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Abstract: Periodic excitation is a relatively simple and common active control mode. Owing to the
advantages of direct access to environmental energy and controllability under periodic illumination,
it enjoys broad prospects for application in soft robotics and opto-mechanical energy conversion
systems. More new oscillating systems need to be excavated to meet the various application require-
ments. A spherical liquid crystal elastomer (LCE) balloon model driven by periodic illumination is
proposed and its periodic beating is studied theoretically. Based on the existing dynamic LCE model
and the ideal gas model, the governing equation of motion for the LCE balloon is established. The
numerical calculations show that periodic illumination can cause periodic beating of the LCE balloon,
and the beating period of the LCE balloon depends on the illumination period. For the maximum
steady-state amplitude of the beating, there exists an optimum illumination period and illumination
time rate. The optimal illumination period is proved to be equivalent to the natural period of balloon
oscillation. The effect of system parameters on beating amplitude are also studied. The amplitude is
mainly affected by light intensity, contraction coefficient, amount of gaseous substance, volume of
LCE balloon, mass density, external pressure, and damping coefficient, but not the initial velocity. It
is expected that the beating LCE balloon will be suitable for the design of light-powered machines
including engines, prosthetic blood pumps, aircraft, and swimmers.

Keywords: liquid crystal elastomer; beating; spherical balloon; periodic light; dynamic LCE model

1. Introduction

Liquid Crystal Elastomer (LCE) is a responsive material synthesized from anisotropic
rod-like liquid crystal molecules and long-chain stretch polymers [1–6], which can respond
to external stimuli, such as thermal [7–9], electric [10,11], optical [12–14], magnetic [15]
and chemical [16–19] fields. LCE generally enjoys the significant advantages of quick
response to deformation, deformation recoverability and noiselessness [20], and it has
broad application prospects in many fields, including artificial muscles [21–23], microsys-
tems and MEMS [24–27], actuators and sensors [28–33], energy harvesters [34,35], medical
devices [36,37], and telescopic optical devices [38,39].

The oscillation of plates and shells caused by electric, magnetic, optical, and thermal
excitations is widely used in aerospace, military and civil engineering [40–48]. In recent
years, light-powered oscillation of LCE has gained huge interests. It can convert light
energy into mechanical energy for use in soft robots, micro factories and nanomachines
without conventional motor drives [49–52]. The light-powered oscillation is caused by
the large deformation of LCE due to the orientation sequence change in liquid crystal
molecule [53–57]. For example, ultraviolet light can induce the photoisomerization of
azobenzene molecules, which leads to the large deformation of LCE [58,59]. Finkelmann
et al. synthesized LCE containing azobenzene molecules with a photoinduced contraction
strain close to 20% [60]. Zhao et al. theoretically studied the forced oscillation of a photo-
sensitive liquid crystal elastomer cantilever beam, and realized the control of the oscillation
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characteristics by adjusting the illumination period and rate [61]. Cheng et al. proposed a
light-powered self-oscillating LCE balloon with self-shadowing coating, and investigated
the dynamic process of the self-sustained oscillating LCE balloon based on the dynamic
LCE model and ideal gas model [62].

Although many experiments and theoretical studies have been carried out to inves-
tigate the static deformation and self-sustained oscillation of LCE induced by static light
sources, there are scant research works on the dynamic response of LCE under periodic
illumination. In this paper, we propose a model for a spherical LCE balloon under pe-
riodic illumination, establish the governing equation of motion, and then further study
the beating of the LCE balloon under periodic illumination. We can achieve the dynamic
deformation and its deformation response time of the LCE balloon by controlling the light
period and light time of periodic illumination. Theoretical calculations show that there
exists an optimal lighting period and lighting time rate that maximizes the amplitude of
the beating. We also extensively explore the effects of light intensity, contraction coefficient,
amount of gaseous substance, volume of LCE balloon, mass density, external pressure,
damping coefficient, and initial velocity on the amplitude of the beating. In Section 2, the
theoretical model and the governing equation of motion for LCE balloon are introduced. In
Section 3, the optimal illumination period and illumination time rate are analyzed, and the
effects of each parameter on the beating amplitude of the system are discussed. In Section 4,
the results are collated to draw the conclusions.

