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Abstract: In this study, we propose a duckbill valve microfluidic pump that relies on an electromag-
netic actuation mechanism. An FEA/CFD-based approach was adopted for the design of the device
due to the coupled electromagnetic–solid–fluid interactions in the device. The simulation methodol-
ogy was confirmed with the previously published data in the literature to ensure the accuracy of the
simulations. The proposed optimum duckbill valve micropump can pump 2.45 µL of fluid during the
first 1 s, including both contraction and expansion phases, almost 16.67% more than the basic model.
In addition, the model can pump a maximum volume of 0.26 µL of fluid at the end of the contraction
phase (at 0.5 s) when the magnetic flux density is at maximum (0.027 T). The use of a duckbill valve in
the model also reduces the backflow by almost 7.5 times more than the model without any valve. The
proposed device could potentially be used in a broad range of applications, such as an insulin dosing
system for Type 1 diabetic patients, artificial organs to transport blood, organ-on-chip applications,
and so on.

Keywords: micropump; magnetorheological; MRE

1. Introduction

There is an increasing demand in microfluidic flow control devices in a wide range
of applications, including point-of-care [1] and lab-on-a-chip industries [2]. Although
they are compact in size, microfluidic chips are equipped with bulky supply systems that
are connected with microbore tubing to provide air pressure or reagent [3–7]. Although
such systems provide precision pumping capabilities, the increased complexity hinders
their applications in specific industries such as the welfare industry, in which a portable,
wearable, and patchable insulin delivery system could be utilized to enhance the well-being
of type 1 diabetic patients.

There have been various micropump designs studied in the literature. The piezoelectric-
, magnetic-, electrochemical-, acoustic-, and electrothermal-based micropump have their
positive and negative sides over one another in terms of scalability, biocompatibility,
complexity, and accuracy, cost, and reliability [8]. For instance, lead zirconate titanate
(PZT)-based micropumps offer a precise volumetric flow rate of aqueous fluids at fast re-
sponse times and high actuation forces. However, they are complex to manufacture, require
special care when installing their intricate components, such as the PZT discs, and demand
high actuation voltages to operate. However, the electrochemical-based micropumps are
relatively simpler to fabricate, offer continuous and smooth fluid delivery, can provide
relatively larger displacements at lower power consumption, and can have battery-less
versions when equipped with triboelectric nanogenerators. As for their drawbacks, they
generate bubbles, which can subsequently dissolve into the working fluid, causing instabil-
ities during pumping. Apart from these, various magnetic-based micropumps have been
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studied in the literature [9–12]. Some operate on the principle that an external magnetic
field displaces a membrane mechanically to push the fluid forward. In contrast, others,
such as magnetohydrodynamic (MHD) micropumps, rely on the Lorentz force under the
combined effect of the electric and orthogonal magnetic fields to create the pumping effect.

