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Abstract: An effective System-on-Chip (SoC) for smart Quality-of-Service (QoS) management over
a virtual local area network (LAN) is presented in this study. The SoC is implemented by field
programmable gate array (FPGA) for accelerating the delivery quality prediction for a service.
The quality prediction is carried out by the general regression neural network (GRNN) algorithm
based on a time-varying profile consisting of the past delivery records of the service. A novel record
replacement algorithm is presented to update the profile, so that the bandwidth usage of the service
can be effectively tracked by GRNN. Experimental results show that the SoC provides self-aware
QoS management with low computation costs for applications over virtual LAN.

Keywords: System-on-Chip; Quality-of-Service; field programmable gate array; local area network;
general regression neural network; network function virtualization

1. Introduction

Basic Internet services are usually delivered on a best effort basis, without taking
any quality requirements into consideration. To satisfy the demands of applications and
users in the network, Quality-of-Service (QoS) management [1,2] is usually employed by
allocating existing resources to Internet services. A challenging issue for QoS management
is the efficient utilization of network resources by the integration of a variety of hardware
and software appliances. Network resources may not be effectively exploited by traditional
QoS approaches such as the ones designed for peak requirements. Therefore, they are
inefficient to cope with current diversified communication traffic demands.

Software-defined networking (SDN) [3] is a technique that provides programmability
in configuring network resources. The SDN technique offers a valuable mechanism for
dynamic and cost-effective network management. In addition, the SDN can be incor-
porated into the network function virtualization (NFV) [3,4], by which virtual network
functions (VNFs) are interconnected into different delivery operations. For applications
based on the 5G network and beyond [5] such as eHealth, smart poles, and smart cities [6–
8], SDN and NFV for QoS could play important roles for efficient allocations of network
resources for communication services.

The study in [9] builds a virtual local area network (LAN) integrating SDN with
NFV, where both the service quality prediction and subscription schemes are implemented
as VNFs in the virtual LAN. The major goal of quality prediction schemes is to forecast
the network resources required for satisfying the prescribed QoS level for a network service
via the general regression neural network (GRNN) [10] algorithm. The prediction could be
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based on the profile containing delivery records of the past bandwidth usage of the service
and the corresponding feedback. The subscription of the service is then carried out from
the prediction results. A drawback of the system is the high computational complexities for
service quality prediction. This may introduce long latency for updating the subscription
of the service.

An approach for solving the latency issues for QoS management is the employment of
a hardware accelerator for NFV. A field programmable gate array (FPGA) [11,12] imple-
mentation for smart QoS management is proposed in [13]. The hardware architecture is
able to accelerate the self-aware quality prediction based on GRNN. However, the updating
operations for QoS management are achieved only by appending more delivery records to
the profile for GRNN prediction. As the profile size reaches the upper bound affordable
by the hardware, record replacement is necessary. There is no hardware-based replace-
ment strategy for the system. The systems based on simple random selection strategy for
replacement may not be self-aware for maintaining high prediction accuracy.

The objective of this paper is to present a novel system-on-chip (SoC) with record
replacement for self-aware QoS management over a virtual LAN. An FPGA architecture of
the GRNN algorithm is proposed as a hardware VNF for the prediction of delivery quality
for a service. Based on the prediction results, optimal bandwidth allocation is performed to
the service so that the service can be delivered with desired quality. The VNFs for traffic
control operating in conjunction with the proposed FPGA-based QoS management VNFs
are also implemented for the virtual LAN.

In addition to providing fast computation for producing prediction results for delivery
quality, the proposed FPGA architecture contains a dedicated circuit for profile updating.
Apart from basic record appending and removal operations, the dedicated circuit support
online record replacement based on a novel record replacement algorithm. In this way,
the profile for GRNN prediction can be effectively updated even for a small profile buffer.
In the algorithm, the past records are separated into two groups: positive response group
and negative response group. A record with positive response implies the delivery is
achieved with satisfactory quality. Conversely, a negative response record reveals that
the quality of the delivery is below expected level. One of the groups will be dynamically
identified as the insignificant group based on the most recently received record. In the
insignificant group, the oldest record is removed.

