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Abstract: A mode-localized ∆E-effect magnetic sensor model is established theoretically and nu-
merically. Based on the designed weakly coupled resonators with multi-layer film structure, it is
investigated how the ∆E-effect of the magnetostrictive film under the external magnetic field causes
the stiffness perturbation of the coupled resonators to induce the mode localization effect. Using the
amplitude ratio (AR) as the output in the mode-localized ∆E-effect magnetic sensor can improve the
relative sensitivity by three orders of magnitude compared with the traditional frequency output,
which has been verified by simulations based on the finite element method (FEM). In addition, the
effects of material properties and geometric dimensions on sensor performance parameters, such as
sensitivity, linear range, and static operating point are also analyzed and studied in detail, providing
the theoretical basis for the design and optimization of the mode-localized ∆E-effect magnetic sensor
in different application scenarios. By reasonably optimizing the key parameters of the weekly coupled
resonators, a mode-localized ∆E-effect magnetic sensor with the sensitivity of 18 AR/mT and a linear
range of 0.8 mT can be achieved.

Keywords: ∆E-effect; magnetoelastic coupling; magnetic field sensing; coupled resonators; mode
localization; FEM

1. Introduction

In recent years, MEMS resonators have received high attention in high-performance
magnetic field sensors [1,2]. Especially in the field of biomedicine, the detection of low-
amplitude quasi-static magnetic fields is of great interest, such as real-time biomolecule
detection and wearable cardio-encephalographic signal detection [3,4]. It is necessary to
develop magnetic field sensors with higher sensitivity, better stability, smaller size, simpler
preparation, and lower energy consumption.

Among the mainstream magnetic field sensors, the Hall sensor has a large dynamic
range but it is difficult to detect weak magnetic fields below µT with limited sensitivity [5].
Superconducting quantum interferometers (SQUID) can be well qualified for the detection
of small-amplitude and low-frequency magnetic fields far below the pico-Tesla range [6],
but their large size is difficult to integrate and array on-chip. The tunneling magnetoresis-
tance (TMR) sensors exhibit high sensitivity and lower power consumption [7], but their
low-frequency inherent noise, especially the 1/ f noise component, is unfavorable [4,8]
for the application scenarios where the detection of quasi-static magnetic fields is needed.
Therefore, MEMS magnetic field sensors with a high limit of detection (1–100 pT/

√
Hz)

and the larger low-frequency measuring range (0.01–100 Hz) for the weak magnetic fields
(below 1 nT) have received much attention [9–12].
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Magnetoelectric sensors based on multilayer thin films have great potential [13–15]
for the detection of magnetic signals near non-resonant frequencies, especially for quasi-
static and low-frequency magnetic fields. Using the direct magnetoelectric effect, the
magnetoelectric composite films have high electrical noise caused by parasitic impedance
and small magnetoelectric coupling coefficient in nonresonant regimes, resulting in low
magnetoelectric sensitivity [9,12,16]. Thus, it seriously affects the performance of the
magnetic field sensor.

The above problems can be improved via the frequency modulation principle of the
∆E-effect of thin-film magnetostrictive materials. The ∆E-effect refers to the phenomenon
that the elastic modulus of the magnetostrictive material changes with magnetization
due to magnetoelastic coupling, which generally occurs in different components of the
elastic stiffness tensor [17,18], and the change of the component adds additional magne-
tostriction strain [19]. The ∆E-effect magnetoelastic sensors are most commonly based on
resonant structures, especially cantilevers with a ferromagnetic layer ranging from 100 nm
to 2 µm [20–24], which are electrically actuated near the resonant frequency through a
piezoelectric layer. For the operating mode among the cantilever-type magnetic sensors
utilizing the ∆E-effect, there are the first- and second-order bending modes [22], the tor-
sion mode [18], contour mode [21], and surface acoustic resonators [25] for the magnetic
sensitivity improvement. In earlier years, doubly clamped Metglas resonators [26] have a
sensitivity of 4.7 Hz/T under a 0.7 mT DC bias. Among the recent developments, a repre-
sentative nanoplate contour mode sensor [21] obtained a high DC magnetic field sensitivity
at 5 Hz/nT. Various ∆E-effect sensors [20,23,24] have shown the ability to detect both low-
frequency and amplitude (<1 nT) magnetic fields. In addition, for the sensor model build-
ing, in previous works, the ∆E-effect models were only used for magnetic material layer
based on the assumption of one-dimensional material deformation [27–29] and were not
investigated as a magnetic sensor. In recent years, some important works [18,20,22,24,30]
have constructed theoretical models of the ∆E-effect magnetic sensors based on the premise
of hard-axis in-plane magnetization of paramagnetic materials using quasi-static single-
spin approaches, in which the frequency output sensitivity for different working modes is
in good agreement with the experiments and explains its magnetic field frequency depen-
dence. However, the sensing mechanism is still limited to the traditional resonant frequency
and magnitude output, and the response to the magnetic field is not sufficiently sensitive.

In contrast to the sensors based on the mode localization effect, they exhibit the
ultra-high parametric sensitivity (up to three to four orders of magnitude [31–33]) and
the coupling between the two resonators is constructed mechanically or electrostatically.
In the weakly coupled resonator (WCR), a small perturbation will lead to an energy
redistribution [34]. In this case, the amplitude ratio (AR) readout metric can lead to
ultra-high sensitivity, and other well-recognized advantages of weakly coupled resonant
sensors are linearity and immunity to common-mode noise response [33]. The mode
localization effect based on the WCR structure has been widely used in inertial sensors and
biosensors [35], such as acceleration sensors [36–38], and tilt sensors [39], and achieves high
sensitivity and low detection limit. Among them, there is a mode-localized magnetometer
via the Lorentz force [40,41], the sensitivity of AR is 7800 times higher than that of the
frequency, showing the sensitivity of 36.4 AR/T with the resolution of 1.6 µT/

√
Hz, which

unfolds a promising application prospect of the mode localization effect in magnetic field
sensors. Therefore, if ∆E-effect sensors can adopt the sensitive mechanism of the mode
localization effect, a significant improvement in magnetic sensitivity can be anticipated in
such sensors. So far, a numerical and FEM model of the ∆E-effect magnetic sensor using
mode localization to predict the sensitivity and the linear range of the sensor is lacking to
comprehensively guide the design of this type of sensor.