Magnetic-based designs that rely on mechanical displacement of a membrane can be
categorized into two groups: (i) designs wherein the membranes are pushed by a set of
actuator heads to create a pressure differential, and (ii) designs that deform a ferromagnetic
composite material, usually consisting of a polydimethylsiloxane (PDMS)-based matrix and
micro- or nano-sized ferromagnetic iron particles embedded in them, under an externally
applied magnetic field [8]. Designs from the first category are complex and have excess
moving components, which could become a concern for installation and maintenance. The
second category of pumps is more design-dependent. Although some designs feature a
ferromagnetic membrane that deflects into a disk-shaped reservoir to generate the pumping
effect, others contract a circular or rectangular flow channel for a pulsated flow. Using a
magnetic field as a trigger has several advantages over other modes of operation. Magnetic
actuators can generate strong force and displacement with lower power consumption, and
they are less prone to electrical heat loss and high-voltage failure. Moreover, the actuation
parts and magnetic field-generating parts can be physically separated, so these systems
do not require complex wiring. Magnetorheological elastomers (MREs) are composite
materials consisting of a rubber-like base material and micron-sized iron particles doped
in it [13]. They can be designed as isotropic and non-isotropic, meaning that the magnetic
iron particles inside them can be aligned in special configurations so the material responds
to the applied loads differently. As such, these materials have found very wide application
areas, ranging from vibration mounts in automobile engines to bearings in large building
structures and bridges as well as sensor applications for structural health monitoring
purposes, among other areas. Their application in the micropump field has not been
overlooked. Various MRE micropump designs have been proposed in the literature [14–23].
Although some featured one-way valves for unidirectional pumping effect [22], others
used a series of electromagnets to transport the fluid through the pump channel [24–26].
Behrooz and Gordaninejad applied a soft MRE membrane for conveying Newtonian
fluid to understand the microfluid transportation system, and they also demonstrated
the performance is significantly affected by the design parameters [27,28]. Stork was the
first to investigate the influence of electromagnets on fluid transport and an MRE peristaltic
pump to convey fluid [29]. Ehsani and Nejat proposed a simple conceptual design of a
flexible-valve micropump based on using magneto-fluid-structural interaction (MFSI) three
physics simulations [30]. Xufeng et al. proposed using an MRE-based magneto-active
pulse pump in 3D, but they did the numerical analysis without using valves inside the
microchannel [31]. These existing micropump designs have their own limitations and/or
drawbacks. For instance, the initial concept proposed by Behrooz and Gordaninejad
provides lower pumping capacity. The micropump design proposed by Ehsani and Nejat
operates with a relatively slower response time under the magnetic field and also provides
a weaker actuation force. Moreover, their design suffers from large backflow issues due
to the larger gap between the tip of the valves and the upper wall. The design proposed
by Xufeng et al. experiences slower response time and lower pumping capacity as well.
Therefore, there is still room for novel pump magnetorheological pump designs that could
potentially operate with faster response times, minimize the backflow, and provide higher
pumping capacities.

It is a common agreement that fabrication of such designs prove to be challenging at
microscale. However, with the recent advancements in 3D-printing technology, manufac-
turing possibilities of such designs are revisited. As such, fabrication aspects should be
taken into consideration during the design stage.

In the light of above discussions,

• we propose a novel magnetorheological peristaltic micropump that has not been
studied previously to offer an efficient, miniature (on the order of 1 mm), lightweight,
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portable, wirelessly controllable (with a fast response time of less than 100 ms), durable,
low-power micropump for drug delivery; and we believe that

• originality of the study stems from the fact that the proposed design is not only novel
but is also designed to be fabricated by 3D-printing technologies in a more convenient
way than the existing MRE micropumps in the literature.

The details of the design will be discussed in Section 2. A multiphysics-based simu-
lation approach was adopted to prove the proposed concept. Highly coupled magneto-
solid-fluid interaction simulations were carried out in COMSOL Multiphysics software
(v5.6). To investigate the effects of significant design parameters, a parametric analysis was
also conducted. The paper is organized as follows: the proposed design is discussed in
Section 2, simulation methodology is presented in Section 3, parametric and optimization
studies are covered in Section 4, and summary and conclusions are discussed in Section 5.

2. Proposed Design

The proposed design is illustrated in Figure 1. It consists of a pumping chamber, two
one-way duckbill valves, and an electromagnet. The top wall of the pumping chamber is
made from a semi-active material called magnetorheological elastomer (MRE), whereas
the rest of the structure, including the valves, consists of a passive elastomer. MREs are
categorized as composite materials as they are composed of an elastomeric (or polymeric)
matrix, such as silicon, with micron-sized, magnetically permeable particles, typically
iron particles, doped in it. Due to their ferromagnetic properties, MREs deform under an
external magnetic field. In contrast, they can also be designed to resist the deformation
by activating an external magnetic field. This unique feature of MREs allowed them to
be utilized in a wide range of application areas including, actuation systems, vibration
isolation systems, and sensors. In the proposed design, the top wall contracts toward the
pumping chamber under the magnetic field. The magnetic field and thus the amount of
contraction is controlled by an electromagnet placed underneath the pump. The contraction
of the top wall increases the pressure by constricting the fluid inside the flow chamber,
forcing the fluid through the one-way valve in the front end. Simultaneously, the other
duckbill valve in the rear experiences backpressure, which forces the geometry to seal
itself, preventing the fluid from leaking backward. This one-way flow creates an effective
pumping mechanism as it continually sends the fluid forward.
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Figure 1. The proposed micropump design with its main components.
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3. Simulation Methodology
3.1. Model Creation

