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Abstract: A continuous line laser scanning inspection technique for tracing load-bearing structures
was developed and applied to defect detection of unidirectional carbon-fiber-reinforced polymers
for aero engines. The heat transfer model of the material was analyzed using the finite element
software COMSOL. Meanwhile, a laser platform was built and an image algorithm was used to verify
the feasibility of the method. The potential of this technique for detecting defects and providing
information on the location of defects in carbon fiber composites was analyzed. Results indicate
line laser thermal imaging can successfully determine the size, location, and crack angle of surface
damage with extremely high accuracy. The positioning accuracy error for impact and fracture defects
is less than 20%, and the detection rate can reach 100% if the defect is in the special position of just
leaving the heating area. The angle detection of fracture cracks can be accurate within 10°.

Keywords: NDT; carbon-fiber-reinforced polymer; defect location; finite element method

1. Introduction

The tremendous advances in materials manufacturing technology have led to the use
of carbon-fiber-reinforced polymers with excellent properties for aerospace, vehicles, ships,
construction, and many other fields [1,2]. As far as engineering applications are concerned,
the complex and variable environments in which carbon fiber is used have led to a decrease
in the overall performance of carbon fiber [3-6]. There is a great possibility of damage,
which cannot meet the design and use requirements. Therefore, it is necessary to evaluate
the safety and reliability of materials and components through a series of inspections at each
stage of production and maintenance. There are many means that are used quite often by
engineers and researchers. Ultrasound [7], radiation, eddy current [8], magnetic particle [9],
and infiltration [10] methods, along with the method we use, infrared evaluation [11], are
just a few of the vast array of inspection modalities available to engineers and academics.
Every detection technique has its own area of application, with advantages and disad-
vantages, and infrared thermography is no exception [12-15]. It uses an external thermal
source (such as laser) to change the surface temperature distributions of materials, thereby
forming 3D heat flow conduction inside the solid [16-18]. TS00H carbon fiber composite
laminate used can replace the metal (or alloy) load-bearing structure of an aero engine.
Applications have shown that this composite material can withstand certain temperature
changes. The main reason why a laser can be used as an external heat source is that it
has advantages that other heat sources, such as halogen lamps and flash lamps, cannot
provide. It can output high power and is controllable, the temperature of the heating area
is uniform, and the energy scattering in the air is small. These all demonstrate the great
potential and advantages of lasers in industrial inspections or processing. A thermal imager
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is utilized to monitor the temperature response of the surface. The differential distribution
of temperature can identify healthy and damaged areas. In other words, optical radiation
measurement of the damage is based on the principle that the damage causes irregular heat
flow nearby [3].

Generally, infrared images captured by thermal imaging cameras have low contrast
between the target and the background, resulting in blurring of the physical characteristics
of the defect being inspected. It is also difficult to directly judge the existence of damage
from a thermal sequence image. Most researchers are innovating detection methods to
achieve the effect of enhancing contrast. Wang et. al. [19] presented a transverse heat flow
suppression (THFS) technique which demonstrated that enhanced TWRT can realize the
effective detection of defects (90% detection probability) with a diameter depth ratio of
5.06 under a 95% confidence level. Shi et. al. [20] presented a comparative experiment
between BC-TWI and lock-in thermography (LIT), achieving higher contrast and SNR
than the LIT phase image. Y et. al. [21] used a vibrothermography to detect and evaluate
low-energy impact damage. Wang et. al. [22] investigated differential spread laser infrared
thermography (DSLIT), and a defect at a depth of 2.5 mm was detected successfully, with
the width-to-depth ratio of up to 2.4. Fei et. al. [23] proposed a FFT phase feature method
and provided a rapid NDT&E and 3D tomography method for CFRP with subsurface
defects under the low-energy excitation condition. N. Montinaro [24] used continuous laser
scanning of materials’ surfaces to detect interlaminar debonding defects in aerospace-grade
fiber laminates and briefly characterized the locations and sizes of surface defects.

The purpose of this study was to investigate the detectability and location information
of surface damage in unidirectional carbon fiber laminates under continuous line laser
scanning thermography. The controllable laser was applied to carbon fiber defect detection,
and the temperature change on the material’s surface was observed by a thermal imager.
Firstly, a heat conduction model based on the finite element method COMSOL is proposed
for this problem. With it, we simulated a line laser scanning experiment with a specimen. It
provided a range of parameter choices for subsequent experiments. We give an experimen-
tal path based on this idea. The infrared images were inspected by image processing, the
defects were successfully identified, and localization analysis was carried out. The results
show that the method can detect the specific location information of defects.

