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Abstract: Signal amplification is crucial in developing a reliable disposable screen-printed carbon
electrodes (SPCEs)-based biosensor for analyte detection with a narrow detection window. This work
demonstrated a novel label-free electrochemical aptasensor based on SPCEs for the ultrasensitive
detection of ochratoxin A (OTA). The graphene oxide-DNA (GO-DNA) complex as a signal amplifier
with easy preparation was investigated for the first time. The proposed aptasensor based on the
SPCEs/GO/cDNA-aptamer/3D-rGO-AuNPs structure was formed through the hybridization of
aptamer-linked 3D-rGO/AuNPs and its complementary DNA-linked GO (GO-cDNA). The presence
of OTA was discerned by its specific aptamer forming a curled OTA-aptamer complex and releasing
the GO-cDNA from the surface of SPCEs. The resulting OTA-aptamer complex hindered interfacial
electron transfer on the sensing surface, leading to the decreased peak current. The GO-cDNA
further amplified the peak current change. This electrochemical aptasensor showed a low limit of
detection of 5 fg/mL as well as good reproducibility with the relative standard deviation (RSD) of
4.38%. Moreover, the detection result of OTA in the rice and oat samples was comparable with that
of the enzyme-linked immunosorbent assay (ELISA) kit. In general, the OTA aptasensor used in
this work with convenient preparation, low-cost, good selectivity, high sensitivity and acceptable
reproducibility can be proposed as a reliable point-of-care (POC) technique for OTA determination.

Keywords: aptasensor; graphene oxide; reduced graphene oxide/AuNPs; ochratoxin A;
signal amplification

1. Introduction

Ochratoxin A (OTA) is a ubiquitous mycotoxin produced by Penicillium and Aspergillus
in their secondary metabolism [1], which can be found in a variety of crops such as wheat,
corn, or oats [2]. As it can cause varying degrees of damage to human and animals such as
nephrotoxicity (Balkan endemic nephropathy, BEN), hepatotoxicity, neurotoxicity, immune-
toxicity and teratogenicity [3], OTA has been classified by International Agency for Research
on Cancer (IARC) in group 2B of possible human carcinogens [3,4]. Thus, a rapid and
sensitive detection strategy is important for the accurate diagnosis of OTA, especially in
very low concentration samples.

Currently, the most commonly used methods are the enzyme-linked immunosorbent
assay (ELISA) and high-performance liquid chromatography (HPLC) [5,6], which possess
high sensitivity and accuracy. However, they require expensive reagents or equipment,
and highly trained operators, limiting their wide application in point-of-care (POC) testing,
especially in less developed or remote areas. POC biosensing methods with affordable,
user-friendly, and disposable devices suitable for on-site measurements are in critical
demand. Aptamer-based electrochemical biosensors with high specificity and affinity, fast
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response, simple operation and low cost are able to overcome limitations of immuno-based
electrochemical sensors in terms of cross-reactivity, and false screening results, attracting
great attention as a reliable and fast POCT in various fields [7–10]. Specific electrochemical
electrodes such as glassy carbon electrodes (GCEs) [11,12], carbon paste electrodes (CPEs) or
graphite pencil electrodes [13,14] have been used to develop the electrochemical aptasensor
of OTA detection. For instance, our previous work demonstrated a label-free aptasensing
device based on 3D-rGO/AuNPs-modified GCEs to achieve the sensitive and selective
determination of OTA [15]. The aptasensor exhibits an ultrasensitive limit of detection
(LOD) of 0.34 pg/mL with good reproducibility. However, the above solid electrodes may
suffer cross-contamination, surface poisoning or time-consuming surface cleaning, which
are not suitable for single-use disposable systems [16]. Disposable screen-printed carbon
electrodes (SPCEs) which are regarded as low cost, have easy miniaturization and great
potential for mass production, are more favorable in POC [17,18].