The proposed duckbill valve design involves coupled magneto–solid–fluid interaction
physics. Thus, the performance of the pump could best be predicted with the help of
computer simulations rather than simplified 1D analytical models. In this study, simulations
were carried out by using COMSOL Multiphysics software. Figure 2 shows a schematic
of the model created in COMSOL. To demonstrate the effectiveness of the flap valve,
simulations were conducted with and without valves.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 22 
 

 

Figure 1. The proposed micropump design with its main components. 

3. Simulation Methodology 
3.1. Model Creation 

The proposed duckbill valve design involves coupled magneto–solid–fluid interac-
tion physics. Thus, the performance of the pump could best be predicted with the help of 
computer simulations rather than simplified 1D analytical models. In this study, simula-
tions were carried out by using COMSOL Multiphysics software. Figure 2 shows a sche-
matic of the model created in COMSOL. To demonstrate the effectiveness of the flap valve, 
simulations were conducted with and without valves.  

 
Figure 2. Duckbill valve model with its main components. 

The geometric and material properties of the 2D model are given in Table 1, and the 
dimensions are shown in Figure 3 for convenience. The magnet is placed 0.35 mm below 
of the pump chamber. The length, height, and wall thickness of the pump chamber are 
3.102 mm, 1.100 mm, and 0.100 mm, respectively. The elastic modulus of the pump mate-
rial and the average magnetic flux density acting on the upper wall are 1.2 MPa and 0.027 
T, respectively. 

 
Figure 3. Duckbill valve model in 2D with its main dimensions. 

Table 1. Properties of duckbill valve model. 

Parameter Symbol Value 
Height of the pump chamber H 0.900 (mm) 
Thickness of the upper wall t 0.100 (mm) 

Valve spacing distance S 3.204 (mm) 
Length of micro channel L 5.650 (mm) 

Figure 2. Duckbill valve model with its main components.

The geometric and material properties of the 2D model are given in Table 1, and the
dimensions are shown in Figure 3 for convenience. The magnet is placed 0.35 mm below of
the pump chamber. The length, height, and wall thickness of the pump chamber are 3.102
mm, 1.100 mm, and 0.100 mm, respectively. The elastic modulus of the pump material
and the average magnetic flux density acting on the upper wall are 1.2 MPa and 0.027 T,
respectively.

Table 1. Properties of duckbill valve model.

Parameter Symbol Value

Height of the pump chamber H 0.900 (mm)
Thickness of the upper wall t 0.100 (mm)

Valve spacing distance S 3.204 (mm)
Length of micro channel L 5.650 (mm)

Distance between the pump chamber and
electromagnet D 0.350 (mm)

Length of the valve tip l 0.560 (mm)
Side of the electromagnet A 1.000 (mm)

Magnetic flux density B 0.027 (T)
Elastic modulus E 1.200 (MPa)
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In this study, the MRE is assumed to be a ferromagnetic material that has constant
structural and magnetic properties. The wall at the bottom does not deform in the presence
of a magnetic field. It is assumed to be resting on a flat rigid surface so the deformation on
the top wall can activate the fluid flow. The magnetic field analysis was conducted in an
AC/DC module, whereas the structural deformation of the pump chamber, including the
top wall and one-way flap valves, and fluid flow through the pump chamber and valves
were carried out in solid mechanics and laminar flow modules, respectively (Figure 4).
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Figure 4. 2D simulation model geometry.