This paper is organized as follows: The second section first introduces the structure
of the coupled resonator. Then, we build a mode-localized ∆E-effect magnetic sensor
analytical model theoretically. Based on the designed WCR with multi-layer films, a FEM
model is constructed to validate and interpret the analytical model. In Section 3, we
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investigate the magnetoelastic properties of the WCR and the AR output response under
the applied magnetic field. Moreover, the effects of the device material and geometric
parameters on the sensitivity and linear range of the sensor are investigated and discussed
in detail, which can be used as guidance for the design and optimization of the ∆E-effect
magnetic sensor using mode localization effect. Finally, a conclusion of our work is given
in Section 4.

2. Principles and Methods for Modeling
2.1. Sensor Analytical Model

The proposed mode-localized magnetic sensor based on the ∆E-effect is realized by
the weakly coupled resonator (WCR). For our resonator structure, it specifies the length
L of the cantilever beam, the width w, and the thickness t along the direction x, y, and
z-axis, respectively, to establish a space rectangular coordinate system. As shown in the
composite films’ stack of Figure 1c, from the top to the bottom, tp is the thickness of the
piezoelectric layer, tm is the thickness of the magnetostrictive layer, and ts is the thickness
of the substrate polysilicon. The coupled resonator consists of sensitive Resonator 2 (R1
containing a layer of the magnetostrictive film), Resonator 1 (R1 containing an insulation
layer of the same thickness), and a mechanically coupled beam to connect R1 and R2.

In our analytical model, we assume the ferromagnetic magnetic particles in the mag-
netostrictive phase stay in a single domain state, and all of its internal magnetizations
are pointed in the same direction. To describe the dependence of the internal uniaxial
magnetic anisotropy energy on the direction of spontaneous magnetization, the well-
known Stoner–Wohlfarth energy density function based on the spin-orbit coupling theory
is used [42], which includes a magnetic crystal anisotropic term, the general Zeeman term,
demagnetizing term, and a magnetoelastic term and is given in order by Equation (1):

u = Ku − Ku(m·θEA)
2 − µ0Msm·H− Ks + Kσ

Ks =
1
2 µ0Msm·Hd , Kσ = −σ·λ (1)

where the normalized magnetization vector m and the easy-axis vector θEA are denoted
by polar angles θ and azimuthal angle ϕ in spherical coordinates. The magnetic vacuum
permeability is given by µ0, saturation magnetization by Ms, effective uniaxial magnetocrys-
talline anisotropy by Ku, the shape anisotropy energy density by Ks, the elastic anisotropy
Kσ, and the applied external magnetic field H. The demagnetization field is given by
Hd = −MsD·m, where D is the demagnetization matrix whose effective factors can be
estimated by certain geometrical shapes when the internal magnetic field is uniform [43,44].
The total effective anisotropy energy Ke f f of the magnetostrictive film is expressed by
the sum of the three energy density parts in Equation (1), namely Ke f f = Ku + Ks + Kσ.
When the magnetization reaches saturation, the anisotropic magnetic field is given by

Ha =
2Ke f f
µ0 Ms

[45], which is the equivalent field of the effective anisotropic energy density of
the spontaneous polarization.

Assuming the spontaneous polarization points to the easy axis (ϕEA = π
2 ), the model

defaults to the <100> crystal-oriented hard-axis in-plane magnetization [18,22], and the mag-
netic hard axis is selected as the sensitive direction (along the x-axis), which requires a large
external magnetic field to reach saturation magnetization. The out-of-plane components of
the magnetization vector m and the easy-axis vector θEA are both zero (θm = θEA = 0). The
normalized magnetization rotation defined by ϕ under external magnetic field is shown
in Figure 1a, and Figure 1b is its top view in the magnetostrictive film layer. The blue
area represents the rotational standard deviation ratio δEA around the mean easy-axis
angle ϕEA.

In the orthorhombic crystal system, the ∆E-effect is represented by the change in the
elastic matrix ∆C, whose change adds an additional magnetostriction strain [19]. The elastic
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matrix C is calculated by C(H, ϕ) = S−1(H, ϕ). The linear change of the compliance matrix
components is given by Equations (2) and (3):

Sij(H, ϕ) =
∂εi
∂σj

= Sm,ij + ∆Sij(H, ϕ) (2)

∆Sij =
∂λi
∂σj

= −∂λi
∂ϕ

∂2u
∂ϕ∂σj

/ ∂2u
∂ϕ2 −

∂λi
∂θ

∂2u
∂θ∂σj

/∂2u
∂θ2 (3)

The magnetization-dependent part ∆Sij can be obtained from the equilibrium con-
ditions [18] that are given by the first-order derivatives of u: ∂u

∂ϕ = 0, ∂u
∂θ = 0. Because

of the nonlinear and anisotropic saturation properties of the magnetization of paramag-
netic magnetostrictive materials [29,46], the constitutive model for the ∆E-effect nonlinear
magnetization function is given by the Langevin function which is based on Boltzmann
statistics with a clear physical background [27], given by Equation (4):

Mm = MsL(|ψ|)
Heff∣∣Heff

∣∣ with |ψ| =
3χm

∣∣Heff
∣∣

Ms
(4)

Here, χm is the initial magnetic susceptibility. The relaxation factor ψ is related to the
change of the effective magnetic field Heff, which is given by Equation (5):

Heff = H + Hd + HaθEA·(m·θEA) (5)

In the linear deformation range of the magnetostrictive material, the stress–strain
relationship of the material system satisfies Hooke’s law [47]: σm(H) = C(H, ϕ) λm(H),
where λm is the magnetostrictive strain tensor and σm is the magnetostrictive stress tensor,
which are given in Appendix A and the components of σij, Cij, λij will be calculated in
Section 3.1.