2. Principle Analysis and Model Structure Introduction

In this section, we will explain in detail the material parameters used in finite ele-
ment analysis. These parameters were used to study the surface temperature change of
unidirectional carbon fiber composites under continuous line laser scanning.

The geometric parameters of the carbon fiber used in the paper are shown in Figure 1.
This composite type is T800H, and its properties were similar to those produced by
TORAY. Its laying direction was 0°, it had a total of 14 layers, and the overall size was
100 mm x 167 mm X 2.4 mm. It consisted of defects of different sizes. It is mainly used to
replace metal load-bearing parts in aero engines to reduce weight. Defects were manually
cut to simulate various conventional damages that may occur in an actual production pro-
cess. For example, impact damage was simulated with discs of different sizes and depths
(P3 and &5 mm), and tensile fractures (1 mm x 10 mm) were simulated with different
open cracks. The simulated damage thickness gradually increased from 0.5 to 2 mm at
equal intervals of 0.5 mm. According to the microstructural characteristics of the carbon
fiber sample, it is known that the diameter of each single fiber is very small (5 pm), so the
fiber sample can be equivalent to a cuboid with the same properties. We know that the
thermal anisotropy of a fiber is determined by the thermal conductivity of the material
along the axis. We checked the literature and material property table, and selected the
thermophysical parameters shown in Table 1 for finite element simulation analysis [25]. In
terms of heat conduction, the thermal conductivity in the axial direction is much higher
than the thermal conductivity in the other directions. Each defect was filled with air, and
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it is not described in this paper. Defect types are specified with numbers 1-5, which are
3 mm, 5 mm, 0°, 90°, and 45°, respectively.
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Figure 1. Geometric structure of carbon fiber composite material.

Table 1. Thermophysical parameters of carbon-fiber-reinforced composites.

Specimen Density (g/cm?) Specific Heat Capacity (cal/(g-°C)  Emissivity Thermal Conductivity (W/(m-K))

C composite

X y z
0.18 0.95 5.6 0.7 0.7

In this work, the simulated line laser length was 25 mm. Figure 2 shows the laser
moving mode, i.e., vertical movement. It is easy to understand that the motion is related
to the position change in 2D space. Figure 2a shows the coordinate change of the laser
center. Figure 2b shows the numerical values 0 and 1 to simulate the switching state of the
laser. The heating time used in the experiment was 0-20 ms, and cooling was 20-25 ms.
These states are exploited to accurately control the operation of the simulated laser, and
the temperature distribution on the surface of the material is observed and recorded. The
incident heat flux function describes the frontal (heat source boundary) input of the carbon
fiber composite sample, as shown below.

_ 2
q"(x,0,z,7) = % x exp(— %) x em x pw(t) (1)
_Jx=x?) | (z—20%)
= \/ 01 10 @

where g (x,0,z,7) is the heat flux function of the surface heat source, p is the laser mod-
ulated power (14 W), R is the diameter of the laser spot (4 mm), and em is the surface
emissivity of the material. pw(t) is the laser running time, which indicates its status. The
coordinate (xg,zo) is the start point when the laser focus moves in a specified way (as
seen in Figure 2). We measured the appearance of the sample and then designed the laser
shape to ensure the integrity and accuracy of the sample scan. Therefore, the purpose of
Equation (2) is to convert a spot distributed over a concentric circle into an elliptical laser
beam that approximates a line segment.
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Figure 2. The laser focus moves in a specified way: (a) x-axis moving mode of laser and (b) focus
changes along the z-axis.

In the theory of heat transfer, when considering the thermal anisotropy of materials,
the temperature distribution T(x, y, z, t) of solid materials should satisfy the following
partial differential equation of heat conduction [26]:

o(x,y,2)-cp(x,y,2) PO — [ 2 (ko (x,,2) o220 )

+% (kyy (x,v,2) 8T(ag,;,z,t)) + E% (kzz(X, y,2) aT(xa,z,z,t))} -0 (©)]
where p(x,y,z) is the density of solid material and k;(x,y,z) is thermal conductivity
d =xx, yy, zz).