3.2. Simulation Procedure

The flowchart of the simulation procedure is shown in Figure 5. First, the parameters
were defined, such as geometric and material properties. Next, the moving mesh schemes
had to be defined because the simulation involved the deformation of the pump chamber
and one-way valves. Then the geometry used for the simulation was created, followed by
the material assignment to all solid and fluid domains. After that, respective boundary
conditions were assigned in each physics module (AC/DC, solid mechanics module, and
laminar flow). The different physics modules then transferred data between the different
flow physics. For example, the upper wall of the pump chamber undergoes a downward
deflection under the influence of a magnetic field because it consists of a ferromagnetic
material. To model this phenomenon, the AC/DC module was run to calculate the magnetic
field over the entire domain, including all solid and fluid domains. The information was
then passed over to the solid mechanics module to calculate the deformation under the
magnetic field. Likewise, the deformation data from the top wall was transferred to the fluid
domain via fluid-structure coupling between the solid mechanics and laminar flow modules.
The fluid-structure coupling was a two-way coupling that provided communication back
and forth between the fluid and solid domains. This communication was accomplished
by defining fluid-structure interaction multiphysics at all interfaces between the fluid and
solid domains. The deformation due to the magnetic field presented itself as a pressure
load in the fluid domain at the fluid–solid interface, creating the pumping effect. Although
the fluid was pushed through the front valve, the pressure data from the fluid domain was
sent back to the solid structures through the fluid-structure coupling, and vice versa.
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3.3. Boundary Conditions

When applying the boundary conditions, the AC/DC module was used to apply a
current excitation to the coil, and the force calculation interface was selected for the top
edge of the upper wall of the pump chamber. This placement at the top edge ensured that
the Maxwell forces were transferred to the top edge for the desired deformation and thus,
the desired pumping effect. The Maxwell surface stress tensor (the magnetic interaction
force within the pump chamber caused by the magnetic field) was selected in the boundary
load interface, i.e., the top edge of the top wall. An external current density, with a specified
amplitude, as well as a sinusoidal time function were applied to the magnet core. A
fixed support was placed on the bottom wall inside the pump chamber by using the solid
mechanics module. As for the laminar flow module, the relative pressures at outlets of the
pumping system were set to 0 Pa (gage). This allows the fluid to freely pass through the
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inlet and outlet sections. Finally, a no-slip condition was assigned to the walls surrounding
the flow chamber.

3.4. Computing Equations

Next, the governing physics equation is discussed. The following equations were
solved for the magnetic domain:

∇·J = 0 (1)

∇× H = J (2)

B = µ0µr H (3)

J = ∇× (µrµ0)
−1B, (4)

where J is the current density,∇ is the gradient operator, B is the magnetic flux density; µ0
and µr are the permeability of the vacuum and the relative magnetic permeability. Equation
(1) used Ampere’s Law to determine the magnetic flux density. Through the combination
of Equations (1)–(3), the relation between J and B can be obtained, which is shown by
Equation (4),

J = σE + σv× B + Je (5)

where E is the electric field, σ is the electrical conductivity, v is the velocity of the conductor,
and Je is the external current density. The magnetic flux density B and external current
density Je can be calculated by using Equations (6) and (7).

B = ∇× A (6)

Je =
I·n
a·b (7)

In Equations (6) and (7), A is the magnetic vector potential, I is the input electrical
current to the coil, n is the number of turns of the coil of the electromagnet, and variables a
and b are the cross-sectional dimensions of the magnetic core. Once the external current
density Je is known, the magnetic field density B can be calculated by using Equation (8).

Je = ∇× (µrµ0)
−1B− σE− σv× B (8)

To calculate the Maxwell stress, Equation (9) can be used. It can then be inserted into
Equation (10) where it is added with the stress due to fluid pressure to find the total stress.

n.σmaxwell = −0.5n(H·B) + (n·H)BT (9)

σtotal = σmaxwell + σp, (10)

where n is the unit normal vector, σtotal is the total stress, σMaxwell is the Maxwell stress,
and σp is the stress due to fluid pressure. When considering the fluid domain, laminar
incompressible flow was set as the flow type. The fluid domain was then solved by using
the following equations:

Steady continuity:
ρ∇·u f luid = 0 (11)

Navier-Stokes equation used in the stationary approach:

ρ
(

u f luid·∇
)

u f luid = ∇·[−pI + K] + F (12)

Navier-Stokes equation used for the time-dependent approach:

ρ
∂u f luid

∂t
+ ρ

(
u f luid·∇

)
u f luid = ∇·[−pI + K] + F, (13)
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where ρ is the density, u f luid is the velocity vector, p is the pressure, K is the turbulent
kinetic energy, and F is the volume force vector. Equation (14) can be used to find the
turbulent kinetic energy K.