The ∆E-effect is the overall representation of the response of each component of the
compliance matrix to magnetization [17]. The Reuss–Hill approximation based on first
principles is a useful method to convert the anisotropic single-crystal elastic constants into
isotropic polycrystalline elastic moduli [48]. The shear modulus G and bulk modulus B
and can be obtained by Cij(H), and then, the approximate dependence of Young’s modulus
with the magnetic field is obtained according to Em = 9BG

3B+G [49], where Em is the Young’s
modulus of the magnetostrictive film and the derivation is given in Appendix A.

When the frequency of H is much lower than the natural frequency of the cantilever,
the distribution of magnetostrictive strain along its longitudinal direction is almost uni-
form [50], and the normal stresses σ22 and σ33 on the film are the same in magnitude and
opposite in direction due to the symmetry as shown in Figure 1d. For driving a cantilever
beam operating in bending vibration mode, the first resonant frequency fr depends on the
force Tm applied along its longitudinal direction [51,52]. The effects of shear deformation
and rotational inertia can be ignored for slender cantilever beam structure, that is, the
change of shear stress σij can be neglected. Therefore, assuming that the magnetostrictive
normal stress is uniformly distributed in the cross-sectional area, using the Rayleigh energy
method [53], the expression of the natural frequency fr of the resonator with multilayer
films under the magnetostrictive stress is given as a function of the externally applied
magnetic field [51]:

fr = f0

√
1 + γnTm

L2

2 ∑i Ei Ii
with f0 =

α2
n

2πL2

√
∑i Ei Ii

A(∑i ρi)
(6)

Tm is given by integration of σ11 on the cross-section area of the magnetostrictive film
given by Equation (7):

Tm =
x tm

0
(σm(H) + σm,0)dA (7)
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where Tm and Em are both functions of the H. Ei, Ii, ρi correspond to Young’s modulus,
the moment of inertia, and material density of the magnetostrictive layer, piezoelectric
layer, and substrate layer, respectively, and σm,0 is the prestress along the x-axis. The
stress correction term [54] is defined as γn = 2

αn3 tan h αn
2
(
αntan h αn

2 − 2
)
. For the first-order

natural mode of the cantilever beam, the coefficient is αn = 1.8746. Resonator 2 serving as
a sensitive resonator, the change of the stiffness ∆k of Resonator 2 in the applied magnetic
field can be obtained from Equation (6) by setting ω = k0

M .
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of the WCR with the change of magnetization and coordinate system used for the sensor analytical 
model; (b) the enlarged top view of the magnetostrictive layer in (a). The red circle represents the 
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bottom: the equivalent mass-stiffness-damping structure diagram of the WCR, which satisfies the 

Figure 1. In-plane hard-axis magnetization process of magnetostrictive materials based on the ∆E-
effect and the structure of the weakly coupled resonator in our model. (a) The 3D structural diagram
of the WCR with the change of magnetization and coordinate system used for the sensor analytical
model; (b) the enlarged top view of the magnetostrictive layer in (a). The red circle represents the
normalized in-plane magnetization process of the magnetic layer, and the blue area indicates the
angular standard deviation of the easy axis; (c) top: the cross-sectional view of the WCR, Resonator 2
is sensitive to the magnetic field with a magnetostrictive film, while Resonator 1 is replaced with
an insulating layer in the same position. The two resonators are coupled by a mechanical beam;
bottom: the equivalent mass-stiffness-damping structure diagram of the WCR, which satisfies the
weak coupling condition, where the stiffness of Resonator 2 is regulated by the applied magnetic field;
(d) the stress distribution of magnetostrictive films under the ∆E-effect is induced after applying an
external magnetic field to adjust the resonator stiffness.

Since the coupled resonator is driven around the first-order resonance frequency, in-
plane and out-of-plane resonance modes are obtained. Consequently, the 2-DOF (2 degrees
of freedom of mass motion) mass-spring-damper system is constructed where the magnetic
field acts as the source of stiffness perturbation, and the system model is shown in Figure 1c.
It consists of the proof mass M (since tm � ts, supposing M = M1 ≈ M2), mechanical
spring stiffness k0, and damping coefficient c = c1 = c2.

The coupled resonator is driven piezoelectrically by fi(t), i = 1, 2. The energy of
the two resonators is injected periodically and the WCR works in the resonant mode.
Considering that H = 0, the system energy initially presents a uniform distribution. In the
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case of weak coupling, |∆k| < |kc| � |k0| [31], where kc is the coupling stiffness. When
the H is applied, the stiffness of M2 changes slightly and the steady energy distribution is
broken, which can effectively suppress the propagation of vibration energy, and the mode
localization caused by stiffness perturbation occurs.

According to the above analysis of stiffness perturbation and the assumption of weak
coupling, the dynamics of the 2-DOF coupled resonant system can be described by two
differential equations:

..
x1 +

ω0

Q
.

x1 + ω2
0(1 + κ)x1 − κω2

0x2 =
f1(t)
M1

(8)

..
x2 +

ω0

Q
.

x2 + ω2
0(1 + κ + δ)x2 − κω2

0x1 =
f2(t)
M2

(9)

where, ω0 =
√

k0
M , ωip and ωop are the in-phase and out-of-phase natural mode eigen-

frequencies of the coupled resonators. κ = kc
k0

is the stiffness coupling scaling factor and

δ = ∆k
k0

is the normalized stiffness perturbation. x1 and x2 are the displacements of the

two masses, respectively. Q = Mω0
c is the quality factor. For a relatively small coupling

strength κ, the two modes of the system are close to each other, and mode overlap is prone
to occur. To avoid mode aliasing, it is necessary to satisfy the anti-mode aliasing [33,34]
condition