2. Theoretical Model and Formulation
2.1. Dynamics of the Spherical LCE Balloon

Figure 1 depicts a spherical light-powered beating LCE balloon under periodic illumi-
nation. The light illumination is on/off with amplitude I0 and zero. We assume that the
azobenzene liquid-crystal molecules are planar anchored and randomly distributed in the
LCE membrane of the balloon. According to Yu et al. [63], ultraviolet light or laser with
wavelength less than 400 nm can induce the trans-to-cis isomerization of LCE. When the
light shines on the surface of the balloon, a driving force is generated that causes the balloon
to contract. When the light is off, the driving force gradually decreases, and the balloon
gradually expands. The periodic light illumination may drive the periodic vibration of
the LCE balloon. The LCE balloon without stress is taken as the reference state, in which
the corresponding radius, thickness and mass density of LCE balloon are denoted by r0,
h0, ρ, respectively. We suppose that the material of the LCE balloon is incompressible
and its volume is always VL. Then, the LCE balloon is filled with gas with amount of
substance nI, inducing the radius of the balloon increased to rI, which is treated as the
initial state. Afterwards, the LCE balloon is placed in the periodic light region, and its
radius will vary with time under the combined action of the periodic light and the inner
pressure of the balloon. LCE balloon will contract under illumination and recover under
non-illumination conditions, and the instantaneous radius of the LCE balloon is described
as r(t). Considering the incompressibility of the material, it is exactly in this sense that the
thickness of the LCE balloon is regarded to be much smaller than the radius, and thus it
can be defined as h = VL/4πr2.

For simplicity, the influence of gravity is ignored. Since the sphere is completely
symmetrical, we analyze the force condition per unit volume. A spherical shell volume
element in the LCE balloon is selected; through force analysis, the element is subjected to
the gas pressure pin inside the balloon, the tensile stress σ in the LCE membrane of the
balloon, the damping force and the total external pressure pext = pload + pam, in which
pload indicates the loading pressure and pam denotes the ambient pressure. Considering
Newton’s laws of dynamics, the thermodynamic versus kinetic reaction control equation
for the LCE element can be depicted as

pinds2 − pextds2 − 4σhds · 1
2

ds
r
− β

dr
dt

ds2 = ρh
d2r
dt2 ds2 (1)
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where 4σhds · 1
2

ds
r is the force applied by the tensile stress in the LCE membrane of the LCE

balloon as shown in Figure 1c, ds is the edge length of the spherical shell volume element
of the LCE balloon, and β is the damping coefficient. With the assumption that gas inside
the balloon is the ideal gas, the equation of state will be pinV = nIRTe, where R denotes
the ideal gas constant, Te represents the thermodynamic temperature of the ideal gas, and
V = 4πr3/3 is the gas volume. As stated above, the expression of the gas pressure inside
the LCE balloon is obtained, which is pin = 3nIRTe/4πr3. Equation (1) can be reduced to

pin − pext − 2σ
h
r
− β

dr
dt

= ρh
d2r
dt2 (2)Micromachines 2022, 12, x  3 of 18 
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Figure 1. Schematic diagram of a spherical light-powered beating LCE balloon. (a) Reference state
in stress-free state. (b) The balloon is inflated by gas with amount of substance nI to the balanced
state, namely the initial state. (c) The instant state of the balloon as a function of the radius r(t) under
periodic lighting conditions.

To focus on the oscillation of LCE balloon under periodic illumination, for simplicity,
we assume that the stiffness of the LCE is constant during the oscillation, and the stress–
strain relation is given as

σ = Eeffε (3)

with Eeff = 2E/3 indicating the effective Young’s modulus in the equiaxial stress state, and
ε = [r − r0(1 + εL)]/r0(1 + εL) denoting the elastic strain, where εL is the effective light-
induced contraction strain. To keep things simple, the effective light-induced contraction
εL is approximated as being proportional to the number fraction of cis-isomers ϕ(t), i.e.,

εL = −C0 ϕ(t) (4)

with C0 being the contraction coefficient. Section 2.2 will provide a further description of
the number fraction ϕ(t).

