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Abstract: In this paper, a 4H–SiC IGBT with a multifunctional P-floating layer (MP-IGBT) is proposed
and investigated by Silvaco TCAD simulations. Compared with the conventional 4H–SiC field stop
IGBT (FS-IGBT), the MP-IGBT structure features a P-floating layer structure under the N-buffer layer.
The P-floating layer increases the distributed path resistance below the buffer layer to eliminate the
snapback phenomenon. In addition, the P-floating layer acts as an amplifying stage for the hole
currents’ injection. The snapback-free structure features a half-cell pitch of 10 µm. For the same
forward voltage drop, the turn-off loss of the MP-IGBT structure is reduced by 42%.

Keywords: 4H–SiC; P-floating; snapback; turn-off loss

1. Introduction

The 4H–SiC insulated gate bipolar transistor (IGBT) has made significant progress in
theoretical research for its low driving power and simple driving circuit. Silicon material
semiconductor technologies have become more and more difficult for high voltage, high
power, and high temperature applications [1]. For 10~20 kV class voltage, the 4H–SiC
IGBT shows low conductive resistance and high current density compared with the 4H–SiC
trench metal oxide semiconductor field-effect transistor (UMOSFET) due to the high carrier
current densities which result from the holes injected from the p+ collector into the drift
region during the forward conduction period. As a result, it has become a promising
power semiconductor device. Many studies have attempted to produce a method of
simulation/experiment design and fabricate a 4H–SiC IGBT device [2–5]; some researchers
have focused on the ultra-low specific on-resistance [1,6–8], while others have aimed to
solve the inherent tail current [9–11].

For high frequency, low turn-off loss, Si IGBT anode engineering is a commonly
solution for excess carrier extraction, such as dual gates structures [12], shorted anode
structures [13], striped anode structures [14], and any other structures summarized in [15].
For 4H–SiC IGBTs, the backside oxide etch has not been realized by experiment, and
so the dual gates structure is not an available solution. The striped anode structure is
an effect solution to reduce the turn-off loss. However, the shorted anode IGBT has not
been reported.

Considering that the traditional shorted anode Si IGBT needs multiple MOS cells
in parallel, the 4H–SiC IGBT with single cells and no snapback phenomenon during the
turn-on period needs to be added to the research on device structure designs.

In this paper, a shorted anode type 4H–SiC IGBT realizing snapback-free phenomenon
and low turn-off loss with multifunctional P-floating layer is proposed. During the period
of device turnoff, the MP-IGBT uses the N+ collector region to quickly extract electrons
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from the N- drift region, which significantly reduces the device’s energy loss. In addition,
the MP-IGBT can eliminate the snapback effect with only a 10 µm half-cell pitch and
shows more uniform current distribution during the forward conduction period. It is worth
mentioning that the P-floating layer increases hole currents at the bipolar mode and pinches
off electron currents with the P collector region at the unipolar mode during the forward
conduction period, which improves the device’s forward conduction capability. Because
the simulation and manufacture of a conventional shorted anode 4H–SiC IGBT has not been
reported, the proposed structure in this paper only compared to the conventional FS-IGBT.

2. Devices Structure and Mechanism

Figure 1a shows a cross section of the MP-IGBT. This structure features a P-floating
layer structure under the N-buffer layer and shorted anode structure. The P-floating layer
is separated from the collector region by a part of the N-drift region. In addition, between
each P-floating and N-buffer layer, there exists a gap in the conduction electron current
during the turn-off period. Figure 1b shows the cross section of the FS-IGBT.
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Figure 1. (a) Illustrative cross-sectional diagram of the MP-IGBT, and (b) of the conventional FS-IGBT.

Figure 2 shows the forward I–V curves of the MP-IGBT and the conventional FS-IGBT
at the temperature of 300 K. It is obviously that the MP-IGBT shows no snapback phe-
nomenon, but its forward conduction voltage drop at 100 A/cm2 is larger than that of the
conventional FS-IGBT with a 10 µm half collector length. This is due to the electron current
of the MP-IGBT partially flowing into the N+ collector region during the forward conduc-
tion mode, so the conductivity modulation effect is weaker than that of the conventional
FS-IGBT [16,17].

Figure 3 illustrates the electron and hole currents flow rules during the turn-on period.
Figure 3a,b shows the electron currents flowing into the N-collector around the P-floating
layer in the MP-IGBT in the unipolar mode, demonstrating that the P-floating layer enlarges
the electrons’ flow path effectively.
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For strip cells of Figure 1a, a simple model for the snapback voltage is based on [18]

VSB =

[
1 +

Rdrift + Rchannel
Rbuffer·(L − LG)

]
·Vcritical (1)

where VSB is the snapback voltage at which the device switches from the unipolar mode
to the bipolar mode. Rdrift and Rchannel are the drift region resistance and the channel
resistance, respectively. Vcritical is the critical voltage for the P+ collector/N-buffer junction
initiating inject holes, Rbuffer is the N-buffer resistance of the conventional shorted anode
IGBT structure.

