N + b · m̂ + c (8)

where a, b, c are coefficients resulting from the fit. Normalization was performed for the
variables Uo

0N and m, where Ûo
0N = Uo

0N/U and m̂ = m/U. By doing this, we avoided
quadratic functions and used a simple 3D plane resulted instead. The same procedure
was repeated for the sensors belonging to Region (C). Both fitting results are summa-
rized in Table 2. The fit to (8) allowed us to determine the optimal threshold voltages
for regions (A), (B), and (C). The threshold voltages, Uth

low and Uth
high, were previously

defined in Figure 5; they let us assess whether quantum tunneling or constriction resis-
tance dominates for a given sensor. The procedure for determining Uth

low and Uth
high is

described next.
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Figure 6. 3D plot of the normalized sensitivity (m̂), the normalized output voltage at null force
(Ûo

0N ), and the input voltage (U). Data corresponding to the 12 sensors belonging to Region (A).
(a,b) Isometric views of the 3D fit using Equation (8) as the model with parameters shown in Table 2.
(c,d) Isometric views of the 3D fit with special markers. The blue cubes and black pyramid markers
correspond to individual sensors that shift in different directions along the plane when U is changed.
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Table 2. Parameters resulting from the fit. Parameters a through c were obtained from a least-squares
fit to (8) with coefficient of correlation R2. The mean sensitivity (µ) for each region (µA, µC) was
measured at U = 3 V.

a (V) b (N·V) c (V) R2 µ (V/N)

Region (A) 132.3 139.1 −3.36 0.67 µA = 0.091
Region (C) 101 485.2 −18.2 0.94 µC = 0.052

The higher Uth
low is set, the more sensors are considered as a part of Region (A).

However, by doing this, the coefficient of determination (R2) resulting from the fit is
reduced; this occurs because we are embracing sensors that fall out the criteria for this
region, i.e., in Region (A) quantum tunneling dominates. The same procedure was repeated
to obtain Uth

high, but in this case, Uth
high has to be reduced in order to embrace more

sensors in Region (C). In practice, Uth
low and Uth

high were found by an iterative process
that aimed to obtain the largest Uth

low that minimized R2 in Region (A), and the smallest
Uth

high that minimized R2 in Region (C). Finally, Uth
low and Uth

high resulted in 90 mV and
310 mV, respectively.

Compensating voltages for the sensors in Region (A) and (C) can also be found from
(8). Nonetheless, we cannot directly replace Uo

0N in (8) and set a targeted sensitivity, m,
to obtain the new U. As previously mentioned, a change in U modifies both: Uo

0N and
m; see claims (ii), (iii). The 3D surface resulting from (8) can be understood as the plane
where Uo

0N and m are shifted when U is changed. Nonetheless, every sensor exhibits a
different rate of change in Uo

0N as a function of U; this is exemplified with the pyramid
and cubic markers in Figure 6. Each marker corresponds to individual sensor data that
can be well fitted in the 3D plane, but they move in different angles along the surface
when U is changed. Therefore, we are limited to obtain an average rate of change for
Uo

0N as a function of U; this average comprises the 12 sensors belonging to Region (A). In
the Conclusion section, the scenario is discussed when we consider an individual rate of
change for each sensor.

Finally, given the mean sensitivity at 3 V for the sensors in Region (A), µA, the model
from (8), the target sensitivity, µ3V, and the average rate of change of Uo

0N as a function
of U, we computed the new U resulting in UA = 2.5 V. Similarly, the same procedure was
performed for the sensors in Region (C), but using µC and the average rate of change of
Uo

0N for these sensors; this resulted in the new voltage of UC = 3.15 V.
Later, experimental sensor characterization was performed at the new voltages UA

and UC; this was done for the sensors belonging to Regions (A) and (C), respectively. The
experimental results are plotted in Figure 7. Nonetheless, the sensor data from Region
(B) is the same plotted in Figure 5 since U remained unchanged for these sensors. For the
whole dataset for Figure 7, a new fit to a Gaussian distribution was performed, resulting in
µcomp = 0.0727 V/N and σcomp= 0.016 V/N. This represents a 15% reduction in the standard
deviation when compared with σ3V. Although this reduction in the standard deviation is
lower than previously reported for the discarding method; it is demonstrated that changing
U is an effective way to fine-tune the sensitivity of FSRs.

4.3. Assessing the Compensation Technique from a Six Sigma Perspective

As a part of the control stage of the DMAIC cycle, we tested an additional group of
16 Interlink FSR 402 sensors. These sensors were initially characterized at U = 3 V to obtain
Uo

0N and m. Figure 8 shows the summary of this characterization with an overlay of Uth
low,

Uth
high, µ3V, and σ3V for classification purposes. An Anderson-Darling test to different

probability distributions demonstrated that these data could be well fitted to a Gaussian
distribution with µcontrol = 0.0774 V/N and σcontrol = 0.0189 V/N. Note that the start point
before compensation was quite similar to µ3V and σ3V from the improve stage.
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Figure 8. Sensitivity (m) as a function of the output voltage at null force (Uo
0N) for the

sixteen specimens of the control stage. Data were taken at U = 3 V.