K = µ(∇u f luid + (∇u f luid)
T) (14)

Then finally for the solid mechanics domain, the following equations were solved:
Equation for the stationary approach:

0 = ∇·(FS)T + Fv, F = l +∇usolid. (15)

Equation for the time-dependent approach:

ρ
∂2usolid

∂t2 = ∇·(FS)T + Fv, F = l +∇usolid. (16)

In the above equations, Equations (15) and (16), FS (F is the deformation gradient) is
the first Piola–Kirchhoff stress tensor, Fv is the volume force vector, l is the unit tensor, and
usolid is the displacement.

3.5. Grid Generation and Mesh Independence Study

As is commonplace in procedures for conducting simulations in both finite element
analysis (FEA) and computational fluid dynamics (CFD), a mesh independency analysis
was conducted. To begin this process, a course mesh was applied to an initial simulation.
Then, the mesh size was reduced continually, and the net pumped volume was monitored
after each run. The mesh size reduction continued until there was no significant change
between two sequential cases. This process is shown in Table 2, which is also visually
illustrated in Figure 6. From the recorded cases, it can be seen that the percent change in
the target parameter was 0.14% between grid numbers 4 and 5. Thus, grid number 4 is
selected for the rest of the simulations.
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Table 2. Net pumped volume for each grid number.

Grid Number Number of Mesh
Elements

Net Pumped
Volume (µL)

The Difference in Net
Pumped Volume (%)

1 3002 2.13832 -
2 4306 2.11735 0.98
3 6075 2.10558 0.56
4 9144 2.10314 0.51
5 13708 2.10245 0.14
6 19215 2.10191 0.11

3.6. Validity Study

Although COMSOL Multiphysics is a proven simulation tool and has been employed by
thousands of scientific studies in the literature, it is always wise and scientifically required to
validate the simulation approaches with the existing studies in literature when experimental
data is not readily available. To this end, we selected the model presented in [31]. All
parameters, boundary conditions, magnetic flux density, and geometric dimensions were set to
be the same. Figure 7 shows the model with the main components as well as the dimensions.
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The simulations were carried out by following the procedure outlined in Figure 5.
The comparisons between the benchmark study and this study are given in Table 3. From
Table 3, it is seen that the upper wall displacement for both cases is the same for 75 mT,
145 mT, and 175 mT magnetic flux densities. In addition to the deformations, volume flow
rates were also compared. Figure 8 presents a comparison graph between the two cases. As
seen from the figure, the volume flow rates closely matched between the two cases. Further,
the numerical data for the volume flow rates are presented in Table 4 with percent error
margins. It can be seen that the average percent error between the two cases is about 1.6%,
with minimum and maximum deviations being 0.00% and 4.16% at 150 mT and 175 mT,
respectively. This validates our simulation methodology, allowing us to continue with the
full simulations of the proposed pump design.

Table 3. Comparisons of simulations between this study and benchmark study.

Magnetic Flux
Density (mT) Benchmark Study [31] This Study Maximum Displacement of

Upper Wall (mm)

75
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Figure 8. Net pumped volume comparisons between this study and benchmark study [31].

Table 4. Percent error of the flow rates between this study and benchmark study [31].