∣∣ωip −ωop
∣∣ < ω3dB. Thus, the sufficient low damping and higher quality factor

need to be considered during the WCR design.
According to the equipartition theorem, the Nyquist relation, and Laplace transfor-

mation of differential equations of a 2-DoF mode-localized resonant system, the mode
localization theoretical transfer function Hi(jω) in the frequency domain can be derived,
and the mode frequency ωi is approximately unaffected by damping under the condition
of anti-aliasing [34]. According to the force applied piezoelectrically f2(t) > f1(t) = 0
for the WCR driving, it can be equivalent to an AC f2(t) exerted on the Resonator 2. The
eigenfrequency and amplitude ratio (AR) as a function of stiffness perturbation δ can be
expressed as:

ωi ≈
(
ω0

(
1 + κ +

1
2

δ− ν
1
2

√
δ2 + 4κ2

)) 1
2

with i = ip, ν = 1; i = op, ν = −1 (10)

ARi =

∣∣∣∣H2(jωi)

H1(jωi)

∣∣∣∣ ≈
∣∣∣∣∣∣∣
1 + κ + δ−

(
ωi
ω0

)2
+ j 1

Q
ωi
ω0

κ

∣∣∣∣∣∣∣ i = ip, op (11)

When the AR is chosen as the output metric, the κ and Q of the coupled resonator
should be reasonably designed to obtain enhanced parametric sensitivity. Operating in the
in-phase vibration mode, the AR has a linear operating range to the right of the veering
zone [55] under linear stiffness perturbation δ. However, it can be seen from Equation (6)
that there is a nonlinear relationship between δ and the magnetostrictive stress that leads
to a decrease in the linearity of the AR output, which will be discussed in Section 3.2. So
far, the basic model of the mode-localized WCR with composite films under magnetic field
disturbance is established, and AR(H) serves as the output metric.

2.2. Sensor Finite Element Model

To verify the mode localization effect of the analytical model under the external
magnetic field, a FEM model is constructed based on the structure of the WCR, where the
entire device is surrounded by an air domain and an infinite element domain is constructed
outside the air domain. To fully calculate the multiphysics coupling effect, the distance
between the WCR structure and the boundary of the air domain is controlled to be over
3 times the length of the cantilever beam (maximum size of the structure). A sufficiently
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dense meshing is built for the magnetostrictive and piezoelectric films while the air domain
is sparsely divided. The material parameters and geometric parameters are given in
Appendix B and the configuration for FEM is as follows.

As for the material selection for multilayers, the polysilicon is selected for the substrate
layer, the AlN for the piezoelectric driving layer, and the Fe-based ferromagnetic material
for the magnetostrictive film to build cantilever-type resonators. The coupling method
is mechanical and a double-ended fixed straight beam or a folding beam is used as the
coupling structure. R2 is a sensitive resonator covered with a layer of magnetostrictive
film, while R1 is a follower resonator without magnetically sensitive material attached. The
initial displacement and velocity fields are set to zero, and fixed boundary constraints are
imposed on the end of cantilevers close to the mechanically coupled beam. To be consistent
with the magnetization process of the numerical model, the Langevin function is used as
the hysteresis-free magnetization function.

As for the piezoelectric driving, the initial electric potential of the coupled resonator
is zero. The DC voltage of V1 = V0 is applied on the R1 terminal, and the voltage
V2 = V0 + U0 cos(ωvt + φv) is applied on the R2 terminal. The AC magnitude is U0, the
angular frequency is ωv and the phase angle is φv, and the polysilicon substrate layers
in two resonators are both grounded. By coupling the linear piezoelectric constitutive
equation with the mechanical motion equation using Equation (12), the coupled resonator
is driven to work at its resonant frequency.

σpi = C∗
p εp − dpEi with E = −∇Vi , i = 1, 2 (12)

where σpi is the piezoelectric-induced stress, C∗
p = Cp

(
1 + jηp

)
is the piezoelectric layer

elastic tensor, and ηp is the damping loss factor. dp is the transpose of electromechanical
coupling tensor and Ei is the electric field intensity in the piezoelectric layer. Similarly,
for the substrate layer, there are σs = C∗

s εs with C∗
p = Cs(1 + jηs). Then, the boundary

condition of magnetic insulation is applied to the infinite element domain with the zero
initial value of the magnetic vector potential, and the uniform background magnetic flux
density along the x-axis is applied as the sensing magnetic field. The above configuration
is solved within the eigenfrequency and frequency-domain study methods in COMSOL
Multiphysics® 5.6a and the study results will be compared with the analytical model and
fully discussed in Section 3.2.

3. Results and Discussion
3.1. Magnetostrictive Stress from ∆E-Effect

With regards to the model result analysis of the ∆E-effect, the initial prestress is set
to be zero first. As shown in Figure 2a, based on the in-plane hard-axis magnetization,
the magnetostrictive strain tensor components are quantified. With the macroscopic spin
magnetization rotating toward the H direction, the magnetostrictive expansion occurs
along the x-axis, while the compression occurs along the y and z-axis. With the increase of
the applied magnetic field, the component of the magnetostrictive strain tensor increases
approximately linearly. Since the out-of-plane polarization is ignored, the shear strains λ13
and λ23 are zero and the change rate of the λ12 is very small, only 1.5 ppm. The normal
strain λ11 has a large variation rate until H = Ha, and that of λ22 and λ33 components
are close to half of λ11. When the H > Ha, λ11 increases infinitely close to λs. The results
in Figure 2b demonstrate the ∆C effect. The changes in the components of the elastic
matrix tensor are normalized by their initial value, where C11, C12, C66 are most associated
with bending vibrations, and because of the large shape anisotropy of the film, C44 and
C55 remain approximately constant. C11 undergoes a process of first softening and then
stiffening with the increase of H, reaching a minimum value at Ha, and returning to C11,0
subsequently. The C12 change is opposite to the change of C11, and C66 reaches a minimum
at Ha and then gradually varies to its initial value. The changes of the above components
are continuous, and they are all direct reflections of the positive isotropic magneto-elastic
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coupling. According to the Reuss–Hill approximation of first principles, the changes
of each component are expressed as a whole in the change of Young’s modulus of the
magnetostrictive layer, and the ∆E-effect is estimated.
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Figure 2. Magnetoelasticity properties of the ∆E-effect: (a) the modeled variation of magnetostrictive
strain components as functions of the external applied magnetic field H; (b) the relative changes of
key components of the magnetostrictive material stiffness tensor; (c) under the different axial tensile
initial stress, the relationship between the normalized Young’s modulus and magnetic field in the
magnetostrictive film. When the anisotropic magnetic field Ha is reached, Em has a minimum value;
(d) the dependence of magnetostrictive stress tensor components on the external magnetic field.