To our knowledge, there are only a few articles focused on the design of disposable
and portable electrochemical aptasensors for the detection of OTA [19,20]. For instance,
Zejli et al. reported an aptasensor based on polythiophene-3-carboxylic acid modified
SPCEs for OTA detection with an LOD of 0.125 ng/mL [19]. However, the LOD is very poor
and the linear range is relatively narrow. In order to address the issue, efforts have focused
on the use of signal amplifiers such as an enzyme [21,22] or multiple DNA hybridization
complex [23]. For instance, with the introduction of exonuclease and β-cyclodextrin as
signal amplifiers in SPCEs, the LOD of OTA using SPCEs-based aptasensor can be reached
at as low as 3 pg/mL [20]. However, the enzyme-based method is more susceptible to
temperature and pH as well as being costly, while the multiple DNA hybridization-based
signal amplification cycle is very complicated. Therefore, the development of an enzyme-
free aptasensor with low cost, high stability, and easy preparation is of great importance.
Graphene oxide (GO) has been reported with various oxygen functional groups (hydroxyl,
carboxyl and epoxy functional groups) on the basal plane as well as at the edges of the GO
nanosheet [24], which is easily modified with biomolecules such as DNA [25]. In addition,
GO is regarded as an excellent fabrication nanomaterial of electrochemical biosensors due
to its ability to promote electron transfer and low cost [26]. Inspired by these, we designed
a novel label-free aptasensor using aptamer linked 3D-rGO/Au NPs nanocomposites as a
disposable SPCEs substrate and GO-cDNA complex as a signal amplifier to realize OTA
ultrasensitive determination. The proposed OTA aptasensor showed simple preparation,
an ultrasensitive detection limit, good reproducibility, and high specificity. In addition, the
detection results of rice and oat samples can be compared with commercial ELISA results,
indicating its potential use in POC, especially for resource-limited settings.

2. Experimental Section
2.1. Chemicals and Materials

Methanol, potassium chloride (KCl), potassium ferricyanide (K3[Fe(CN)6]), potas-
sium ferrocyanide (K4[Fe(CN)6]), glucose (C6H12O6), disodium hydrogen Phosphate
dodecahydrate (Na2HPO4·12H2O), disodium hydrogen phosphate dihydrate
(NaH2PO4·2H2O), Tris(2-carboxyethyl) phosphine(TCEP), chloroauric acid (HAuCl4·4H2O),
1-ethyl-3-(3-(dimethylamin)propyl)carbod-iimide hydrochloride (EDC), N-hydroxysuccinimide
(NHS), ochratoxin B (OTB), deoxynivalenol (DON), and zearalenone (ZEA), bovine
serum albumin (BSA) were purchased from Sigma-Aldrich (Shanghai, China).
Tris(hydroxymethyl)aminomethane hydrochloride (tris-HCl), ethylenediaminetetraacetic
acid disodium salt (EDTA), and hydrogen peroxide were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Graphene oxide nanosheets (XF002-1,
500 nm–5 µm; ~99%, Hummers) were purchased from Nanjing XFNANO Materials Tech
Co., Ltd. (Nanjing, China). Ochratoxin A was purchased from J&K Scientific Ltd. (Shanghai,
China). The OTA binding aptamer with a sequence of 5′-GAT CGG GTG TGG GTG GCG
TAA AGG GAG CAT CGG ACA-(CH2)6-SH-3′ and its complementary DNA (cDNA) with
a sequence of 5′-CCT TTA CGC CAC CCA CAC CCG ATC-(CH2)6-NH2-3′ were purchased
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from Sangon Biotech (Shanghai, China). The commercial ELISA kit was purchased from
Multisciences biotech Co., Ltd. (Hangzhou, China). Screen-printed carbon electrodes
(SPCEs; DRP-C110) were purchased from Metrohm DropSens (The Swiss). All chemicals
were of analytical grade and required no purification. Distilled water (18.2 MΩ·cm−1) was
used to prepare all aqueous solutions. Rice and oats samples were provided as a gift from
Prof. Xing Liu in Hainan University.