Magnetic Flux
Density (mT)

Magnetic Flux
Density (mT)

Flow Rate from
Validation Case (µL/s)

Percentage of Error
(%)

150 4.8 4.6 4.16
175 7.3 7.3 0
200 20.9 21.3 1.91
225 25.9 25.8 0.39

3.7. Results and Discussions

Simulations were performed for a complete cycle, i.e., for a full contraction and
retraction phases. Based on the literature, we used a magnetic field input of 0.027 T. The
magnetic field acts on the magnetically permeable particles within the MRE, creating a
downward force on the upper wall. The magnetic flux density on the upper wall along the
length of the microchannel is given in Figure 9. The figure shows that the magnetic flux
density reaches its peak at the two terminals of the microchannel and its minimum value in
the middle. This agrees with our intuitions because the magnetic field concentrates on the
upper MRE wall before returning to the electromagnet to complete the magnetic circuit.
Similar phenomena were also observed and reported in the literature [27,28,30,31].
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Figure 10 shows the deformation of the upper wall under the influence of the magnetic
field. The maximum deflection was calculated to 0.11 mm, which occurred in the middle of
the upper wall as expected.
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Figure 10. Deformation of upper wall across the pump length.

Figure 11a displays the velocity field inside the pump at t = 0.1 s, when the maximum
velocity occurs, whereas Figure 11b shows the total volume flow rate with respect to time.
The total volume flow rate is calculated by summing the outflows from both the left and
right sides. It should be noted that there is no inlet to the pump because the flow is initiated
by the squeezing effect under the magnetic field.
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Figure 11. Simulation results for micropump without any valves. (a) Velocity field at t = 0.1 s. (b) Total
volume flow rate vs. time.

Figure 12 displays the results for the same simulation configurations as Figure 11.
However, in Figure 12, one-way duckbill valves were added inside the pump chamber.
A quantitative comparison between Figures 11b and 12b reveals that the inclusion of the
duckbill valves reduced the backflow by about 7.5 times.



Micromachines 2022, 13, 723 13 of 21

Micromachines 2022, 13, x FOR PEER REVIEW 13 of 22 
 

 

Figure 10. Deformation of upper wall across the pump length. 

Figure 11a displays the velocity field inside the pump at t = 0.1 s, when the maximum 

velocity occurs, whereas Figure 11b shows the total volume flow rate with respect to time. 

The total volume flow rate is calculated by summing the outflows from both the left and 

right sides. It should be noted that there is no inlet to the pump because the flow is initi-

ated by the squeezing effect under the magnetic field. 

 

(a) 

 

(b) 

  

Figure 11. Simulation results for micropump without any valves. (a) Velocity field at t = 0.1 s. (b) 

Total volume flow rate vs. time. 

Figure 12 displays the results for the same simulation configurations as Figure 11. 

However, in Figure 12, one-way duckbill valves were added inside the pump chamber. A 

quantitative comparison between Figures 11b and 12b reveals that the inclusion of the 

duckbill valves reduced the backflow by about 7.5 times. 

 

(a) 

 

(b) 

  

Figure 12. Simulation results for micropump with duckbill valves. (a) Velocity field at t = 0.1 s. (b) 

Volume flow rate vs. time. 

Figure 13 exhibits the volume flow rate during both contraction and retraction phases 

for (a) without valves and (b) with the duckbill valves. The figure shows that with the 

addition of duckbill valves, the net backward flow reduced significantly during the re-

traction phase with the addition of duckbill valves. 

Figure 12. Simulation results for micropump with duckbill valves. (a) Velocity field at t = 0.1 s.
(b) Volume flow rate vs. time.

Figure 13 exhibits the volume flow rate during both contraction and retraction phases
for (a) without valves and (b) with the duckbill valves. The figure shows that with the addi-
tion of duckbill valves, the net backward flow reduced significantly during the retraction
phase with the addition of duckbill valves.
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Figure 13. Volume flow rate. (a) Without valves. (b) With duckbill valves.

