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Abstract: Iron (Fe) has attracted great attention as bone repair material owing to its favorable biocom-
patibility and mechanical properties. However, it degrades too slowly since the corrosion product
layer prohibits the contact between the Fe matrix and body fluid. In this work, zinc sulfide (ZnS) was
introduced into Fe bone implant manufactured using laser additive manufacturing technique. The
incorporated ZnS underwent a disproportionation reaction and formed S-containing species, which
was able to change the film properties including the semiconductivity, doping concentration, and film
dissolution. As a result, it promoted the collapse of the passive film and accelerated the degradation
rate of Fe matrix. Immersion tests proved that the Fe matrix experienced severe pitting corrosion with
heavy corrosion product. Besides, the in vitro cell testing showed that Fe/ZnS possessed acceptable
cell viabilities. This work indicated that Fe/ZnS biocomposite acted as a promising candidate for
bone repair material.

Keywords: iron bone implant; zinc sulfide; degradation properties; passivation film; laser powder
bed fusion

1. Introduction

Metal materials have excellent comprehensive mechanical properties (high strength,
toughness, fatigue resistance) and good processing and forming ability [1,2]. Thus, medical
metal implants have been widely used in the field of orthopedics. Degradable metals
not only have excellent comprehensive mechanical properties, but also the degradation
products can be absorbed by the human body [3,4]. As a new type of medical implant, it
is able to be completely degraded and absorbed in the human body after service in vivo,
avoiding the pain of patients’ secondary operation. Among the several representative
degradable metal, iron (Fe) has gained intensive attention recently [5,6]. It is an essential
nutrient element and participates in a variety of metabolic processes, which is able to
maintain the normal function of bone cells. However, its degradation rate is too slow,
which will hinder the growth of new bone as an implant.

Destroying the passive film is an effective way to accelerate its degradation of metallic
matrix. Owing to the multivalent character of sulfur (S), sulfide is able to generate various
S-containing species, which can attach on the metal surface and induce severe damaging
effect on the passive film [7]. Previously, some scholars studied the S-induced corrosion of
Fe-based metal material and indicated that the adsorbed S catalyzes the metal dissolution,
thereby resulting in a decreased dissolution activation energy and accelerated anodic
dissolution process [8]. It was also reported that the S-containing species changed the film
properties including the semiconductivity, doping concentration, film dissolution rate, and

Micromachines 2022, 13, 712. https://doi.org/10.3390/mi13050712 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13050712
https://doi.org/10.3390/mi13050712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-1557-0252
https://orcid.org/0000-0002-8794-1190
https://orcid.org/0000-0003-0113-074X
https://doi.org/10.3390/mi13050712
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13050712?type=check_update&version=2


Micromachines 2022, 13, 712 2 of 11

film composition. Particularly, the synergistic effect of S species and chloride (Cl) was also
confirmed by previous research [9].

Among S-containing species, zinc sulfide (ZnS) possessed relatively good biocom-
patibility and water solubility [10,11]. Basing on the above consideration, in this work,
ZnS was incorporated into Fe implants aiming to accelerate the corrosion of Fe matrix.
Meanwhile, Zn ion, as a trace element, could promote cell proliferation and differentiation,
which was expected to improve the biocompatibility of Fe implant [12]. The Fe based
implant was fabricated by the laser powder bed fusion (LPBF) technique. LPBF is a powder
bed melting technology. The focused laser beam selectively melts the powder layer by layer
to produce the required geometry. Since LPBF meets the requirements of high melting
point, high dimensional accuracy, high performance and design flexibility, it has become
the main additive manufacturing technology of metal implants [13–15]. The microstructure,
corrosion behavior, and biocompatibility of Fe/ZnS composite fabricated by LPBF were
investigated. Additionally, the corrosion mechanism was deeply studied.

2. Materials and Methods
2.1. Original Materials and Laser Powder Bed Fusion (LPBF) Process

Sphere Fe powder (mean particle size 35 µm) and ZnS powder (5–10 µm) were utilized
in this work. Fe and ZnS (9 wt %) were mixed by a miniature planet ball mill (PUL-
VERISETTE 6, Fritsch, Germany). The ball mill was operated at a rotation speed of 220 rpm
for 2 h, with a 15 min pause every half an hour. During operation, high purity argon (99.9%)
was offered to reduce the oxidation.

The mixed powder was adopted to fabricate Fe/ZnS biocomposite using LPBF system,
which was consisted of a fiber laser and a computer control system. A series of pilot experi-
ments were carried out before the LPBF experiments to obtain an optimized processing
parameter and as follows: laser power 210 W, scanning rate 80 mm/s, hatching space 50 µm
and layer thickness 50 µm.