The experiment was set up and analyzed with the described parameters. When
observing the abnormal distribution of the temperature field, it was found that only
one-dimensional coordinates could be determined. In other words, the ordinate of the
current laser center was damaged, and the abscissa was roughly within half of the length
(£12.5 mm). Therefore, a single scan did not accurately reflect the coordinates of the
abnormal location. Different scanning methods were used to address this phenomenon;
that is, the scanning direction was perpendicular to the mentioned motion pattern. We used
a solid heat transfer module to simulate the thermal response behavior under pulsed heat
source motion and fully considered the boundary conditions, namely, Equations (1) and (2).

3. Experiment

In this part, the principle of line laser scanning experiment will be introduced in detail.
The laser pulse heat wave experiment is shown in Figure 3.

It is obvious that the entire experimental system consists of an external excitation
source, optical system, sample, and signal receiver. The optical system consists of two
lenses, namely, plano-convex lens and plano-convex cylindrical lens, which mainly change
the laser shape. Figure 3b shows the geometry of the line laser in the experiment. A
high intensity, high energy concentration continuous heat source acts on the composite
material. The synchronized control platform changes the position of the sample in space
according to a defined speed or course. The temperature changes of the material are
recorded with a thermal imager. We believe that differences in physical properties (e.g.,
thermal conductivity) between damaged and healthy regions cause anomalous distribution
of the surface temperature field [12,27,28]. The corresponding infrared radiation intensity
will also be different.
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Figure 3. Schematic diagram of the carbon-fiber, pulsed-laser, infrared thermal wave experimental
device: (a) experimental device diagram; (b) the geometry of line-laser.

For example, when a material exhibits any defects in its structure, its material thickness,
thermal conductivity, and density can change, affecting heat transfer within the material.
Another consideration, without a doubt, when conducting thermal nondestructive testing
is the thermal diffusivity of the material to be tested [29]. In the thermal nondestructive
investigation, the factors mentioned in the appeal will cause the temperature change of the
material [3,30]. These can be realized from the following equation:

n=— 4)

©)

eV/mt
e = y/kocp (6)

where « is the thermal diffusivity (m?-s™!), k is the thermal conductivity (W-m~1.K™1),
p is the density (kg-m~3), ¢, is the specific heat capacity (J-kg~!-K™1), T is the Material
temperature, Q is the input energy (J), and e is the thermal effusivity (W-s'/2-m~2.K™1).

The infrared thermal experiments were performed using the range of parameters
provided by the simulation, setting the laser power to 13 W. The maximum temperature
of the material’s surface was 80 °C. During the heating of the carbon fiber material, there
were no obvious burn marks on the surface of the sample. This indicates that there was no
significant physical change on the surface of the laminate after laser irradiation. Changing
the shape of the laser from a 12 mm point laser to a 45 mm line laser increased the scanning
efficiency by a factor of three.

4. Results and Discussion

To explore the results of using continuous line laser to scan unidirectional carbon fiber
damage, the entire experimental analysis process was designed according to Figure 4. In
other words, the experiments combined theory and practice to investigate unidirectional
carbon fiber damage.
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Figure 4. Block diagram of experimental steps.

4.1. Explanation of Thermal Simulation Results

Next, thermal simulation results are presented to explore the relationship between
damage and temperature. Observe the different responses of defect shape and depth to
surface temperature. When the laser scans the material, the heat transfer process inside the
solid can be roughly divided into the following parts: the total energy injected by the laser,
heat loss due to thermal radiation, and thermal absorption at the surface of the material.
Since carbon-fiber-reinforced composites are opaque, energy cannot be transmitted through
the material during heat transfer, so the heat loss is very small and can be ignored. The
energy absorbed per unit area of the surface of the material can be calculated using the
following formula:

Esyf =E—E —Eq4 @)

where Ej ¢ is the heat absorbed by the material per unit area, E is the total heat injection
per unit area of the line laser, E; is the sum of the heat radiation loss energy of the material
and the energy lost by the heat exchange between the material and the air, and E; is the
energy absorbed by the damage area due to the increase in temperature.

Due to the integrity of the material and the high thermal conductivity along the carbon
fiber extension, the surface temperature of the material during scanning will characterize
its structure. The temperature field of the material is uniformly distributed as the laser
scans the healthy area. Typically, the defect is filled with a small amount of gas, which is
thermally different from the material itself. When a laser scan encounters such an area, it
detects weak thermal conductivity and strong thermal insulation. This will lead to huge
abnormal fluctuations in the temperature curve of the damage, showing local “dark spots”
on the material’s surface. We mainly studied the temperature change of the material. We
know that the defect temperature is approximately equal to the difference between the
temperature of the surface and the temperature rise in the damaged area (as shown in
Figure 5). As the presence of defects changes the heat transfer properties of the material,
some values on the temperature curve will show a sharp rise. Increases or decreases in the
parameters in Equation (7) can well explain a temperature change trend.

b

b AP

Figure 5. Heat conduction model of carbon-fiber-reinforced composite surface.