The displacement and velocity field history of the micropump is shown in Figure 14a–f
for the contraction phase, i.e., t = 0–0.5 s. One can see that the right duckbill deforms and
propels the fluid, whereas the left duckbill valve closes and blocks the backflow. Figure 14a
shows the flow field at the beginning of the simulation at t = 0 s. In Figure 14b, the MRE
is started deforming downward, pushing the fluid toward the right terminal. Due to a
large amount of fluid being enclosed in between the two valves, the fluid shows maximum
velocity at the right valve in this stage. In Figure 14c, the upper wall deforms further, and
thus, the right duckbill bends, but this time the tips of the right valve come closer to each
other, thus decreasing fluid displacement (t = 0.2 s). In Figure 14d, the right duckbill valve
deflects further and reduces the fluid flow, and the left valve closes completely to prevent
the backward flow (t = 0.3 s). In Figure 14e, deformation of the upper wall and duckbill
valves continue (t = 0.4 s). In Figure 14f, the deflections on the upper wall (t = 0.5 s). At this
time, the micropump is about to start the expansion phase.
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Figure 14. The deflection and velocity field history of the micropump during the contraction phase
at t = 0–0.5 s. (a) The flow field at the beginning of the simulation at t = 0 s. (b) The MRE is started
deforming downward, pushing the fluid toward the right terminal. The fluid shows maximum
velocity at the right valve in this stage. (c) the upper wall deforms further, and thus, the right
duckbill bends, but this time the tips of the right valve come closer to each other, thus decreasing
fluid displacement (t = 0.2 s). (d) The right duckbill valve deflects further and reduces the fluid flow,
and the left valve closes completely to prevent the backward flow (t = 0.3 s). (e) Deformation of the
upper wall and duckbill valves continue (t = 0.4 s). (f) the deflections on the upper wall (t = 0.5 s). At
this time, the micropump is about to start the expansion phase.

The time history of net volume transferred through the right terminal of the microp-
ump is displayed in Figure 15. During the contraction phase, the net volume transferred
constantly increased until the contraction phase ends at t = 0.5 s. Following this, the channel
begins retracting, and the net pumped volume decreases.
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4. Parametric Study

The effects of important input parameters on the design target are also essential.
Recalling that our primary goal was to increase the pumping effect of the proposed design,
we carried out a parametric analysis to see the effects of various geometric and material
properties, including the diameter of the pump chamber, the thickness of the upper MRE
wall, the elastic modulus of the pump structure, and other geometric dimensions of the
pump, on the net pumped volume. These input parameters can be found in Table 5 with
their respective ranges.

Table 5. Percent error of the flow rates between this study and parametric study [31].

Parameters Design Values Values for Parametric Study

Height of the pump chamber 0.900 mm 0.900, 0.905, 0.910, 0.915, 0.920 mm

Thickness of the upper wall 0.100 mm 0.100, 0.110, 0.120, 0.130, 0.140 mm

Elastic modulus 1.200 MPa 1.200, 5.000, 10.000, 15.000, 20.000, 25.000, 30.000, 35.000 MPa

Valve spacing distance 3.204 mm 3.204, 3.214, 3.224, 3.234, 3.244 mm

Poisson’s ratio of the valve 0.450 0.250, 0.300, 0.350, 0.400, 0.450

Length of the Valve tip 0.560 mm 0.560, 0.570, 0.580, 0.590, 0.600 mm

Poisson’s ratio of the upper wall 0.450 0.250, 0.300, 0.350, 0.400, 0.450

Parametric Simulation Results and Discussions

The effects of the height of the pump chamber, thickness of the upper wall, elastic
modulus of the pump structure, valve spacing distance, Poisson’s ratio of the valve, Pois-
son ratio of upper wall, and valve length on the net pumped volume are displayed in
Figures 16–22. The parametric sweep studies were performed in a way that the parameters
left unchanged were set to their design values. These design values can be viewed in
Table 5.

The net pumped volume increases with the height of the pump chamber which is
exhibited in Figure 16. This increase is not only due to the pump chamber increase but also
in part due to the modified aspect ratio of the flow chamber allowing larger deformation of
the upper wall. This aligns with our intuitions.
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Figure 16. Effect of channel height on the net pumped volume.