2.2. Synthesis of 3D-rGO/AuNPs Nanocomposites

The 3D-rGO/AuNPs nanocomposites were synthesized through a one-pot hydrother-
mal reduction process according to our previous article [15]. Briefly, 20 mg of GO nanosheets
were dissolved in 10 mL of water under ultrasonic treatment for 2 h to form 2 mg/mL
of GO suspension. Then, 10 mL glucose (2 mg/mL) was added to the above solution
followed by the addition of 400 µL of HAuCl4·4H2O (2%, w/w) in an ultrasonic bath for
1 h. Afterwards, the homogenous solution was dropped into a Teflon-lined autoclave
and reacted in an oven at 180 ◦C for a full 12 h. After cooling to room temperature, the
3D-rGO/AuNPs hydrogel was washed with distilled water several times and dried with
filter paper. Lastly, the 3D-rGO/AuNPs hydrogel was freeze-dried at −50 ◦C for 24 h and
then 3D-rGO/AuNPs nano-powder was obtained for further use.

2.3. Preparation of Modified Electrodes
2.3.1. Activation of SPCEs

Firstly, the bare SPCEs were activated under 12 repetitive cyclic voltammetries at the
10 mV·s−1 scan rate between 1.0 V and −1.0 V in the 0.01 M H2O2 (in 0.1 M phosphate-
buffered solution, pH 7) [27]. After activation, the electrodes were rinsed with distilled
water and dried in air for further experimentation. Activated SPCEs were referred to as
aSPCEs for short.

2.3.2. Fabrication of 3D-rGO/AuNPs

The dry 3D-rGO/AuNPs nanocomposites were dissolved in distilled water under
ultrasound into different concentrations (0.25, 0.5, 1, and 2 mg/mL), respectively. Then,
10 µL 3D-rGO/AuNPs dispersions were drop-casted on the working electrode surface and
left to dry for 2 h at room temperature. Subsequently, the electrode was washed with the
0.01 M phosphate-buffered saline (PBS, pH 7.4) solution three times to remove unbound
3D-rGO/AuNPs and dried in the air for further experimentation.

2.3.3. Fabrication of 3D-rGO/AuNPs/Aptamer

The thiolate-OTA aptamer was activated through incubation with 10 mg/mL TCEP at
37 ◦C for 1 h. Then, 10 µL of the activated aptamer solution (0.1, 0.5, 1.0, and 2 µM) was
dropped on the 3D-rGO/Au NPs-modified aSPCEs working electrode and placed in a 4 ◦C
refrigerator overnight, respectively. Afterwards, the unbound aptamer was removed by
careful washing with 0.01 M PBS solution. A total of 10 µL of 10 mg/mL BSA was then
dropped on the aSPCEs for 1h to block nonspecific binding sites followed by washing with
PBS solution and dried for later use.

2.3.4. Fabrication of 3D-rGO/AuNPs/Aptamer-cDNA/GO

The 100 µL GO solution (0.25, 0.5, 1, and 2 mg/mL) was pretreated with the 100 µL
EDC/NHS (37.5 mg/mL/10.5 mg/mL) mixture at room temperature for 1 h to activate
the carboxyl group of GO. Then, 100 µL cDNA (0.1, 0.5, 1.0, and 2 µM) was added to
form the GO-cDNA complex due to the interaction of amino group of cDNA and the
carboxyl group of GO, respectively. After reaction at room temperature for 2 h, supernatant
with redundant free GO or cDNA was removed by centrifugation at 25 °C, 10,000 rpm
for 10 min. The precipitate was re-dissolved in the 100 µL 0.01 M PBS solution and
incubated with 3D-rGO/AuNPs/aptamer-modified aSPCEs at 25 ◦C for 2 h. Finally, 3D-
rGO/AuNPs/aptamer-cDNA/GO structure-modified aSPCEs were formed. The electrodes
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were washed with 0.01 M PBS solution and dried as with the prepared aptasensor for
further use.