2.2. Microstructural Characterization

The LPBF-processed parts were grounded and polished using SiC paper. The mi-
crostructure was characterized using a scanning electron microscopy (SEM, Zeiss,
Oberkochen, Germany) equipped with an energy dispersive spectroscopy (EDS). The
phase composition was determined using X-ray diffractometer (XRD, D8 Advance, Bremen,
Germany) with Cu Kα radiation at 45 kV and 40 mA. The scanning range was 20–90◦, and
the scan rate was 8◦/min.

2.3. Electrochemical Tests

An electrochemical experiment was carried out to study the corrosion behavior. The
self-prepared simulated body fluid (SBF) was used at testing solution. A three-electrode
system was adopted in electrochemical tests. The nominal chemical composition of SBF
was listed in Table 1. The system consisted of platinum as counter electrode, saturated
calomel as reference electrode and the test part as working electrode. The initial open-loop
circuit (OCP) tests were firstly performed. Then, the Tafel polarization curve was recorded
at a rate of 0.05 mV/s. The corrosion rate (Pi) was determined by corrosion current (Icorr):

Pi = 3.27 × 10−3 × Icorr E/ρ (1)

Table 1. Chemical composition of SBF.

Composition NaCl NaHCO3 KCl K2HPO4·3H2O MgCl2·6H2O CaCl2

Weight
(g/L) 8.035 0.355 0.225 0.231 0.311 0.292
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E was the weight equivalent, and ρ was the material densigty. Besides, the electro-
chemical impedance spectroscopy (EIS) testing was carried out within the scope of 0.01 Hz
to 1000 kHz. Zsimpwin software was adopted to analyze the result. Furthermore, the
transient time-current curve was determined at 1 mV/s. The Mott-Schottky curve was
recorded to study the semiconductor properties of the corrosion film.

2.4. Immersion Tests

SBF immersion testing was performed to further study the degradation behavior of
as-built parts. The parts were immersed in SBF at an exposure ratio of 0.1 cm2/mL. After
immersion for 7, 14, and 28 days, the parts were washed with distilled water and then
observed by SEM. The samples were washed using 200 g/L of CrO3 solution to remove
corrosion products. Subsequently, the surface morphology was investigated by an atomic
force microscope (AFM, Veeco Instruments, Plainview, NY, USA). Meanwhile, the corrosion
rate (Cr) was calculated by using the weight loss method after immersion tests.

2.5. Cytotoxicity Evaluation

MG-63 cells were used to evaluate the cytotoxicity of Fe-based biocomposite. Dul-
becco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum, 100 units/mL
penicillin and 100 mg/mL streptomycin was used as culture medium. The as-built samples
were sterilized, and then immersed in DMEM for three days to obtain the extracts. Then,
the cells were incubated in a 96-well plate for 1 day using DMEM, subsequently substituted
by the 100 centration extracts. After one, four, and seven days, Calcian-AM reagent was
used to stain the cells for 15 min. Afterwards, the cells were captured using a fluorescence
microscopy (BX60, Olympus, Tokyo, Japan). Furthermore, the cell counting kit-8 (CCK-8)
reagent was added into the culture medium and continued to incubate for 3 h. Finally, the
absorbance was detected by a microplate reader at 450 nm.

2.6. Statistical Analysis

In this work, the immersion tests, electrochemical experiments and cell experiments
were performed three times. The data was expressed as means ± errors. The significant
difference was investigated suing SPSS soft, in which p less than 0.05 was determined to be
of significant difference.