For the MP-IGBT, the P-floating layer prevents electrons from flowing toward the
N-collector, enlarging resistance to suppress VSB by extending the length of the trace
(L − LG).

Figure 3c,d shows the hole currents flowing through the P-floating layer in the bipolar
mode. Different from the unipolar mode, a part of current flow lines is from the P-collector
during the bipolar mode.

3. Simulation and Discussion

Silvaco TCAD is used as a numerical simulation analysis tool to demonstrate the
characteristics of the MP-IGBT. During simulation, the structure parameters of the two
devices with an off-state blocking voltage in 15 kV are listed in Table 1. The parameters
used in this paper are referred to in [19–21].

Table 1. Device parameters specification.

Parameters MP-IGBT FS-IGBT

MOS cell pitch (µm), LM 10 10
Gate oxide thickness (nm), Tox 50 50

Gate trench depth (µm), DG 5 5
Drift region doping (cm−3), Nd 4.5 × 1014 4.5 × 1014

N-buffer doping (cm−3), NNb 1 × 1017 1 × 1017

N-buffer thickness (µm), TNb 4 4
P-collector doping (cm−3), NPb 1 × 1019 1 × 1019

P-collector thickness (µm), TPb 4 4
N-collector length (µm), LN 1 -
Half collector length (µm), L 10 10

N-drift thickness (µm), TS 155 155
CSL doping (cm−3), NCSL 1 × 1015 1 × 1015

P-base doping (cm−3), Nbase 4 × 1017 4 × 1017

P-floating layer thickness (µm), Tpf 1.5 -
Length of P-floating layer (µm), Lpf 1~9 -

The gate oxide thickness (Tox) is 50 nm and the gate trench depth (DG) is 5 µm. During
the simulation, the MOS cell pitch (LM) is set to 10 µm. For the trench gated 4H–SiC
IGBT, LM can shorten to 4 µm to promote MOS electron current density, or use injection
enhancements with the P-floating region. The gap between the P-floating layer and the
collector region (TN) is 1.5 µm, and the thickness (TP) and length of the P-floating layer (LP)
are 1.5 and 9 µm, respectively, eliminating the snapback effect of the proposed structure. In
order to improve the conductivity modulation effect, these P collector regions’ thicknesses
are 4 µm.

Figure 4 shows the electric field distribution in the MP-IGBT at avalanche breakdown,
where the collector-emitter voltage (VCE) is biased at 15 kV, and residual electrodes are
connected to the ground. Due to the similar physical parameters of these two devices in the
MOS structure and n-drift region, the blocking abilities of the MP-IGBT and the FS-IGBT
are almost identical.
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Similar to the conventional Si IGBT, the 4H–SiC IGBT also features a long tail current.
Considering the high bus voltage, the 4H–SiC IGBT dissipated more energy than the Si
IGBT. Therefore, it is an important issue to be solved. Figure 5 shows the inductive load
circuit modeled by a constant current source (Iout), a dc clamping voltage (VCC), and an
ideal diode (D). The current source and clamping voltage are set to 1 × 10−5 A and 9 kV
(60% of the breakdown voltage), respectively. For simplicity, the device’s active area is
1 × 10−7 cm2, making the current density flowing through the device 100 A/cm2. The gate
resistor RG is 10 Ω, and the gate voltage changes from 20 to −5 V. During this simulation,
the diode is an ideal element.
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Figure 5. Inductive load circuit used in the switching simulations.

Figure 6 shows the turn-off curves of the MP-IGBT and the conventional FS-IGBT of
100 A/cm2 at 300 K temperature. The half collector length used in the transient simulation
of the two structures is 10 µm. When the forward conduction voltage is 6.175 V, the turn-
off current transient time of the MP-IGBT and the conventional FS-IGBT are 99 ns and
154 ns, respectively. It can be seen that the MP-TIGBT shows shorter turn-off time than the
conventional FS-IGBT.
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Figure 7 shows the tradeoff curves between EOFF and VCE for the MP-IGBT and the
conventional FS-IGBT at 100 A/cm2 current density at 300 K temperature. In essence, the
MP-IGBT and the conventional FS-IGBT use the same cathode structure. However, the
MP-IGBT shows a better tradeoff relationship. At the position of VCE = 6.17 V, the EOFF
of the MP-IGBT and the conventional FS-IGBT are 31.12 and 53.82 mJ/cm2, respectively.
The MP-IGBT shows an EOFF 42% lower than the conventional FS-IGBT structure. This
is owing to the N+ collector region used in the bottom of the MP-IGBT. During device
turnoff, electrons and holes are extracted away from the device under the high electric field,
electrons flow toward to the bottom of the device, and holes run in the opposite direction to
electrons. Compared with the P collector region, the N collector region can extract electrons
more easily. As a result, the MP-IGBT shows lower energy loss.