To illustrate the correlation between temperature and size and depth, different damage
models were designed for comparison. The temperature relationship between the line laser
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and the fracture crack at a certain angle was also explored. The temperature of the damage
center was regarded as the actual temperature value. Figure 6a,b shows the temperature
response curves of the impact damages of different sizes. It can be clearly seen that the
temperature for the same diameter of defect increases exponentially with increasing depth.
This temperature buildup will enhance the visual appearance of images in laser scanning
thermal imaging. In addition, when the depth is certain, the temperature tends to rise
as the defect diameter increases. Figure 7 reveals the temperature response curves of
damage in different directions caused by strain. The line laser in operation and these
surface damages were at a certain angle in space. It is not difficult to find through the data
comparison that the center temperature of the 0° crack was the highest, and its numerical
growth trend is also sharper than those of other cracks. By observing the temperature
changes of different defects, it can be concluded that the type, size, and depth of damage
all affect the temperature change. We can observe from this that impact damage had a
relatively high detection rate, because it had the most drastic temperature change, resulting
in the best visualization of the image. For cracks, the larger the angle, the smaller the
temperature rise around the damage during laser scanning. The scanning direction also
has a significant effect on the detection of tensile fractures, so multiple scanning directions
should be considered.

50 85 N
1 49.23 Depth 0.5 | Depth 0.5
,,,,, Depth 1 50 e Dapth 1
45 Depth 1.5 Depth 1.5
n
" = = =Depth2 Depth 2
" 45
540 " 2)
T ,”, T 40
= 3
T 35 sase | 11 I 35.66
T .l o] .
o " o 35
£ N £
830 2848 | % £ 29.76
¢ 30 5| 27.43
e
25 25 i R ——
i
]
20 20 ol
0 40 60 80 100 0 50 100 150 200
time(s) time(s)

(a) (b)

Figure 6. Temperature simulation of impact damage. (a) Temperature simulation of 3 mm diameter
defects. (b) Temperature simulation of 5 mm diameter defects.

Figure 8 plots two different curves for the average temperature and temperature
sensitivity of the material. Temperature sensitivity refers to the difference between the
highest temperature and the lowest temperature of the material domain. Equation (7)
explains in detail the reason for the sharp fluctuations of the curve. It is obvious that the
damage has a specific physical size, so the temperature change at the damage point should
last for a period of time. According to the formula mentioned, it is known that the energy
absorbed by the damage in a short time will be very small. Then the natural phenomenon
that comes to mind is that there must be an abnormal temperature peak here, and this
value is much larger than the temperature fluctuation value of the healthy area (as shown
in Figure 8, from 30 to 40 s). In other words, if it is a narrow mutation point or spike, it can
be considered to be caused by the simulated boundary effect and temperature fluctuations
in the healthy area, which is an abnormal change that can be ignored. This phenomenon
is not considered as an abnormal fluctuation caused by damage interference, but can be
considered as a suspicious point. For verification, a line laser or spot laser can be used for
fixed-point heating to observe whether the surrounding temperature changes. As the laser
continues to scan, the sample will gradually absorb heat, causing the average temperature
to gradually increase.
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Figure 7. Temperature response of damage in different directions. (a) 0° crack temperature response
curve, (b) 90° crack temperature response curve and (c) 45° crack temperature response curve.
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Figure 8. Temperature field versus time curve of carbon fiber surface: (a) temperature field changes
along the z-axis; (b) variation in temperature along the x-axis.

In fact, specific changes that occur at any given time may be of interest. Intuitively, we
know that temperature is related to the change in thickness of something under a partic-
ular premise. Any significant deviation of temperature anywhere from the surrounding
temperature is usually considered to indicate the presence of a defect.