2.4. Preparation of Real Samples

The rice and oats samples were prepared according to the previous report [28]. In
brief, 5 g of the rice or oat samples was mixed with 10 mL of 50% methanol in water (v/v),
and an ultrasonic water bath was carried out for 20 min. The mixture was then centrifuged
at 25 ◦C, 10,000 rpm for 10 min and the supernatant was diluted 10-fold with 0.01 M PBS
(pH 7.4) for electrochemical analysis and diluted twice with 0.01 M PBS (pH 7.4) for ELISA
analysis, respectively.

2.5. Electrochemical Measurement

Cyclic voltammetry (CV) was used to monitor the changes occurring on the modified
aSPCEs surface. The CV measurement was applied in a 10 mL 0.01 M PBS solution (pH 7.4)
containing 0.01 M [Fe(CN)6]3−/4− and 0.1 M KCl from 0.6 to −0.6V at a scan rate 100 mV/s.
The prepared aptasensor based on SPCEs enabled the low cost, single-use disposable
POC testing of OTA. For detection, the modified aSPCEs were incubated with 10 µL OTA
solution with different concentrations (0.01 pg/mL, 0.1 pg/mL, 1 pg/mL, 10 pg/mL,
100 pg/mL, 500 pg/mL, 1 ng/mL, and 2 ng/mL) in 0.01 M PBS buffer (pH 7.4) for 1 h at
37 ◦C, respectively. Then, OTA-reacted electrodes were rinsed with 0.01 M PBS three times.
After drying at room temperature, the differential pulse voltammetry (DPV) measurements
were performed under the condition of a scanning range of −0.2 V to 0.6 V and scanning
rate of 0.05 V/s for OTA.

2.6. Apparatus

All the electrochemical measurements were conducted using a model CHI 660D
electrochemical workstation (Shanghai Chenhua Instruments Co., Ltd., Shanghai, China).
Disposable SPCEs with a geometrical area of 12.6 mm2, consisting of a carbon ink working
electrode, a carbon ink counter electrode, and a silver ink pseudo-reference electrode were
used as the supporting electrodes. The structure of 3D-rGO/AuNPs was observed using a
transmission electron microscope (TEM) (H-7650, Hitachi, Japan). The morphology of bare
and modified aSPCEs was checked with scanning electron microscopy (SEM) (Sigma 300,
ZEISS, Jena, Germany). The drying of 3D-rGO/AuNPs nanocomposites under vacuum
was performed with a Freeze dryer (Ningbo Shuangjia Instruments, Ningbo, China). The
centrifugation was performed with a 5430R centrifuge (Eppendorf, Hamburg, Germany).