2.2. Dynamic LCE Model

It is clearly known that after obtaining the number fraction of cis-isomers in the LCE
balloon, the light-induced contraction can be calculated, and then the dynamics of the
LCE balloon can be studied. Here, we provide a brief summary of the well-established
dynamic LCE model. As illustrated in the research work of Yu et al. [63], ultraviolet light
or laser with a wavelength less than 400 nm can induce the trans-to-cis isomerization of
LCE. With the absorption of light energy, the rod-like trans-isomers isomerize to the bent
cis-isomers; meanwhile, due to the thermal effect, some of the cis isomers convert back to
trans ones. Hence, the number fraction of cis-isomers is dependent on the light-driven trans-
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to-cis isomerization, the thermal excitation from trans to cis, and the thermal cis-to-trans
relaxation. In general, the thermal excitation from trans to cis is often negligible compared
to the light-driven trans-to-cis isomerization. The number fraction of cis-isomers bent in LCE
can be described by the following rate equation [63]:

∂ϕ

∂t
= η0 I0(1 − ϕ)− ϕ

τ
(5)

with τ representing the thermal cis-to-trans relaxation time, I0 indicating the light intensity,
and η0 denoting the light absorption constant. By solving Equation (5), the number fraction
of cis-isomers can be given as

ϕ(t) =
η0τ I0

η0τ I0 + 1
+ (ϕ0 −

η0τ I0

η0τ I0 + 1
) exp

[
− t

τ
(η0τ I0 + 1)

]
(6)

where ϕ0 is the number fraction of cis-isomers at the initial moment t = 0 of a process. If
the initial number fraction of the cis-isomers is zero in the illuminated state, that is, ϕ0 = 0,
Equation (6) can be simplified to

ϕ(t) =
η0τ I0

η0τ I0 + 1

{
1 − exp

[
− t

τ
(1 + η0τ I0)

]}
(7)

In addition, for the non-illuminated state, namely I0 = 0, Equation (6) can be
modified into

ϕ(t) = ϕ0 exp
(
− t

τ

)
(8)

where the undetermined ϕ0 can be set to the maximum value of ϕ(t) in Equation (7), which
is ϕ0 = η0τ I0/(η0τ I0 + 1). Therefore, the number fraction of cis-isomers in Equation (8) can
be rewritten as

ϕ(t) =
η0τ I0

η0τ I0 + 1
exp

(
− t

τ

)
(9)

It is noted that Equations (7) and (9) provide the evolution laws of the number fraction
in illuminated and non-illuminated states, and the current cis number fraction at the
conversion moment between the two states does not change, as described in Section 2.4.

2.3. Nondimensionalization

To nondimensionalize the above governing equation, we take the following dimen-
sionless quantities into account: t = t/τ, I = η0τ I0, r = r/r0, rI = rI/r0, pL = pL/Eeff,
pext = pext/Eeff, nI = 3nIRTe/4πEeffr3

0, VL = VL/4πr3
0, β = βr0/Eeffτ, ρ = ρr2

0/Eeffτ
2 and

ϕ = ϕ(η0τ I0 + 1)/η0τ I0.
In this paper, the illumination time and darkness time in one cycle are Ton and Toff,

respectively. The light illumination period is defined as TL = Ton + Toff, and Ton/TL
denotes the illumination time rate. It is noted that Ton and Toff are independent of the
thermal cis-to-trans relaxation time. Their corresponding dimensionless parameters are
Ton = Ton/τ, Toff = Toff/τ, and TL = TL/τ. A is the amplitude of the oscillation of the
balloon, and

.
r is the dimensionless velocity.

In the illuminated state, the dimensionless expression of Equation (7) is given as

ϕ = 1 − exp
[
−t(I + 1)

]
(10)

Additionally, for the non-illuminated state, the nondimensionalized Equation (9) can
be expressed as

ϕ = exp(−t) (11)
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By substituting Equations (3) and (4) into Equation (2), the dimensionless governing
equation of the LCE balloon can be demonstrated as

d2r

dt2 = − βr2

ρVL

dr
dt

+
nI

ρVLr
− 2

r − 1 + C0 ϕ

rρ(1 − C0 ϕ)
−

pextr
2

ρVL
(12)

where ϕ is determined by the evolution laws of Equations (10) and (11), and its evolution is
described in detail in Section 2.4.