3. Results
3.1. Microstructural Feature of LPBF-Processed Parts

The LPBF-processed bulk parts were shown in Figure 1a, and the corresponding XRD
spectrum was depicted in Figure 1b. Results showed that strong peaks corresponding to α-
Fe phase was observed for Fe and Fe/ZnS parts. Besides, some strong peaks corresponding
to ZnS phase presented in Fe/ZnS composite. The microstructure was observed by SEM,
as shown in Figure 1c. No obvious holes and cracks were observed in the matrix of as-built
parts, indicating their good forming quality. For the LPBF of the metal parts, the relatively
high porosity is easily generated due to the insufficient liquid phase or severe molten
pool evaporation, thereby reducing the performance including mechanical properties and
corrosion resistance [16]. However, our SEM analysis showed the high densification rate
was obtained. It was reported that the stable molten pool behavior could be achieved under
the optimized laser parameters, so as to promote the densification of the parts [17]. For
the Fe/ZnS biocomposite, the ZnS particles (as marked by the red arrows) were uniformly
distributed in the matrix.
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Figure 1. (a) LPBF processed Fe-based parts; (b) the XRD spectrum and (c) SEM for Fe and Fe/ZnS 
biocomposite showing the microstructure. The ZnS particles were marked by the red arrows. 
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2a. Flat corrosion surface with little degradation product was observed for Fe part over 
the whole immersion period. As a comparison, a large amount of corrosion product was 
presented on the Fe/ZnS biocomposite, and a porous film with numerous corrosion pits 
was also observed. The corrosion pits obviously became deepened and expanded at day 
28, accompanied by partial products falling off. The cross section after immersion for 28 
days was examined by SEM, as exhibited in Figure 2b. Clearly, the thin corrosion film 
with a thickness of only ~4.8 μm was observed for Fe part. As for Fe/ZnS biocomposite, 
the thickness of corrosion film increased to ~23.8 μm. The element mapping analysis 
showed that the corrosion film mainly contained Fe and O elements, as shown in Figure 
2c. Previous studies reported that the corrosion products on Fe matrix mainly contained 
oxides and hydroxides of Fe [18]. 
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Figure 1. (a) LPBF processed Fe-based parts; (b) the XRD spectrum and (c) SEM for Fe and Fe/ZnS
biocomposite showing the microstructure. The ZnS particles were marked by the red arrows.

3.2. Degradation Behavior

The corroded surface after immersion for 7, 14, and 28 days have bee shown in
Figure 2a. Flat corrosion surface with little degradation product was observed for Fe part
over the whole immersion period. As a comparison, a large amount of corrosion product
was presented on the Fe/ZnS biocomposite, and a porous film with numerous corrosion
pits was also observed. The corrosion pits obviously became deepened and expanded at
day 28, accompanied by partial products falling off. The cross section after immersion for
28 days was examined by SEM, as exhibited in Figure 2b. Clearly, the thin corrosion film
with a thickness of only ~4.8 µm was observed for Fe part. As for Fe/ZnS biocomposite, the
thickness of corrosion film increased to ~23.8 µm. The element mapping analysis showed
that the corrosion film mainly contained Fe and O elements, as shown in Figure 2c. Previous
studies reported that the corrosion products on Fe matrix mainly contained oxides and
hydroxides of Fe [18].
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The corrosion surface after removing the corrosion product was also observed by SEM,
as shown in Figure 3a. It could be seen that the corroded surface of Fe part showed small
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change after immersion in SBF for 7, 14, and 28 days. As a comparison, massive corrosion
pits, as marked by the arrows, appeared on the matrix surface of Fe/ZnS part with the
extension of immersion time. Clearly, the pits dimension gradually increased to 5–10 µm.
The surface roughness after immersion for 28 days was shown in Figure 3b. For Fe part,
the gradient range of surface roughness was between −1.6 and 1.0 µm. As for Fe/ZnS
biocomposite, the gradient range was extended to −5.5~3.8 µm. Besides, the surface
roughness profiles showed that the curve of Fe/ZnS biocomposite fluctuated sharply as
compared with that of Fe, as shown in Figure 3c. It was indicated that the matrix of Fe/ZnS
was severely corroded. According to the mass loss during immersion for 28 days, the
degradation rates of Fe and Fe/ZnS were calculated to be ∼0.05 and 0.14 mg/cm2/year,
respectively (Table 2). The significance analysis showed that the corrosion rates of Fe/ZnS
was significantly higher than that of Fe (p < 0.05).
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Figure 3. (a) The surface topography after removing corrosion products for Fe and Fe/ZnS composite,
(b) AFM images and (c) the surface roughness profiles. The corrosion pits were marked by the
red arrows.

Table 2. The corrosion rates calculated from immersion and electrochemical tests.

Samples Cr (mg/cm2/year) Pi (mm/year)