As shown in Figure 2c, Young’s modulus Em of the magnetostrictive layer reaches a
minimum value around Ha, similar to the change of C11, which undergoes a process of
softening and then hardening back to the initial value. The influence of the initial tensile
stress on Em weakens the ∆E-effect shown in Figure 2c; the ∆Em is reduced and Ha also
decreases with the increase of the σm,0, but the rate of change is almost the same. According
to the ∆C effect, the magnetostrictive stress is calculated in Figure 2d. The σ11 component
of the stress tensor increases approximately linearly with the increase of the H. While the
normal stress σ22 and σ33 are numerically close to half of the σ11, σ12 and σ13 is much smaller
than σ11. For the generation of axial stress, the change in normal stress σ11 acts as the main
source of stiffness perturbation, and the stresses σ22 and σ33 due to the geometric symmetry
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can be canceled. The changing trend of normal stress and strain in this process is in good
agreement with the FEM results.

According to Equation (6), the change of fr of R2 is determined by the response of Em
on ∑i Ei Ii, σ11 and tm. σ11 has a stiffness attenuation effect when acting on the cross-section
of the integral cantilever beam, which leads to a small change of the resonant frequency
and a small stiffness disturbance. As Ha is being reached, the total eigenfrequency variation
can reach 3470 ppm, which determines the effective range of stiffness perturbations in this
WCR system.

3.2. Frequency Response and AR Response

The WCR is driven at the resonant frequency under different values of the H and the
coupling structure in this section is a folded beam. The stress distribution, mode shapes,
and magnetic flux density distribution are shown in Figure 3. As shown in Figure 3b,
when the applied magnetic field is 1 mT, the largest stress is in the magnetostrictive layer.
The top left subgraph is an enlarged view of the cross-section along the x-axis, which
illustrates larger stress is distributed in the central part of the magnetostrictive film along
the longitudinal direction with a wide area, and it gradually reduces to zero at both ends,
which reflects the rationality of the normal stress σ11 in the central part as the main source
of the stiffness disturbance.
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Figure 3. The FEM simulation for the WCR: (a) the WCR meshing diagram and the model is divided
into an air domain, an infinite element domain, and a device domain (zoom-in); (b) stress distribution
of the folded-beam mechanically coupled WCR under the 1 mT DC magnetic field along the x-axis;
(c) driving Resonator 2 piezoelectrically, the out-of-phase and the in-phase vibration modes of
the WCR; (d) magnetic flux density distribution map of the WCR and the convergence within the
magnetic film only.

Figure 3d shows the magnetic flux density distribution of the coupled resonator when
the applied magnetic field is 4 mT. The magnetic flux density is more concentrated at the
corner of the WCR with the edge effects. Neither R1 nor the coupling beam structure has a
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converging function on the magnetic field. For the sensitive R2, the magnetic flux density
in the magnetostrictive film layer is large and uniform and diverges at the fixed constrained
end, which shows the magnetization direction under the effective magnetic field Heff. The
two fundamental vibration modes, ωip and ωop, of the coupled resonator are shown in
Figure 3c when R2 is driven. The symmetry of the two vibration modes is broken due to
different adherent films on each resonator, and the ωip mode is used as the sensor working
mode. The above results are obtained using Structure 1 whose geometric parameters are
given in Appendix B.

In FEM simulation, in order to obtain a reasonable Q factor and coupling stiffness κ of
the WCR for numerical model quantification, the anisotropic loss factor ηp = ηs = 0.001 [56]
of the substrate and the piezoelectric layer is applied to simulate the damping term. As
shown in Figure 4a, calculated using device Structure 2, the frequency response represented
using the displacement RMS (root-mean-square) for R1 and R2 are shown under the applied
magnetic field varying from 0 to 3 mT. The blue solid line represents the magnitude of
the displacement RMS of R2, and the orange dotted line represents that of R1. With the
increase of H, the amplitude-frequency response curve of R1 remains almost unchanged,
and the displacement amplitude response of R2 gradually increases linearly. Therefore,

the resonance peak ratio of the two
H2(jωip)
H1(jωip)

increases nearly linearly. Under the frequency

domain verification of FEM, the mode localization effect under the external magnetic field
disturbance occurs in this WCR. According to Figure 4a, the quality factor is analyzed when
H = 0, Q0 = 626.29 is calculated, which corresponds to the typical cantilever-type ∆E-effect
sensors and the WCR [20,57–60]. The coupling factor κ = 2.29× 10−4 is estimated [61],
which meets the anti-aliasing condition

√
δ2 + κ2 ≥ 1

Q .
Similarly, using the device Structure 3, the calculation results of its Q and κ are brought

into Equations (10) and (11), and the analytical model is used to predict the frequency
response and amplitude ratio response of the IP and OP modes. Figure 4c,d are the
comparisons of the model prediction and FEM simulation for the eigenfrequency and the
AR. The dotted line in the figure represents the negative direction of the magnetic field
and the main results are discussed in the case of H > 0. Since the stiffness disturbance
of R2 has a decreasing trend, when the WCR works in the IP mode, the eigenfrequencies
ωip decrease, and the OP mode remains unchanged. The FEM results show a 3500-ppm
change inωip when H = Ha is reached. When H > Ha, since the magnetization is close to
saturation, the model predicts that the frequency reduction rate decays rapidly. The dashed
box in Figure 4c represents the sensor saturation area for the eigenfrequencies and the AR
output, and the magnitude of Ha determines the range of the sensor to some extent, which
will be discussed in detail in Section 3.3.