2.4. Solution Method

Equation (12) presents ordinary differential equations with variable coefficients for
which there is no analytic solution. The ordinary differential equations are numerically
solved in this paper using the classical fourth-order Runge–Kutta method using MATLAB
software. The second-order ordinary differential equation with variable coefficients is
transformed into two first-order ordinary differential equations with variable coefficients.
Thus, the control equations can be rewritten as

dr(t)
dt =

.
r,

d2r
dt2 = f (t, r,

.
r)

.
r(t = 0) =

.
rI,

r(t = 0) = rI.

, (13)

Consequently, the final steady-state responses of the balloon can be iteratively obtained.
As Figure 2 shows, in an illumination cycle, when the LCE balloon switches between

light-on and light-off states, the evolution law is correspondingly converted between
Equations (10) and (11). When the LCE balloon is in the illumination state, the number of
cis-isomers increases with the passage of time. When the balloon is in the non-illumination
state, the number of cis-isomers decreases with the passage of time. It should be noted that
at the moment of conversion between light-on and light-off states, the transient cis number
fraction ϕ(t) keeps unchanged. For example, during the first illumination time Ton, ϕ

(
t
)

rises from coordinate origin to B along the “light on” curve. Next, during the first darkness
time Toff, ϕ

(
t
)

falls from C to D along the “light off” curve. In the second illumination time
Ton, ϕ

(
t
)

transforms from point D to point A.
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3. Results and Discussion

In this section, we present a brief discussion on the beating of LCE balloons driven by
periodic illumination. Firstly, the optimal illumination period and illumination time rate are
numerically determined to maximize the vibration amplitude of the system. Then, under
the optimum illumination conditions, the effects of light intensity, contraction coefficient,
amount of gaseous substance, volume of LCE balloon, mass density, external pressure
and damping coefficient on the vibration amplitude are further investigated. The beating
amplitude of the LCE balloon can be adjusted by regulating the periodic lighting, material
properties and geometric parameters.

3.1. Dimensionless Parameters

To study the beating of the LCE balloon in detail, we need to estimate the typical
values of the dimensionless parameters. From the accessible experiments [3,61,64,65], the
material properties and geometric parameters of the system are shown in Table 1, and the
dimensionless parameters are estimated as shown in Table 2. Thus, we can calculate the
dimensionless light intensity, damping coefficient, amount of gaseous substances, etc. In
the following, we explore the beating of balloons with different material properties under
different periodic light patterns.

Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

τ Thermal relaxation time 0.1 s
ρ Mass density 1000~1200 kg/m3

I0 Light intensity 15~35 kW/m2

β Damping coefficient 8~10 s·MPa/m
η0 Light-absorption constant 0.00022 m2/s·W
E Young’s modulus 1 MPa
rI Initial radius 0.001164 m
C0 Contraction coefficient 0.3 /

Table 2. Dimensionless parameters.

I nI VL ρ pext β
.
rI

0.3~0.5 0.4~0.5 0.045~0.055 0.15~0.18 0.17~0.19 0.12~0.15 0~0.4

3.2. Optimal Illumination Period

Figure 3 shows the time course diagrams of the LCE balloon for different illumination
periods, with the other parameters at Ton/TL = 0.7, C0 = 0.3, I = 0.5, nI = 0.45(rI = 1.164),
VL = 0.05, ρ = 0.16, pext = 0.18, β = 0.14, and

.
rI = 0. It can be observed from Figure 3

that after the initial non-periodic oscillation, the LCE balloon gradually stabilizes in the
vibration. The beatings of the balloon are initially composed of transient vibrations related
to free oscillations and steady-state vibrations relating to forced oscillations; then, the free
oscillations disappear due to damping, and finally the balloon exhibits only the steady-state
response of forced oscillations. It can be seen that the steady-state beating period is equal to
the illumination period, and the illumination period has a great influence on the amplitude
of the beating. With the different illumination periods, the balloon undergoes two different
oscillation states, that is the single peak steady-state oscillation shown in Figure 3a,b,
and the multimodal steady-state oscillation shown in Figure 3c,d. Multi-peak oscillation
is relatively complex. Here, we only consider the case with a single-peak steady-state
oscillation to keep things simple.
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Figure 3. Time course diagrams of the LCE balloon forced to beat for period illumination (a) TL = 1,
(b) TL = 3, (c) TL = 5, and (d) TL = 7. The parameters are Ton/TL = 0.7, C0 = 0.3, I = 0.5,
nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16, pext = 0.18, β = 0.14, and

.
rI = 0. The illumination period

affects the beating amplitude of the balloon.