Fe 0.05 ± 0.01 0.25 ± 0.02

Fe/ZnS 0.14 ± 0.03 0.72 ± 0.05

3.3. Electrochemical Behavior

The degradation mechanism of Fe/ZnS and Fe was investigated by electrochemical
tests. The obtained polarization curves were shown in Figure 4a. The corrosion potential
(Ecorr) and corrosion current density (Icorr) were also calculated by Tafel extrapolation
method, and the result was shown in Figure 4a. The Ecorr value of Fe and Fe/ZnS
composite were −0.75 V and −0.94 V, respectively. And the Icorr value of Fe/ZnS composite
was significantly enhanced to 31.4 ± 0.9 µA/cm2 as compared with that of Fe. The corrosion
rate of Fe and Fe/ZnS calculated by the electrochemical parameters were ∼0.25 and
0.72 mm/year, respectively, as shown in Table 2. Particularly, for Fe/ZnS composite,
there was a typical pitting area in the region of anode polarization curve, as marked in
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Figure 4a. It was suggested that the addition of ZnS was effectively pierced through the
dense corrosion layer, and changed the corrosion type from surface corrosion to pitting
corrosion. The electrochemical impedance spectra are shown in Figure 4b. The Fe/ZnS
composite showed small impedance value than that of Fe, which also verified its low
corrosion resistance. For the Fe part, there was only one impedance loop in the whole
frequency range, indicating the formation of compact oxide film during corrosion. However,
Fe/ZnS composite had a relatively small capacitive arc and impedance moduli at low
frequency region, reflecting a low electron transfer resistance. Furthermore, the phase
angle value and impedance value in the Bode plots were further applied to indicate the
stability of corrosion films, presented in Figure 4c. For Fe/ZnS composite, the phase angle
value and impedance value were smaller, which indicated the corrosion film was a loose
membrane structure. It was believed that the passive film was continuously self-destroyed,
thus reducing the protection efficiency for Fe/ZnS composite. The equivalent circuits of
electrochemical tests for Fe and Fe/ZnS were obtained, shown in Figure 4d. There was only
a semicircle in the EIS diagram, which meant only exist a corrosion layer on the Fe matrix.
There were two semicircles for the Fe/ZnS composite, which indicated another transfer
reaction except. Generally, it was remarked by a double-layer capacitance Cd and charge
transfer resistance Rct. Rct, and Cd were the resistance and capacitance of the passive film,
respectively. As for the Fe/ZnS composite, a relatively low Rct and Cd revealed its high
charge transfer ability of the product layer.
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The cyclic voltammetry (CV) curves of Fe and Fe/ZnS samples were presented in
Figure 5. The A curve was the anodic branch while C curve was the cathodic branch. Three
anodic current peaks of A1, A2, and A3 were observed during the anodic scan process.
The A1 peak was considered to correspond to the electro-oxidation of Fe to Fe2+, which
was represented the initiation of passivity formation. There was no significant difference
between Fe and Fe/ZnS samples at the A1 peak. The A2 peak was characterized with
the oxidation process from Fe2+ to Fe3+, which was represented the formation process of
a denser Fe2O3 passivation film. The A3 peak involved the transfer reaction and oxygen
evolution reaction on behalf of the dissolution of Fe anode. At the A2 peak, the potential
of Fe was around 0.6 V, but for Fe/ZnS samples the potential shifted to 0.7 V and caused
a faster anodic reaction. With the positive shift of the potential, the anodic reaction was
activated, the corrosion current increased gradually. Generally, the potential was more
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positive (which meant a higher anode activation energy), and thus the oxidation reaction
was easier to carry out. Therefore, it was indicated that S destroyed the formation of the
passivation layer and caused the continuous exposure of Fe matrix to corrosion solution,
thus accelerating degradation.
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3.4. In Vitro Cytotoxicity

As exhibited in Figure 6a, very few dead cells were observed during the whole
incubation period. With the culture time extending, the cells were gradually increased,
which proved their normal development. After seven days’ culture, most the cells presented
representative fusiform shape, which was known as a healthy morphology. The cell viability
was quantitatively studied, as shown in Figure 6b. At day, the cell viability was relatively
low, since the cells could not adapt to the new environment with high concentration of
metal ions. However, with the increase of culture time, the cell activity gradually increased
to 80%, which confirmed that it had acceptable biocompatibility. Moreover, there was no
significant difference between the two groups.
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4. Discussion

Bone implants should have a through-hole structure similar to natural bone, so as to
provide a necessary microenvironment for cell growth, angiogenesis, and new bone growth
after implantation [19,20]. It is generally believed that the pore size suitable for bone tissue
growth ranges from 200 to 600 µm. At the same time, the porosity should reach more
than 70%, which is conducive to cell adhesion, extracellular matrix deposition, oxygen,
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nutrition entry, and metabolite discharge [21,22]. In addition, bone implants should also
have personalized and accurate shapes to improve the adaptability of implants in the
process of operation and the effect of postoperative treatment [23,24].