The initial value of the AR above 1 in Figure 4d comes from the asymmetry of the films’
structure of R1 and R2, which should also be from the asymmetry of meshing generation in
FEM. The AR sensitivity is predicted by taking the variation range 1~3 mT of the applied
magnetic field, and the fitting result by the least-square method with 95% confidence
bounds, and R2 = 0.988 has a sensitivity of 8.7 AR/mT as shown in Figure 4b. The trend of
the model analyses is almost consistent with the simulation results of the FEM simulation.
Both of them show an 1850 times improvement in relative sensitivity compared to the
eigenfrequency response to magnetic fields using the amplitude ratio output.
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Figure 4. The analytical model and FEM simulation to verify the mode localization effect under the
magnetic field disturbance in the WCR: (a) the frequency response of R1 and R2 are represented
using the displacement RMS magnitude when the applied magnetic field varies from 0 to 3 mT; (b)
fitting curve of the linear correlation between amplitude ratio and magnetic field with 95% confidence
bounds and R2 = 0.988; (c) prediction of the eigenfrequency response of the IP and OP modes on the
external magnetic field within the comparison of the model prediction and FEM. The dashed box
represents the sensor saturation area; (d) prediction of the amplitude ratio response of the IP and OP
modes on the external magnetic field.

3.3. Multi-Parameter Optimization Analysis

There are many factors from the material properties of the magnetostrictive film and
the geometry of the WCR that affect the sensitivity of the mode-localized amplitude ratio
output under the external magnetic field. The specific effects of each parameter on the
sensor performance are discussed in this section.

The composite film’s material parameters and device geometry changes are meaning-
ful and achievable based on currently available published works [56,62–64]. As shown
in Figure 5a, the relationship between the AR and magnetic field is calculated when the
saturation magnetostriction λs changes from 50 ppm to 170 ppm. By increasing the λs, the
slope of the AR curve increases regularly, and the anisotropy magnetic field Ha remains
unchanged. The red arrow represents the direction of change of the AR curve. The increase
in the AR sensitivity is mainly due to the stronger stiffness perturbation caused by the larger
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magnetostrictive strain according to Equation (A3). As shown in Figure 5b, increasing the
saturation magnetization Ms can increase the slope of the AR curve in the local region,
but at the same time, the caused decrease of Ha reduces the linear range of the sensor
such as the dark red-dotted curve with large Ms in Figure 5b. The improvement of its
sensitivity comes from stronger magnetization, and the decrease of Ha comes from the

restrictive relationship between the Ha and Ms (Ha =
2Ke f f
µ0 Ms

) under the circumstance of a
constant Ke f f . Additionally, increasing Ms also makes the shape anisotropy weaker in the
magnetostrictive film, resulting in attenuation in Ke f f , which reduces the linear range of
the sensor by decreasing Ha.
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Figure 5. Influence of key materials and geometric parameters on the AR magnetic output curves:
(a) the response to the AR when changing the saturation magnetostriction λs; (b) the response to
the AR when changing the saturation magnetization Ms; (c) the response to the AR when changing
the film tensile prestress σm0; (d) the response to the AR when changing the magnetostrictive film
thickness tm .

During the growth of multi-layer films, it is inevitable to bring residual stress in
the process, resulting in the WCR having the tensile prestress of the material layer [65].
The model is considered as shown in Figure 5c. When the initial prestress σm0 gradually
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increases from 0 to 4 MPa, the elastic anisotropy energy density Kσ increases, making
Ke f f decrease and reduces the Ha consequently. At the same time, the prestress brings
a bias to the decrease of the R2 stiffness, which increases the initial value of the AR,
and the AR sensitivity of the sensor remains almost unchanged under the influence of
increasing prestress. As shown in Figure 5d, with the increase in the thickness tm of
the magnetostrictive film, the Ha obviously decreases, while the AR sensitivity increases,
which is due to the larger magnetostrictive stress caused by the thicker film. The larger
thickness makes the shape anisotropy weaken sharply and the demagnetization factors are
no longer equivalent to the thin-film model, which changes the spatial distribution of the
internal stray field, and the magnetocrystalline anisotropy is overcome in most regions.
The Ke f f becomes very small and narrow the linear range consequently. (The dashed curve
corresponds to a very small linear range and Ha.)

To fully study the influence of important materials and geometric parameters on
the AR sensitivity, the linear range is also an important sensing metric to be considered.
Under the variation of different model parameters, the results are based on the mag-
netic magnitude response range of the nonlinearity less than 1% as the standard for the
sensitivity quantification.

As shown in Figure 6a, by changing λs from 30 to 300 ppm, and Ms from 0.6/µ0 to
1.5/µ0, the relationship between the AR sensitivity and range of measurement is obtained,
which is given by a four-dimensional color map (AR sensitivity and range tradeoff surface),
and the height of the surface represents the values of the AR sensitivity of the WCR and
the shade of color indicates the magnitude of the linear range (LR). From the contour of the
surface in Figure 6a, it can be seen that a larger λs and Ms bring greater AR sensitivity, but
much larger Ms will lead to a reduction in the linear range. Therefore, increasing λs is an
optimal choice to improve the sensitivity without sacrificing the linear range. The reason
for these changes has been explained in the previous section. This surface represents the
intrinsic dependence of the sensitivity and LR for mode-localized magnetic field sensors
based on the ∆E-effect. For selecting material parameters of the magnetostrictive film,
the tradeoff surface is partitioned to zones I–III to be a reference. When considering the
design of a large linear range magnetic field sensor, the I-zone is a suitable choice; while in
the design of a high sensitivity sensor, the III-zone is more appropriate. The II-zone is a
compromising area to be selected, and the parameters need to be selected according to the
specific application scenarios.