As we can see in Figure 9, the blue circles represent damage centers with certain
physical dimensions, and the red asterisks are the coordinate values automatically detected
by the algorithm. Using the laser trajectory map and temperature change, the location of
the defect was calculated and visualized. Table 2 shows the damage detection results of
unidirectional-carbon-fiber-based online laser scanning infrared thermal imaging. They
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are based on the ratio of the Euclidean distance of the coordinates to the size of the object
(referring to half the radius or length). Numbers 1-5 represent different types of defects.
In the results in the figure, there is a point that was detected twice; there may have been
repeated heating when the line laser scans back and forth. This is also the reason for
inaccurate detection. By analyzing the results of the graphs and tables, it can be known
that the detection accuracy for simulated delamination disc-shaped defects is higher than
the detection accuracy for different tensile fracture damage. It can be seen that the direction
and type of the damage impact thermal detection, and the detection error for defects
perpendicular to the scanning direction was the largest (number #4). Therefore, it is
necessary to perform a complete scan along the horizontal axis and the vertical axis to find
cracks in different opening directions. It can be concluded from the coordinate detection
results that this method has a certain accuracy for damage location and meets the basic
requirements of detection. The laser or sample is made to move at a certain speed, and
then the temperature parameter changes on the surface of the material are monitored in
real time, and the size and location of the damage are obtained by analysis. This method is
completely feasible and can also reflect the characteristics of damage.

160 + ® real coordinates *  defect detection 4
140 1 ve Y - . )
£
E 1207 1
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@
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X-axis coordinate (mm)

Figure 9. Damage detection results for composite materials via laser scanning.

Table 2. The accuracy of surface damage coordinate detection.

Thickness (mm) #1 #2 #3 #4 #5
0.5 0.0 0.40 0.40 1.05 0.40

1 1.33 0.40 0 0.22 0.0
1.5 0.0 0.0 0.40 0.85 0.42
2 2.67 0.40 0.40 1.07 0.60

4.2. Experimental Research of Carbon Fiber Defect Detection

A continuous laser was used to scan and explore unidirectional carbon fiber compos-
ites. We studied the thermal response of damage from two aspects: temperature analysis
and image processing.

When the laser scans the surface of the material, the thermal equilibrium on the surface
of the object fails and a three-dimensional heat flow is generated inside the object. The
following temperature changes may occur with or without defects inside the carbon fiber.
The first is a scan of healthy material. With the uniform injection of the heat flux, the
energy in the healthy material diffuses uniformly inward or from the surface. Observe that
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i 327, 400

the temperature distribution on the surface of the material must be uniform. Another is
that there is a defect filled with air inside the material. The heat flow of the continuous
scanning of the line laser can be hindered at the defect because the defect will not have
the same thermal conductivity as the material. As a result, heat builds up inside the
material, resulting in localized hot zones with high temperatures on the surface of the
object. During the cooling stage, localized regions or “dark spots” with low temperature
appear on the surface due to the low energy contained in the defects. It can be seen in the
above situation that due to the different thermal conductivity properties of different objects,
corresponding temperature differences will inevitably be formed between defective areas
and the non-defective area of the object. Through finite element analysis of the 3D heat
transfer model, the characteristics of the defect were detected in both heating and cooling
states. In the case of heating, the defect temperature will build up due to thermal resistance,
causing the temperature here to be higher than the ambient temperature. However, due to
the influences of the properties of the instrument itself, it has been found through many
experiments that the weak signal in the cooling stage is easier to observe and analyze [31].

Figure 10 shows the inspection results for impact damage. We have visualized the
coordinates of the defect centroids. It can be seen in Figure 10a that every 3 mm defect
could be detected with extremely high accuracy. There is a defect in the last image that
was not detected because the defect feature was submerged as it left the heated area and
could not be detected properly. Figure 10b shows the detection results of 5 mm impact
damage. Due to the relatively large size, it could be directly detected by the visual method.
In the laser heating experiment, due to its size, the energy loss was relatively fast, resulting
in different temperature values in the same target, and the defect features had different
properties. Various reasons cannot be taken into account during image processing, resulting
in inaccurate center detection. For detection of defects of the same type at different depths,
it was found that the detection efficiency was relatively accurate when the defect slightly
left or was about to leave the laser heating source, because the energy of the defect was the
largest at this time. There was a sufficient temperature difference to appear in the image,
and the numerical difference in the pixels was also adequate.

B20, 253 )

(a)

Figure 10. Impact defect detection results for defects of different diameters. (a) D3 mm defect
detection and (b) D5 mm defect detection.