Figure 4 presents the variation of the beating amplitude of the balloon with the
illumination period at different light time rates. The other parameters in the calculation are
set to C0 = 0.3, I = 0.5, nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16, pext = 0.18, β = 0.14,
and

.
rI = 0. As can be clearly seen from the figure, the amplitude first increases to the

maximum value, and then decreases with increasing illumination period. The LCE balloon
beating amplitude reaches its maximum when the illumination period is around 2.7. It
is important to note that the optimal illumination period does not vary with the light
time rate.
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Figure 4. The influence of illumination period on the amplitude of the beating balloon, for different
illumination time rates. The parameters are C0 = 0.3, I = 0.5, nI = 0.45(rI = 1.164), VL = 0.05,
ρ = 0.16, pext = 0.18, β = 0.14, and

.
rI = 0. The amplitude first increases and then decreases with

increasing illumination period.
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3.3. Optimal Illumination Time Rate

The variation of the beating amplitude of the balloon with the optimal illumination
time rate under the optimal illumination period is plotted in Figure 5. The other parameters
are TL = 2.7, C0 = 0.3, I = 0.5, nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16, pext = 0.18,
β = 0.14, and

.
rI = 0. With increasing illumination time rate, the beating amplitude

first increases from zero to its maximum value, and then decreases back to zero. The
maximum amplitude corresponds to the illumination time rate Ton/TL = 0.5. The beating
amplitude is symmetrical around the time rate of 0.5, and the beating amplitude on the
axis of symmetry is the maximum. It is easy to draw the conclusion that by adjusting
the illumination time rate, we can control the beating amplitude in soft robot driving and
energy acquisition systems.
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.
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3.4. Effect of Light Intensity

Figure 6 shows the effect of light intensity I on the beating of the LCE balloon under
the optimal illumination period and optimal time rate, with the other parameters set to
Ton/TL = 0.5, TL = 2.7, C0 = 0.3, nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16, pext = 0.18,
β = 0.14, and

.
rI = 0. The time history curves and limit cycles of beating of the balloon

under three different light intensities are plotted in Figure 6a,b respectively. As can be seen
from the figure, with increasing light intensity, the beating amplitude increases, but the
beating period remains unchanged, always being equivalent to the illumination period.
The results indicate that the light intensity affects the amplitude of steady-state beating.
This is because the light-induced contraction strain of the LCE balloon becomes larger with
increasing light intensity, and therefore the amplitude increases.
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3.5. Effect of Contraction Coefficient

Figure 7 reveals the influence of contraction coefficient C0 on the beating of the LCE
balloon under the optimal illumination period and optimal time rate, with the other
parameters set to Ton/TL = 0.5, TL = 2.7, I = 0.5, nI = 0.45(rI = 1.164), VL = 0.05,
ρ = 0.16, pext = 0.18, β = 0.14, and

.
rI = 0. Figure 7a plots the time history of the balloon

beating under three different contraction coefficients. Figure 7b shows the limit cycles
of the LCE balloon under three different contraction coefficients. It can be observed that
with increasing contraction coefficient, the beating amplitude shows an increasing trend,
but the beating period remains at the same value as the illumination period. The results
prove that the contraction coefficient has an influence on the amplitude of steady-state
oscillation. This is because with larger values of contraction coefficient, the magnitude of
light-induced contraction strain is larger, and thus the amplitude increases. For different
contraction coefficients, the LCE balloon can complete beating under the switching between
illumination state and non-illumination state.