In Figure 17 the variation of the net pump volume with respect to the thickness of the
upper wall is shown. As displayed in the figure, the net pumped volume is decreasing
with increasing values of the wall thickness. This makes sense as it becomes harder for the
top wall to bend downward to create the pumping effect with larger wall thicknesses.
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The effect of elastic modulus of the pump material on the net pumped volume is given
in Figure 18. As seen in the figure, the net pumped volume decreases with increasing elastic
modulus. This would agree with our intuitions because the larger the elastic modulus
becomes, the stiffer the wall will be, resisting the deformation more strongly.
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The influence of valve spacing distance on the net pumped volume is shown in
Figure 19. As seen in the figure, the net pumped volume of the fluid also increases with
increasing valve spacing. This is because as the valve spacing becomes wider, a greater
amount of fluid can be housed in between the two valves, resulting in more fluid volume
being pumped, and thus enhancing the pumping effect.
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Figure 20 represents the effect of Poisson’s ratio on the valves. This also agrees with
our intuitions because according to Hooke’s law, increased values of the Poisson’s ratio
will result in decreased deformation of the valves, resulting in a lower pumping effect.
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The influence of the upper wall’s Poisson’s ratio on the net pumped volume can be
seen in Figure 21, which yields similar results to those shown in Figure 20. For this case,
the increase in the Poisson’s ratio results in a decrease in the deformation experienced by
the upper wall, deteriorating the pumping effect.
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Figure 21. Effect of Poisson’s ratio of the upper wall on the net pumped volume.

The effect of the valve length on the pumping performance in terms of the net pumped
volume is shown in Figure 22. As seen, the net pumped volume continually decreases as
the length of the valve increases. This is because the longer the valve is, the higher the
frictional losses are, reducing the pumping effect.
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Parametric study revealed that each parameter contributed to the overall performance
of the pump. Thus, an optimization study is necessary to determine the optimal values of
these parameters for the maximum net pumped volume. To this end, we carried out an
optimization study letting the material properties remain constant and changing only the
geometric parameters. Table 6 shows the optimum values of the valve spacing distance and
height of the pump chamber, which were the only two parameters that were changed from
the original design values. The optimal design was then compared with the original design,
the results of which are shown in Table 7. The comparisons revealed that the optimal design
was capable of transferring 16.67% more fluid than the original model in one full cycle.

Table 6. Optimal model parameters.

Parameters Original Model Values (mm) Optimal Model Values (mm)

Valve spacing distance 3.204 3.244
Height of the pump chamber 0.90 0.92

Table 7. Performance comparison between basic model and optimal model.

Parameters Original Design Optimal Design Net pumped Volume of Fluid Increased (%)

Net pumped volume (µL) 2.10 2.45 16.67

5. Summary and Conclusions

In this paper, a comprehensive design methodology of a novel magnetorheological
(MR) micropump was presented. To accomplish this, a physics-based simulation methodol-
ogy was adopted. The validity of these simulations was checked by replicating an existing
study in the literature. The dynamic performance of the pump was obtained and analyzed.
Also, a parametric study was conducted to see the influence of each design parameters on
the pump performance, which was then used for an optimization study. Major findings of
this study can be listed as follows.

- A novel micropump design was successfully demonstrated.
- a parametric study revealed that the net pumped volume increased by 0.66% as the

height of the pump chamber increased from 0.90 mm to 0.92 mm, decreased by 2.83%
as the thickness of the upper wall increased from 0.10 mm to 0.14 mm,
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- decreased by 6.66% as the elastic modulus of the pump structure increased from
1.2 MPa to 35 MPa,

- increased by 0.19% as the valve spacing distance increased from 3.204 mm to 3.244 mm,
- decreased by 1.21% as the Poisson ratio of valve increased from 0.25 to 0.45,
- decreased by 0.7% as the Poisson ratio of upper increased from 0.25 to 0.45, and
- decreased by 0.33% as the valve length increased from 0.56 mm to 0.60 mm.
- As a result of an optimization study, an optimum design is proposed, which can

transfer 16.67% more fluid than the original model.
- The proposed micropump technology can be utilized in a wide range of application ar-

eas, including drug delivery systems, artificial hearts, in situ cell sorting and cytometry
in laboratory environments, and thermal management techniques on PCBs. The pro-
posed design methodology serves as a foundation for future MR micropump designs.
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