Since both tm and Ms will lead to the change of shape anisotropy and the change of Ha,
the two will cause a superposition decrease effect on the linear range, as shown in Figure 6b,
by changing tm from 0.1 µm to 7 µm, and Ms from 0.6/µ0 to 1.5/µ0, the sensitivity and
range tradeoff surface is divided into three zones in the same way in Figure 6a. Since
excessively large tm and Ms make the mode localization effect disappear, it is necessary to
avoid selecting large tm and Ms at the same time as much as possible.

To better reveal the trade-off relationship from the surface, taking the projection
surface of the saturation magnetization Ms = 0.75/µ0 in Figure 6b as an example to draw
Figure 7a, the intersection point between the sensitivity curve and the range curve can
be found in the function of tm. On the whole, the high AR sensitivity is accompanied
by a small linear range, which is explained in Figure 5d. As the tm increases within a
reasonable range, the sensitivity increases by nearly two orders of magnitude, and the
linear range decrease by nearly one order of magnitude. At the intersection of the two
curves, the sensitivity is close to 20 AR/mT, and the linear range is about 0.4 mT. Since
determining the linear range needs to meet the condition of less than 1% nonlinearity, it
is essential to increase the bias magnetic field to change the static operating point. At
the same time, HBias meets the demands of particular application scenarios that require a
certain bias magnetic field [66]. As shown in Figure 7b, increasing the film thickness can
reduce the initial HBias, which has a similar trend with the curve of the linear range. HBias
determines the static operating point of the sensor and, under the design of high sensitivity,
HBias needs to be taken into account. For example, to achieve a linear range close to the
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0.5 mT and 20 AR/mT sensitivity, HBias = 0.075 mT is required and tm = 3.5 µm needs to
be deposited.
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Figure 7. Selecting the projection surface of the saturation magnetization Ms = 0.75/µ0 from
Figure 6b: (a) the dependence of the AR sensitivity and linear range on the magnetostrictive film
thickness tm; (b) the dependence of the biased magnetic field and the linear range on the tm.

In terms of the area dimensions of the WCR, as shown in Figure 8a, selecting tm = 2.0 µm,
Ms = 0.8/µ0, λs = 130 ppm, the response of the length and width of the cantilever beam
to the AR sensitivity and LR is studied. The surface can illustrate obviously that the
larger cantilever beam length L and the smaller width w can bring higher AR sensitivity.
Consistent with the method of dividing the surface in Figure 6a, it is partitioned into
three representative zones I–III for reference. I-zone, II-zone, and III-zone are the large
linear range selection, the compromising performance selection, and the high sensitivity
selection respectively for the sensor design. Figure 8b reflects the influence of the width
of the cantilever beam on the sensitivity and LR when it determines L = 2.0 mm. The
two sets of curves go in opposite trends and can be selected within a range of sensitivity
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from 8 to 21 AR/mT and a linear range from 1 to 0.3 mT. It is worth mentioning that the
subgraph shows that with the increase in the width of the cantilever beam, HBias needs to
be increased (more than 2 mT HBias to reach the linear range of 1 mT), which is suitable for
the detection with a large bias background field.
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Figure 8. The dependence of the AR sensitivity and linear range with key resonator parameters:
(a) the response of the AR sensitivity and linear range to the WCR cantilever length L and width w.
Red dotted lines are used to partition zones I–III; (b) the dependence of the AR sensitivity and linear
range on the cantilever width w and the subgraph contains the relationship with the bias magnetic
field; (c) the dependence of the AR sensitivity and linear range on the piezoelectric film thickness tp;
(d) the dependence of the AR sensitivity and linear range on the coupling stiffness coefficient κ and
the subgraph includes the AR magnetic output curves under the different κ.

When selecting the thickness of the cantilever, only the thickness of the piezoelectric
layer tp can be changed due to the fixed substrate thickness. Figure 8c shows that increasing
the tp will not only lower the AR sensitivity but also decline the sensor linear range slightly.
So, under the premise of piezoelectric driving, the thickness of the piezoelectric layer should
be reduced as much as possible to achieve a higher thickness ratio of tm

tp
. However, when

considering the sensitivity of voltage as output based on the magnetoelectric coupling, for
higher magnetoelectric conversion efficiency, the ratio of magnetostrictive and piezoelectric
film thickness needs to be adjusted appropriately [67], and the magnetoelectric conversion
coefficient under mode localization requires further research. It is well known that reducing
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the coupling stiffness of the WCR can increase the sensitivity of the mode localization
effect [68]. As shown in Figure 8d, the subfigure shows the relationship between the AR
and the magnetic field with the coupling coefficient κ ranging from 2× 10−4 to 6× 10−4,
which has a similar trend with the increase of λs. The same trend of the sensitivity and linear
range curve in Figure 8d illustrates that reducing and optimizing the coupling stiffness of
the WCR, such as utilizing of the folded coupled beam to weaken the coupling stiffness,
can increase the AR sensitivity and linear range at the same time.

In general, the AR sensitivity and linear range are a pair of contradictions and a
compromise needs to be considered. A reasonable selection of material parameters and
geometric dimensions in the design process can obtain the target sensitivity and linear range.
The film material with high saturation magnetostriction or a weaker coupling stiffness
can enhance the AR sensitivity without sacrificing the linear range. Representatively, the
mode-localized magnetic field sensor based on ∆E-effect can be predicted to achieve a
sensitivity of 18 AR/mT and a magnetic linear range up to 0.8 mT with less than 1%
nonlinearity, which shall be verified in open-loop and closed-loop testing. The resolution
of the mode-localized magnetic field sensor with the AR as output depends not only on the
thermal noise of the WCR but also on the configuration of the interface circuit, which will
be discussed and analyzed in detail in follow-up works.