3. Results and Discussions
3.1. Principles of the Aptasensor

Figure 1 shows the schematic of the presented aptasensor for OTA detection. Firstly, the
3D-rGO/AuNPs nanomaterial was modified on the aSPCEs. As can be seen from Figure 2,
the peak current of curve “b” (aSPCEs/3D-rGO/AuNPs) exhibits an obvious increase
compared with curve “a” (aSPCEs), indicating that the electro-conductivity of aSPCEs was
improved with the 3D-rGO/AuNPs. This is due to the excellent conductive performance of
rGO/AuNPs nanocomposites, facilitating the electron transfer of [Fe (CN)6]3−/4− on the
sensing surface. After the incubation of the SH-aptamer on 3D-rGO/AuNPs film, the peak
current of curve “c” (aSPCEs/3D-rGO/AuNPs/APT) decreased because the aptamer acted
as an isolating barrier to the electron transfer. The non-specific binding sites were then
blocked with 1% BSA solution, in which curve “d” (aSPCEs/3D-rGO/AuNPs/APT/BSA)
exhibited a small decrease in the peak current. Afterwards, the 3D-rGO/AuNPs/APT-
cDNA/GO structure was formed due to the hybridization of cDNA with the aptamer
when the GO-cDNA complex was added onto the electrodes. The peak current of curve “e”
(aSPCEs/3D-rGO/AuNPs/APT/BSA/cDNA/GO) showed a high increase, indicating that
GO-cDNA could enhance the current signal. In the presence of OTA, the specific binding
of OTA to the aptamer destroyed the hybridization of cDNA and the aptamer, releasing
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GO-cDNA from the modified electrode. The resulting OTA-aptamer complex blocked
the reaction sites on the sensing surface, leading to partial electron transfer resistance
of [Fe (CN)6]3−/4−. In addition, the release of GO-cDNA amplified the signal change,
leading to a significant decrease in the peak current as shown in curve “f” (aSPCEs/3D-
rGO/AuNPs/APT/BSA/cDNA/GO/OTA).
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Figure 2. CV curves of the modified aSPCEs of every step (a, bare aSPCE; b,
aSPCE/rGO/AuNPs; c, aSPCE/rGO/AuNPs/APT; d, aSPCE/rGO/AuNPs/APT/BSA; e,
aSPCE/rGO/AuNPs/APT/BSA/GO-cDNA; f, aSPCE/rGO/AuNPs/APT/BSA/GO-cDNA/OTA)
in a solution of 0.01 M PBS pH 7.4 containing 0.01 M [Fe (CN) 6]3−/4− and 0.1 M KCl.

In order to illustrate the role of GO-cDNA as a signal amplifier, the analytical perfor-
mance of the proposed aptasensor compared with the 3D-rGO/AuNPs/APT-based ap-
tasensor (without GO-cDNA, short for APT-aptasensor) and 3D-rGO/AuNPs/APT/cDNA-
based aptasensor (without GO, short for cDNA-aptasensor) was investigated. The current
value of ∆ipeak referring to the peak current change before OTA addition and after OTA
addition, was used to compare the performance of the above three aptasensors. A higher
current value of ∆ipeak indicated a better signal response of the aptasensor. For the APT-
based aptasensor (without GO-cDNA), when OTA was added, the OTA could be specifically
captured by the aptamer on the sensing surface. The curled complex of the OTA aptamer
was formed and partly blocked the electron transfer path, leading to a decreased peak cur-
rent. The ∆ipeak current value of the APT-based aptasensor was calculated as 3.6 ± 0.9 µA
as shown in Figure S1. For the cDNA-based aptasensor (without GO), the ∆ipeak current
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value was calculated as 10.1 ± 2.1 µA, which was about 2.8-times that of the APT-based
aptasensor. This result was in accordance with another report stating that a competitive
strategy based on the binding of the aptamer to the OTA benefits the sensitivity of aptasen-
sor [12]. For our proposed aptasensor, when GO-cDNA was applied, the ∆ipeak current
value exhibited a much higher change of 17.7 ± 1.3 µA, which was 1.8-times that of the
cDNA-based aptasensor, and 6-times the APT-based aptasensor, respectively. This may
be attributed to the fact that GO can load the abundant cDNA, thereby enhancing the
hybridization between GO-cDNA and the aptamer immobilized on the electrode surface,
thus resulting in a larger current change. This result indicated that the GO-cDNA complex
played a very important role as a signal amplifier for our proposed aptasensor.

3.2. Morphology and Structure Characterization of Modified SPCEs

TEM and SEM were used to characterize the nanostructures of 3D-rGO/AuNPs
nanocomposites, and the morphology of modified aSPCEs. As is shown in Figure 3A, a
large number of AuNPs with a diameter of about 260 nm were uniformly arranged on the
surface of rGO, indicating the successful synthesis of 3D-rGO/AuNPs nanocomposites.
Large size of AuNPs embedded in rGO can provide an efficient route for the chemisorption
of the SH-aptamer during the immobilization step, leading to the sufficient binding of the
aptamer on the aSPCEs surface. The SEM images of the bare aSPCEs and 3D-rGO/AuNPs-
modified aSPCEs are shown in Figure 3B,C. After the incubation of 3D-rGO/AuNPs, we
could see the relatively flat surface of bare aSPCEs was covered with a porous 3D-rGO
structure embedded with spherical AuNPs, indicating the successful fabrication of 3D-
rGO/AuNPs nanocomposites on the aSPCEs.
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3.3. Optimization of Aptasensing Parameters