Micromachines 2022, 3, 27 FOR PEER REVIEW 6 of 10 
 

 

 

Figure 6. Turn-off voltage and current waveforms of the MP-IGBT and FS-IGBT, respectively. 

Figure 7 shows the tradeoff curves between EOFF and VCE for the MP-IGBT and the 

conventional FS-IGBT at 100 A/cm2 current density at 300 K temperature. In essence, the 

MP-IGBT and the conventional FS-IGBT use the same cathode structure. However, the 

MP-IGBT shows a better tradeoff relationship. At the position of VCE = 6.17 V, the EOFF of 

the MP-IGBT and the conventional FS-IGBT are 31.12 and 53.82 mJ/cm2, respectively. 

The MP-IGBT shows an EOFF 42% lower than the conventional FS-IGBT structure. This is 

owing to the N+ collector region used in the bottom of the MP-IGBT. During device 

turnoff, electrons and holes are extracted away from the device under the high electric 

field, electrons flow toward to the bottom of the device, and holes run in the opposite 

direction to electrons. Compared with the P collector region, the N collector region can 

extract electrons more easily. As a result, the MP-IGBT shows lower energy loss. 

 

Figure 7. EOFF–VCE relationships of the MP-IGBT and the FS-IGBT. Figure 7. EOFF–VCE relationships of the MP-IGBT and the FS-IGBT.



Micromachines 2022, 13, 734 7 of 10

The P-floating layer under the N-buffer layer is used for suppressing the snapback
effect of the MP-IGBT during the turn-on period. Figure 8 shows the relationship between
the snapback effect and the length of the P-floating layer. As the length of the P-floating
layer decreases, the VCE increases. When the length of the P-floating layer is shorter than
4 µm, the snapback effect appears. Moreover, when the length of the P-floating layer is
greater than 4, the snapback effect does not appear. This is due to the electron conduction
path being pinched-off by the P-floating layer and the p collector region, so the rest of the
electron path is enlarged.
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Figure 9a shows the influence of the doping concentration of the P-floating layer of the
MP-IGBT during the on-state period. Because the P-floating layer does not connect to the
collector electrode, this layer does not inject holes into devices. As the doping concentration
increases, the VCE decreases. This is mainly due to the P-floating layer acting as the hole
currents’ amplification stage. Figure 9b explain the phenomenon in Figure 9a by analysis
the hole current density along the P-floating layer (in Figure 3b along y = 162 µm). Figure 9b
shows the higher doping concentration of P-floating layer, the higher hole current density
in device. The location of x = 9 (in Figure 3b) have the highest hole current density, this is
due to the low doping concentration of N-drift region have low barrier to hole. However,
the position of x = 9~10 µm shows low hole current density. This can be explained by
Figure 9c. Figure 9c shows the recombination rate near the collector side. The electron and
hole currents are recombined at the position in the circle marked in Figure 9c, so there are
fewer hole currents injected into the devices.
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The process flow of the MP-IGBT device is shown in Figure 10. The process for
fabricating a high voltage n channel IGBTs on a free-standing 4H–SiC epilayer is used for
building this device [11,22,23], and the process flow of the flip-type is also used [11,24,25].
Figure 10a shows the carbon face wafer of the N-substrate, and then the low-basal-plane-
defect (LBPD) buffer, N-drift, N-buffer, P-floating are grown on the N-substrate that were
illustrated in Figure 10b. As the N-drift, P+, and N+ collector regions are formed by epitaxy
and ion implantation in Figure 10c, the wafer is then flipped and the N-substrate and the
LBPD-buffer removed by chemical mechanical polishing to form Figure 10d. The MOS
structure and electrodes of the fabrication processes are finished on the top surface of the
N-drift layer as shown in Figure 10e.
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Figure 10. (a) The free-standing 4H–SiC N-substrate. (b) Forming LBPD-buffer, N-drift, N-buffer,
P-floating. (c) The N-drift, P+, and N+ collector regions are formed by epitaxy and ion implantation.
(d) Flip the wafer and remove the N-substrate and the LBPD-buffer by chemical mechanical polishing.
(e) The finished MOS structure and electrodes.

4. Conclusions

This paper proposed a 15 kV 4H–SiC IGBT with the P-floating layer under the N-buffer
layer. The P-floating layer acts as the hole currents’ amplification stage and suppresses the
snapback effect during the turn-on period. The results of a comparative study have shown
that the MP-IGBT can reduce the turn-off energy loss (EOFF) and suppress the snapback
effect. The MP-IGBT features lower leakage current than the FS-IGBT, and the MP-IGBT
shows an EOFF 42% lower than the conventional FS-IGBT structure.
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