Figure 11 shows tensile fracture defect detection. It can be seen that defects with
different fracture angles caused by external forces were detected well. Due to the partic-
ularities of such defects, the damage area must be determined to be large or small. For
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larger defects, it can be easily detected by human eyes or machine recognition. Another
situation is that the damage area is very small (fracture type) and the temperature changes
too fast, which makes the characteristic signal too weak and difficult to detect. It is also for
the reason mentioned that small fracture defects do not have different thermal properties
in the composite, which also becomes an advantage. Result founds that the edge features
were already submerged at a certain distance from the heat source. Therefore, the closer
the defect is to the heat source, the more likely it is to be detected. The visualized results in
figure also confirm the statement that the defect angle also affects the detection. Figure 11c
shows the case where the third defect has 2 centroids, which is because the defect features
are not obvious and are separated during the inspection process.

’( 337,

i( 334, 398

0530, 228 )

Figure 11. Detection results of cracks in different directions: (a) 0° fracture crack detection;
(b) 90° fracture crack detection; (c) 45° fracture crack detection.
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Tables 3 and 4 show the detection rates 7 of different types of defects and the defect
angles of the fractures, respectively. Detection rate # calculation method as below:

n= M % 100% (8)
DP

where Dy, is the pixel value of the defect length, D is the Euclidean distance, 4 is the center
coordinate of the defect, and 4y is the detected coordinate value.

Table 3. Impact defect location detection accuracy.

Size (mm) D, (Pixel) 7
#1 15 0.34 0.20 0.22 0.20
#2 26 0.36 0.25 0.24 0.66

Table 4. Crack defect location detection accuracy and fracture angle.

#3 #4 #5
D, =53 Dy =60 D, =54
n Angel(°) N Angel(°) N Angel(°)
0.15 0 0.07 90 0.08 39
0.04 0 0.00 86 0.04 50
0.20 0 0.24 84 0.13 48
0.12 3 0.7 90 0.34 47

The numbers 1-5 in the table represent the fracture labels in different directions, which
are consistent with the regulations in the simulation. The last four columns in Table 3
are arranged according to the value of the disc defect depth, and the value increases
from 0.5 to 2 mm. From the data in the table, it can be concluded that the detection rate
of simulated impact damage is extremely high, and defects of different diameters can be
detected. The maximum error did not exceed half of the defect size (<1), which means that
the defect localization works very well. For the detection efficiency of defects, the detection
accuracy of 3 mm stayed ahead of 5 mm. Thermal energy exhibits different characteristics
during cooling. The energy loss of 5 mm defects was faster, and the characteristics of these
defects are more complex and changeable, so they have different temperature properties.
Another influencing factor is that the spatial angle between the thermal imager and the
template cannot be completely vertical, which will also affect the temperature distribution
collected. The larger the surface area of the defect, the easier it is to detect manually, and
the error of centroid detection is relatively large. The calculation of the fracture angle is
replaced by the angle of the smallest circumscribed rectangle of the defect contour. The
table data verifies conclusion that the smaller the angle is, the higher the detection rate of
the centroid is. This is consistent with the actual simulation results.

As a recap, simulation results showed that the types, sizes, and depths of defects
affect the surface temperature. The temperature value also reflects the nature of the defect.
Impact defects have the highest detection rates and the most obvious visual effects. From
an experimental point of view, controlling the laser energy will not have much impact on
the characteristics and structure of the sample. According to the defect location detection
results, the impact damage detection rate is the highest. Line laser scanning can detect
defects as small as 3 mm and at least 2 mm deep. Fracture defects have weak features
and large positioning errors. Using this method, however, localized detection of the defect
area can be achieved, followed by localized laser heating of the area to achieve accurate
quantification of defect area, length, and fracture angle. At the same time, the study of
defect depth can also be completed accordingly. It is worth mentioning that the method
developed can be used also for evaluation of internal defects.
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5. Conclusions

This paper presented a CFRP surface damage detection method based on a controllable
line laser thermal excitation source. We basically completed the mutual verification of the
damaged area detection by combining a numerical simulation and experiments. With the
numerical simulation’s data, we verified that this method is feasible for defect localization.
It was found that the temperature change on the material’s surface is related to the size,
depth, and fracture direction of the defect. Utilizing the experimental data of laser scanning,
we obtained the defect localization results through the image processing algorithm. The
results show that the detection accuracy of impact damage is higher, and verified that
tensile fractures in different directions will also affect the detection accuracy. When the
defect has just entered the cooling phase, the temperature difference between the defect
and the healthy area is the largest, and 100% detection accuracy can be achieved at this
particular location.
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