In order to achieve the best performance of the aptasensor, we optimized the most
important testing parameters such as concentrations of 3D-rGO/AuNPs, aptamer/cDNA,
and GO, respectively. The concentration of OTA was set as 1 ng/mL for optimization. The
∆ipeak current value referring to the current change between before OTA addition and after
OTA addition, was used for the comparison. The higher ∆ipeak current value indicated
better analytical performance.

The use of 3D-rGO/AuNPs nanocomposites as carriers of the aptamer can impact
the analytical performance of the aptasensors. The influence of different 3D-rGO/AuNPs
concentrations on the electrochemical response was investigated. It can be found from
Figure 4A that the ∆ipeak current value increased as the concentration of the 3D-rGO/AuNPs
suspension rose from 0.25 to 1 mg/mL and afterward diminished when the concentration
increased to 2 mg/mL. Thus, 1 mg/mL was selected as the ideal concentration for the
3D-rGO/AuNPs suspension.
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The effect of different aptamer concentrations on the performance of the electrochem-
ical sensor was investigated subsequently (Figure 4B). With the increase in the aptamer
concentration from 0.1 to 2.0 µM, the ∆ipeak current value reached its highest at 0.5 µM and
exhibited a slight decrease after 0.5 µM, indicating a saturated capture of the aptamer on
the 3D-rGO/AuNPs-modified surfaces. Therefore, 0.5 µM of the aptamer was chosen as
the optimal concentration. As the normal ratio of the hybrid events between cDNA and
aptamer is 1:1, it is reasonable to choose 0.5 µM as the suitable concentration of cDNA for
our following experiments as well.

Finally, the influence of the GO concentration on the electrochemical response was
investigated. As shown in Figure 4C, the ∆ipeak current value of the aptasensor increased
with the rising concentration of GO and reached the highest value at 0.5 mg/mL. Fol-
lowing this, the ∆ipeak value began to decrease with the increase in the GO concentra-
tion. Hence, 0.5 mg/mL GO suspension was selected as the best concentration for the
following experiments.

In conclusion, 1 mg/mL of 3D-rGO/AuNPs suspension, 0.5 µM of cDNA and the
aptamer, and 0.5 mg/mL of the GO suspension were chosen as the optimal parameters of
our proposed aptasensor.

3.4. Analytical Performance of Electrochemical Aptasensor for OTA Detection

Under the optimal conditions, the proposed aptasensor was incubated with different
concentrations of OTA in a 0.01 M PBS solution (0 pg/mL, 0.01 pg/mL, 0.1 pg/mL, 1 pg/mL,
10 pg/mL, 100 pg/mL, 500 pg/mL, 1 ng/mL, and 2 ng/mL), respectively. As shown in
Figure 5A, the DPV peak current value at 0.13 V decreased with the increasing OTA
concentration, evidencing the feasibility of the proposed aptasensor. In order to investigate
the analytical performance, the ∆ipeak current value referring to the DPV current difference
between the control (0 ng/mL) and after OTA addition was calculated. As shown in
Figure 5B, the ∆ipeak current value increased with the concentration of OTA and reached a
plateau after 1 ng/mL. We found that the ∆ipeak current value exhibited a linear relationship
with the logarithmic value of the OTA concentration from 0.01 pg/mL to 1 ng/mL. As
shown in Figure 5B, the linear correlation equation can be indicated as ∆ipeak (µA) = 2.86
log COTA (pg/mL) + 8.6 (R2 = 0.997). The LOD of OTA (S/N = 3, LOD = 3 × SD/slope)
which was calculated as 5 fg/mL. (Comparison of the developed disposable aptasensor
with those from previous reports are summarized in Table 1)
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Table 1. Comparison of the analytical performance of different disposable electrochemical aptasensors
for OTA detection.