3.6. Effect of Amount of Substance

Figure 8 depicts the effect of amount of gaseous substance nI on beating under
the optimal illumination period and optimal time rate, with the other parameters set
to Ton/TL = 0.5, TL = 2.7, I = 0.5, C0 = 0.3, VL = 0.05, ρ = 0.16, pext = 0.18, β = 0.14,
and

.
rI = 0. Figure 8a plots the evolution of the balloon subjected to beatings for different

amount of gaseous substance. Figure 8b plots the limit cycles of the LCE balloon for three
different amounts of gaseous substance. As can be seen from the graph, the amplitude of
the beating increases with increasing amount of gaseous substance; however, the period of
beating remains the same as the illumination period. It is indicated that the amplitude of
the steady-state oscillations is affected by the amount of gaseous substance. For different
amounts of gaseous substance, the LCE balloon can accomplish beating through switching
between illuminated and non-illuminated states.
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3.7. Effect of LCE Volume

The influence of volume VL on the beating of the balloon at the optimal illumination
period and the optimal time rate, is presented in Figure 9, with the other parameters set
to Ton/TL = 0.5, TL = 2.7, I = 0.5, C0 = 0.3, nI = 0.45(rI = 1.164), ρ = 0.16, pext = 0.18,
β = 0.14, and

.
rI = 0. Figure 9a shows the time history of the beating of balloons under

different volumes. Figure 9b shows the limit cycles of the LCE balloon under different
volumes. As shown in the figure, the LCE balloon presents a beating mode. With increasing
balloon volume, the beating amplitude increases; in addition, the beating period remains
equal to the illumination period. It can be concluded that the balloon volume has an
effect on the amplitude of steady-state oscillation; moreover, for different volumes, the
LCE balloon can complete beating under switching between illumination state and non-
illumination state.
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Figure 9. The effect of LCE balloon volume VL on the beating of the LCE balloon. (a) Time histories;
(b) Limit cycles. The parameters are Ton/TL = 0.5, TL = 2.7, I = 0.5, C0 = 0.3, nI = 0.45(rI = 1.164),
ρ = 0.16, pext = 0.18, β = 0.14, and

.
rI = 0. The beating amplitude increases with increasing balloon

volume.

3.8. Effect of Mass Density

With the other parameters at Ton/TL = 0.5, TL = 2.7, I = 0.5, C0 = 0.3, nI =

0.45(rI = 1.164), pext = 0.18, VL = 0.05, β = 0.14, and
.
rI = 0, Figure 10 presents the effect

of mass density ρ on beating at the optimal illumination period and optimal time rate. The
amplitude evolution and limit cycles of the beatings of the balloon under different mass
densities are presented in Figure 10a,b, respectively. It can be seen from the figure that
the LCE balloon is in the beating mode. With increasing balloon mass density, the beating
amplitude increases, but the beating period always remains equivalent to the illumination
period. The mass density is proved to be capable of affecting the amplitude of steady-state
oscillation. For different mass densities, the LCE balloon can realize beating under the
transition between illumination and non-illumination.
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3.9. Effect of External Pressure

As shown in Figure 11, the influence of the external pressure p0 on beating is illustrated
under the optimal illumination period and optimal time rate, with the other parameters
set to Ton/TL = 0.5, TL = 2.7, I = 0.5, C0 = 0.3, nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16,
β = 0.14, and

.
rI = 0. Figure 11a shows the amplitude evolution of beating of LCE balloon

under different external pressures. Figure 11b shows the limit cycles of the LCE balloon
under three different external pressures. It can be clearly seen from the figure that the
LCE balloon experiences a beating motion. With increasing external pressure, the beating
amplitude undergoes a slight decrease; however, the beating period does not change, and
it remains equal to the illumination period. The results reveal that the external pressure
will have an influence on the amplitude of steady-state oscillation. For different values
of external pressure, the beating of the LCE balloon can be completed under switching
between the illumination state and non-illumination state.

3.10. Effect of Damping Coefficient

Figure 12 provides the effect of damping coefficient β on beating under the optimal
illumination period and optimal time rate, with the other parameters set to Ton/TL = 0.5,
TL = 2.7, I = 0.5, C0 = 0.3, nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16, pext = 0.18, and
.
rI = 0. Figure 12a,b show the time history diagrams and limit cycles of beating of balloon
under different damping coefficients, respectively. It can be clearly observed from the
figure that the LCE balloon is in the beating mode. With increasing damping coefficient,
the beating amplitude decreases; additionally, the beating period remains the same, always
being equivalent to the illumination period. Obviously, the damping coefficient has an
effect on the amplitude of steady-state oscillation. This is due to the energy competition
between energy input from illumination and damping-induced energy dissipation. With
increasing damping coefficient, the energy dissipation induced by damping increases,
resulting in a decrease in beating amplitude.
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Figure 12. The effect of damping coefficient β on the beating of LCE balloon. (a) Time histories;
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3.11. Effect of Initial Velocity