4. Conclusions

In this paper, an analytical model and FEM simulation of the mode localization mag-
netic field sensor based on the ∆E-effect are established to realize the high sensitivity
detection of low-frequency and small-amplitude magnetic field. The ∆E-effect of mag-
netostrictive films is investigated through the anisotropic energy density equation and
nonlinear magnetization model based on the uniaxial macroscopic spin-plane magneti-
zation condition. Stiffness perturbation from the ∆E-effect breaks the symmetry of the
coupled resonators resulting in the mode localization effect between resonators. Using
AR as the output in a mode-localized ∆E-effect magnetic sensor can improve the relative
sensitivity by 3 orders of magnitude compared to conventional frequency output.

The effects of material properties and key geometric parameters on the sensitivity and
linear range (the nonlinearity is less than 1%) of the mode-localization magnetic field sensor
are comprehensively analyzed. According to the model, increasing the saturation magne-
tostriction, reducing the substrate thickness, and weakening the coupling stiffness factor
can effectively improve sensitivity without sacrificing linear range. There are trade-offs
between the sensitivity, linear range, and bias magnetic field in the design and optimization
of the mode-localization magnetic field sensor depending on different application demands.
A magnetic field sensor with the sensitivity of 18 AR/mT and the linear range of 0.8 mT can
be realized by adjusting the key parameters of the WCR reasonably. The analytical model
can provide design guidance for the mode-localization ∆E-effect magnetic field sensor
with high sensitivity and large linear range, which is a promising candidate to meet the
demands for biomolecule detection and physiological signal detection in the biomedical
field. A mode-localized ∆E-effect magnetic field sensor will be fabricated according to this
model using the SOI process to demonstrate the improvement of sensitivity in future work.
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Appendix A

In the following, expressions for variables in the analytical model are given. When the
internal magnetic field Heff is uniform, the demagnetization matrix can be estimated by
geometric parameters [43]. The effective demagnetizing factors Dii in the midplane of the
rectangular magnetostrictive film are estimated by Equations (A1) and (A2)

D11
∼= (1 +

3
4

L
tm

(1 +
tm

w
))−1, D22 ∼= (1 +

3
4

w
tm

(1 +
tm

L
))−1 (A1)

D33 = 1− D11 − D22 (A2)

The magnetostrictive strain constitutive equation is given as Equation (A3):
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(A3)

where λs is the saturation magnetostriction, and Mmi is the magnetizing component. Since
the in-plane magnetization process is considered Mm3 = 0. According to the shear stress
reciprocity criterion, the stress σm of the magnetostrictive film under the static magnetic
field H is expressed by Equation (A4):

σm =



σ11
σ12
σ13
σ22
σ23
σ33

 =



C11 C12 Cm,13 0 0 C16
C12 C22 Cm,23 0 0 C26

Cm,13 Cm,23 Cm,33 0 0 0
0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 0 0 0 C66





λ11
λ12
λ13
λ22
λ23
λ33

 (A4)

From the calculated elastic matrix C, other structural properties, such as bulk modulus
B, shear modulus G, and Young’s modulus Em of the magnetostrictive film can be derived
using the Reuss–Hill approximation. The relationships between the upper and lower bound
of bulk and shear modulus and elastic matrix components are defined as:

BV = C11+C22+C33+2(C12+C13+C23)
9 (A5)

BR = 1
(S11+S22+S33)+2(S12+S13+S23)

(A6)

GV =
C11 + C22 + C33 − C12 − C13 − C23 + 3(C44 + C55 + C66)

15
(A7)

GR =
15

4(S11 + S22 + S33)− 4(S12 + S13 + S23) + 3(S44 + S55 + S66)
(A8)
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According to the expressions of bulk modulus B = BV+BR
2 and shear modulus

G = GV+GR
2 , Young’s modulus of the magnetostrictive film can be derived from Em = 9BG

3B+G .

Appendix B

Appendix B.1 The Geometric Parameters of The WCR

The WCR (Weakly coupled resonator) of the three different structures used in the main
text are given as follows. The geometric parameters of the cantilever beam selected for
the three basic structures are consistent, which are given in Table A1. The coupling beam
structures used by the three structures are different and are given in Table A2. The position
of the coupling beam is the distance from the fixed end of the cantilever beam. The size of
the air domain is 10 × 10 × 10 mm.

Table A1. Geometric Parameters for the Cantilever Beam with Composite Films.

L w tp tm ts

1.5 mm 0.1 mm 2 µm 2 µm 50 µm

Table A2. Geometric Parameters of the Coupled Beam for Different Structures.

Coupled Beam of WCR Length Width Height Couple Position

Structure 1 600 µm 5 µm 50 µm 350 µm
Structure 2 600 µm 5 µm 50 µm 300 µm
Structure 3 300 µm 10 µm 5 µm 300 µm

Where Structure 1 uses folded beams, the element size of which is given in Figure A1.
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Appendix B.2 The Material Properties of The WCR

The magnetostrictive material is based on Fe-based soft ferromagnetic materials, and
the parameters are reasonably selected based on the current works. The key material
parameters used by the analytical model and FEM are given as follows [30,56,62–64]:

The saturation magnetostriction λs = 130 ppm, the saturation magnetization Ms =
0.8
µ0

,

the effective magnetocrystalline anisotropy energy density Ku = 7.4 KJ/m3, the in-plane
easy-axis direction ϕEA = π

2 , the rotational deviation δEA = 0.6% around the mean
easy-axis angle ϕEA, the energy density deviation δKu = 15% around the mean easy-axis
angle Ku, and the static initial magnetic susceptibility χm = 65.

The AC voltage magnitude is U0 = 0.5 V applied to the piezoelectric layer of R2, with
the damping loss factor ηp = ηs = 0.001, Young’s modulus of the magnetostrictive layer
Em = 100 GPa, Poisson’s ratio of the magnetostrictive layer νm = 0.27, magnetostrictive ma-
terial density ρm = 7870 kg/m3, the piezoelectric layer Ep = 389 GPa, ρp = 3300 kg/m3,
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the substrate layer Ep = 160 GPa, ρs = 2320 kg/m3. The range of the values of the key
performance-influenced parameters is given in the main text.
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