Aptasensor Amplifier Linear Range (ng/mL) LOD (ng/mL) Reference

polythiophene-3-carboxylic acid
modified SPCEs None 0.125–2.5 0.125 [19]

Disposable screen-printed
Au electrodes

RecJf exonuclease and
β-cyclodextrin 0.010~10 3 × 10−3 [20]

Thionine and IrO2 NPs modified SPCE None 0.04~40 5.6 × 10−3 [29]

Layer-by-layer self assembly on
disposable screen-printed Au electrodes None 0.1~10 0.03 [30]

rGO-AuNPs modified SPCEs GO/cDNA 1 × 10−5~1 5 × 10−6 This work

3.5. Specificity and Reproducibility of the Electrochemical Aptasensor

In order to evaluate the specificity of the prepared aptasensor, different mycotoxins
including OTB, ZEN, and DON, were selected as interferents. The concentration for all of
the above interferents was set as 10 ng/mL while that for OTA was 1 ng/mL. As indicated
by Figure 6A, the ∆ipeak current of OTA was significantly higher than that of the other
mycotoxins. The response signal changes of ZEN and DON are negligible. The ∆ipeak
current value of OTB is slightly higher because OTB has a similar molecular structure with
OTA. Considering its 10-fold higher concentration of OTA, the specificity is thought to be
acceptable. Five different electrodes were tested for the reproducibility of the aptasensor
at 1 ng/mL of OTA. All the tests were performed under the same conditions and the
relative standard deviation (RSD) was calculated as 4.38% (Figure 6B). In conclusion, the
constructed aptasensor has satisfactory specificity and reproducibility.
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3.6. Validation Study

In order to test the performance of the biosensor in real samples, oat (sample 1, and 2)
and rice samples (sample 3, and 4) naturally contaminated with different concentrations of
OTA were analyzed with the proposed aptasensor and commercial ELISA kits. The real
samples were firstly treated with 50% methanol in water (v/v) under an ultrasonic water
bath. The mixture was then centrifuged and the supernatant was collected as the original
stock solution. It was found that the original stock solution of real samples possessed a
huge matrix effect [15,31], resulting in false results. Thus, the rice and oat sample stock
solutions were diluted 10-fold for accurate electrochemical analysis. According to the above
calibration curve, the OTA concentration in the 10-fold solution was calculated as 0.08, 0.256,
0.526, and 0.635 ng/mL, which indicated the actual OTA concentration to be 0.8 ng/mL,
2.56 ng/mL, 5.26 ng/mL, and 6.35 ng/mL, accordingly. As shown in Figure 7, the results
obtained from the two methods were in good agreement with each other, indicating the
acceptable accuracy of the developed aptasensor in practical use.
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4. Conclusions

In this work, a novel disposable electrochemical aptasensor for the ultrasensitive
detection of OTA in rice and oat samples was demonstrated. Here, the competitive binding
of OTA with its specific aptamer and introduction of GO-DNA was used to complete the
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simple signal amplification strategy. The proposed OTA aptasensors in this work exhibited
quick response, convenient preparation, simple equipment, low-cost, good selectivity, high
sensitivity and acceptable reproducibility. Furthermore, the aptasensor was successfully
used in the detection of OTA in rice and oat samples, which was validated by ELISA. In
addition, due to the ultrasensitive limit and linear range, our proposed aptasensor may be
applicable to monitor the OTA exposure in human milk or urine at ultralow levels (down
to 5 pg/mL) [32]. Moreover, by altering the target aptamer and cDNA, the strategy could
be universally used for the detection of other mycotoxins, showing a promising potential
for mycotoxins POCT in agricultural products and foods.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/mi13060834/s1, Figure S1: Comparison of three kinds of aptasensors.
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