Figure 13 indicates the effect of initial velocity
.
rI on the beating of the balloon under

the optimal illumination period and the optimal time rate, with the other parameters
set to Ton/TL = 0.5, TL = 2.7, I = 0.5, C0 = 0.3, nI = 0.45(rI = 1.164), VL = 0.05,
ρ = 0.16, pext = 0.18, and β = 0.14. Figure 13a shows the evolution of the beating of the
balloon at different initial velocities under the optimal illumination period and optimal
time rate. Figure 13b shows the limit cycles of the LCE balloon at three different initial
velocities. It can be clearly seen that the LCE balloon is in the beating mode, and the beating
amplitude does not change with increasing initial velocity. Meanwhile, the beating period
remains equal to the illumination period. The results show that the initial velocity has no
influence on the amplitude of beating, which is consistent with the general characteristics
of forced oscillation.
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3.12. An Application Example of the Periodic Oscillation of the Balloon

The oscillating system proposed in this paper has the potential to be developed as a
light-fueled micro-pump. The LCE balloon could be placed in a sealed transparent glass
sphere with a check valve at each end. When the LCE balloon expands, the water in
the glass sphere is squeezed out from the outlet check valve, and when the LCE balloon
contracts, the water flows into the glass sphere from the inlet check valve. In practical
applications, the energy/power density and energy conversion efficiency highly depend
on the specific energy conversion processes. For the simple model developed in the current
study, during the periodic oscillation of the LCE balloon, the light energy absorbed by the
system is used to compensate for the damping energy and to do work on connected devices.
For this light-driven micro-pump, the work done by the system on the connected devices
can be considered to be the effective work of the pump.

For the typical values of I = 2.5 W/cm2, ρ = 103 kg/m3, rI = 1.164 mm, τ = 0.1 s,
β = 8.02 s · MPa/m, E = 1 MPa, η0 = 0.00022 m2/s · w, C0 = 0.3, and the mass density of
the fiber ρf = 103 kg/m3, the dimensionless parameters are calculated as Ton/TL = 0.5,
I = 0.55, C0 = 0.3, nI = 0.45(rI = 1.164), VL = 0.05, ρ = 0.16, pext = 0.18, β = 0.14 and
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.
rI = 0. In this case, the maximum and minimum values of the balloon radius during
beating are numerically calculated to be r2 = 1.164 and r1 = 1.145, respectively, and
thus the effective work on the external connected equipment during the expansion of
the balloon in a period is calculated as W = Eeff pext

4
3 πr3

0
(
r3

2 − r3
1
)
= 3.82 × 10−5J. In

addition, the dimensionless period can be numerically calculated as T = 2.69. By inserting
Ton = Tonτ = 0.1345 s, the average power of the external work done by the pump is
P = W/Ton = 2.84 × 10−4 W.

4. Conclusions

The light-driven oscillation of LCE can convert light energy into mechanical energy,
which is of great significance for soft robots, microfactories, and nanomachines. In this
paper, the active control of spherical LCE balloon beating driven by periodic illumination
is discussed theoretically. Based on dynamic LCE model and Newton’s laws of dynamics,
the governing equations are derived, and the numerical solution method of the dynamic
equations are given. The numerical results validate that LCE balloon can beat periodically
under periodic illumination, and the beating period is related to the period of illumination.
For the maximum steady-state amplitude of periodic beating, an optimal periodic illumina-
tion condition is exhibited. With increasing illumination time rate, the beating amplitude
first increases, reaches its maximum, and then decreases. The amplitude of beating can
be accurately controlled by adjusting the light intensity, illumination period, illumination
time rate, etc. The beating LCE balloon in this study has promising application prospects
in the fields of opto-mechanical energy conversion systems and light-fueled machines and
equipment, such as cardiac pacemakers, advanced robotics, and so on.
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