LPBF as a typical additive manufacturing technology is especially suitable for the
high-precision and high-efficiency manufacturing of personalized porous implants [25,26].
Specifically, we can use digital medical technology to conduct three-dimensional scanning
of the bone defect, and then design the bone defect model through computer-aided technol-
ogy. Finally, we can manufacture customized porous implants through LPBF technology, as
shown in Figure 7. In light of this, the additive manufacturing technology represented by
LPBF has carried out an upsurge of applied research in medical fields such as orthopedics,
dentistry, and cardiovascular stents [27–29].
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On the other hand, bone implants also demand suitable degradation rate to match
the growth rate of new bone tissue [30]. In the present study, ZnS was introduced into the
Fe matrix to accelerate degradation. Both the immersion tests and electrochemical tests
proved that the Fe/ZnS showed an enhanced degradation rate, since the ZnS promoted the
collapse of the passive film. In fact, the collapse of the passive film was closely related with
its electronic properties. Herein, the typical Mott-Schottky plots were used to characterize
the electronic property of the passive film, as shown in Figure 8a. The positive slopes of
the two curves indicated that the passive film exhibited n-type semiconductor behavior.
It was attributed to the present of minority carriers in the corrosion layer, and its defects
were composed of oxygen vacancies. The variation range of passive film defect density
with polarization potential has been shown in Figure 8b. It was obvious that the donor
density in the corrosion layer increased with the increase of polarization voltage, thus
resulting in the increase of vacancy accumulation between the Fe matrix and passive film
interface. Therefore, the corrosion pits were formed in the Fe matrix, as verified by the
corrosion surface and electrochemistry experiments. The calculated oxygen vacancy density
of the passive film also demonstrated these results, as shown in Figure 8c. The electronic
conductivity of the general corrosion product film was related with the defect concentration,
according to other research result. The defect concentration for Fe/ZnS composite could
enhance the electron transmission of the passive film, thereby resulting in the formation
of corrosion pits on the surface. In this condition, the protective effect of the passive film
was gradually weakened, which further accelerated the damage of passive film and the
corrosion of the Fe matrix.
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In the present work, the incorporation of ZnS changed the properties of the passive
film. It was believed that the added ZnS would undergo a disproportionation reaction in
SBF, and formed S-containing species such as S2−, HS−, and S2O3

2− ions [31]. The catalysis
of S2− absorbed on Fe matrix through the anodic reaction led to an increase in anodic
dissolution kinetics, resulting in a higher maximum current density. With a positive shift of
the anode potential, S-containing species oxidized from low to high valence, resulting in
the formation of adsorbed S elemental and thiosulfate ion. Previous studies demonstrated
that S-containing species had a detrimental effect on Fe matrix. Marcus et al. suggest
that the adsorbed S weakened the metal-metal bond, resulting in lower activation energy
for the dissolution of surface metal atoms [32]. In addition, the adsorbed S might hinder
or delayed passivation, as it hindered the available sites for hydroxyl ion adsorption, a
precursor for passive film formation [7]. Furthermore, the formation of S-containing phases
led to localized acidification, which also contributed to the degradation of the Fe matrix [33].
As our electrochemical tests proved, Fe/ZnS showed a significantly enhanced corrosion
current density, which was almost five times that of the Fe part.

Generally, bone implants not only require a porous structure and appropriate degra-
dation rate but also need good biocompatibility [34,35]. Both Fe and Zn were the trace
elements of human body, and possessed good biocompatibility. As our cell testing proved,
the cell viabilities of Fe/ZnS of Fe extracts were higher than 80% at day seven, which was
acceptable as bone implant. It was worth noting that Fe/ZnS had a higher degradation
rate, that was, a higher ion concentration for Fe/ZnS group. However, the cellular activity
for Fe/ZnS group was still higher than that of the Fe group. This may be due to the fact
that the released Zn ions exerted a positive role. Zn plays a significant role in the formation,
development, mineralization, and maintenance of healthy bones [36,37]. Thus, it was
expected that Zn ions released from the Fe/ZnS composites could promote cell growth
and proliferation.
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5. Conclusions

In the present work, ZnS was incorporated into Fe based implants to improve their
degradation behavior. An Fe based biocomposite was fabricated by LPBF. The Mott-
Schottky test analysis indicated that S destroyed the formation of the passivation layer and
caused the continuous exposure of Fe matrix to corrosion solution, thus accelerating the
degradation rate. After immersion in SBF for 28 days, heavy corrosion product and porous
film with numerous corrosion pits presented on the Fe/ZnS composite, which revealed
that it undergone severe corrosion. Besides, the incorporated ZnS had no significant effect
on the biocompatibility for Fe based implants. All of the results showed that the Fe/ZnS
biocomposite was a good choice for use as a bone repair material.
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