Later, we classified the sensors belonging to Regions (A), (B), and (C) on the basis
of Uth

low and Uth
high. Part-to-part repeatability was enhanced following two different

approaches: first, by discarding the sensors from Regions (A) and (C) and keeping only
those from Region (B), and second, by applying the compensation technique based on
changing U.

From the first approach, 7 out the 16 sensors were discarded and 9 were kept. Then,
we recalculated the mean and standard deviation, obtaining 0.0698 V/N and 0.0168 V/N,
respectively; this represents an 11% reduction in the standard deviation and a Six Sigma
improvement of 0.66σ. However, note that the mean sensitivity was alterated from its
original value.

From the second approach, new characterization was performed at the input voltages
UA and UC for the sensors belonging to Regions (A) and (C), respectively. No compensation
was performed for the sensors belonging to Region (B). The experimental results are shown
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in Figure 9. Later, we recalculated the mean and standard deviation, obtaining 0.0726 V/N
and 0.0154 V/N, respectively; this represents an 18.5% reduction in the standard deviation
amid a negligible variation for the mean sensitivity. This represents a 1.1σ improvement
using the Six Sigma approach.
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Figure 9. Sensitivity (m) as a function of the output voltage at null force (Uo
0N) for each specimen

after compensation. Experimental data resulting from the control stage. Different markers were used
for the sensors of Regions (A) and (C) after compensation.

4.4. Practical Considerations for the Implementation of the Proposed Methods

First of all, it must be emphasized that this research did not consider lot control for the
specimens characterized. Therefore, if the manufacturing conditions remain unchanged
over time (e.g., particle dimension, type of polymer, preparation conditions, and so on), the
compensation techniques should work for any specimen of Interlink FSR 402. In regard to
the feedback resistor, a change in Rf produces a linear variation in the magnitude of m, Uo

0N,
Uth

low and Uth
high; this occurs because the amplifier is an inherently linear device. Therefore,

if Rf is doubled or halved, the aforementioned magnitudes also change proportionally.
Nonetheless, a change in the driving voltage would impact m, Uo

0N, Uth
low, and

Uth
high in a nonlinear fashion; this is expected because quantum tunneling is a nonlinear

phenomenon. Besides, we must recall that during the improve stage, we found U = 3 V as
the optimal voltage that naturally maximizes the quotient µ/σ; see Figure 4. Therefore, we
set U = 3 V as the starting point to subsequently trim the input voltage in the improve and
control stages. However, if we set a different starting point for U, we would deviate from
the results reported here.

Finally, given the relatively low number of sensors considered in this research
(64 specimens), only three regions were defined. By considering more regions, a more
suitable compensating voltage could be applied for each specimen. The experimental data
employed in this study can be found in [56].

5. Conclusions

Changing the input voltage is an effective way to trim the sensitivity of force-aensing
resistors (FSRs). The output voltage at null force (Uo

0N) can give us a hint about the indi-
vidual sensor’s sensitivity without requiring individual characterization. To the best of
authors’ knowledge, this observation has not been reported elsewhere. With the informa-
tion provided from Uo

0N, we could set new input voltages that let us reduce the dispersion
in sensors’ sensitivity and/or discard noncompliant sensors. Both methods were explored
in this study, resulting in a reduction of 18.5% and 11% in the standard deviation of sensor
sensitivity for each procedure, respectively. These results were obtained in the control



Micromachines 2022, 13, 840 14 of 16

stage of the DMAIC cycle for a bunch of 16 Interlink FSR 402 sensors. These percentages
represent 1.1σ and 0.66σ improvements according to the Six Sigma methodology.

A promising technique to be explored in the authors’ future work is based on in-
dividually defining new input voltages for each sensor; by doing this, we can more ac-
curately match the sensitivity of each specimen with a target sensitivity, thus achieving
a larger Six Sigma improvement. However, this procedure requires that we previously
track Uo

0N for multiple input voltages and later incorporate such information in the final
compensation formula.
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Appendix A. Foundations of the Six Sigma Methodology

Six Sigma is a continuous improvement methodology that has been widely applied in
the manufacturing and services sectors. Its implementation focuses on the application of the
DMAIC cycle (Define, Measure, Analyze, Improve, and Control) [41]. This methodology is
based on the reduction of the process variability regarding a Critical to Quality (CTQ) or
critical variable for the process or the client. Process variability is assessed on the basis of
the standard deviation (σ) for any process parameter, e.g., when building antennas on a
printed circuit board (PCB), the width and length of the paths have a strong influence on
the antennas’ bandwidth and frequency response [57]; therefore, we can deploy the DMAIC
cycle to reduce the dispersion of the width and length of paths from their nominal value.

Six Sigma requires the collection of data and the application of analytical and statistical
tools to identify the causes of the variation and thus achieve a 6σ level that translates into
3.4 errors per million opportunities [41]. A 6σ level implies that standard deviation is
reduced by a factor of 6 from the original assessment. The opportunity is understood as the
probability of noncompliance or the probability of not meeting the required specifications.
The DMAIC cycle implemented by the Six Sigma methodology is used to identify and solve
problems related to the process; analyzing the current state of a problem of interest, find its
root cause, propose improvement solutions, and keep them durable over time.
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