Both analytical and numerical evaluations are provided for the algorithms and systems
presented in this study. Analytical results show that the GRNN-based prediction with
the proposed record replacement algorithm achieves self-aware prediction. Furthermore,
numerical evaluations reveal that the proposed smart SoC system offers accurate quality
prediction for services for the efficient bandwidth allocation of the virtual LAN. All the
results reveal that the proposed smart FPGA-based SoC is effective for the exploitation of
network resources for dynamic and self-aware QoS management.

The remaining parts of this paper are organized as follows. Section 2 provides a brief
overview of the works related to this study. The proposed QoS management algorithm
and its profile updating techniques are presented in Sections 3 and 4, respectively. The SoC
implementation supporting the QoS management with profile updating is then presented
in Section 5. Section 6 shows some experimental results and evaluations. Concluding
remarks are given in Section 7.

2. Related Works

A number of neural networks, such as multilayer perceptron (MLP) and recurrent
neural network (RNN) [14–16], can be effectively used for the prediction of delivery quality
for a service. However, offline training is required prior to the deployment of networks.
For a new service, without a long collection of the corresponding delivery records, it would
be difficult to find sufficient training data for accurate quality prediction. Therefore, a long
delay would be necessary for a new service before an effective QoS management can be
carried out.
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The auto-regressive integrated moving average (ARIMA) [17] and GRNN [9] can be
employed for delivery quality prediction without offline training. Similar to the approaches
based on MLP and RNN, the ARIMA performs the prediction based only on the past source
data rates. Because the bandwidth usage of a service may not be stationary, it would be
difficult to maintain high prediction accuracy in the presence of surges or plummets in the
source data rate of the service. To solve the nonstationary issues, a time-varying profile is
used for GRNN-based prediction [9]. In addition to bandwidth allocations, the profile also
contains the corresponding service responses. Profile updating policies are proposed for
accommodating new service responses, so that the algorithm can be self-adaptive to new
trends for the service.

A drawback for the GRNN-based prediction is the high computational complexities
because of the employment of Gaussian kernels. One approach to accelerate the com-
putation is the employment of FPGA techniques. Because of high flexibility and high
computation speed, FPGA has been found to be effective for the hardware VNF implemen-
tations [18]. Examples of the FPGA implementations include the deep packet inspection
and firewall [19]. A number of FPGA architectures [20–22] have been proposed for acceler-
ating GRNN computation. However, many FPGA architectures are targeted for pattern
classification applications with a fixed profile. Direct employment of the architectures for
QoS management would then be difficult.

The GRNN prediction in [13] is implemented as a hardware VNF for smart QoS
management. However, the hardware VNF does not address the record replacement issue
after the buffer for the record collection becomes full. Although simple approaches such
as random replacement are possible, prediction performance may be degraded because
of the possible removal of important records. The least significant record removal policy
proposed in [9] could be adopted. However, the policy is based on full-search operations
with high computational complexity. This could impose a heavy computational load
for the QoS management system. To achieve online self-adaptive and self-aware QoS
management, a dedicated circuit for fast record replacement in the profile is desired.

3. Proposed QoS Management Algorithm

This section covers the infrastructure for the QoS server, QoS level definition, GRNN-
based quality prediction, and the proposed QoS management algorithm in detail. To facili-
tate an understanding of the proposed algorithms, Appendix A includes a list of frequently
used symbols.

3.1. Infrastructure for QoS Server

For the virtual LAN considered in this study, there are two or more domains. A multi-
link core network is responsible for the communication among different domains. Only
the bridges in each domain are connected to the core network. There is a QoS server
in the LAN for QoS management. The bridges carry out data forwarding operations subject
to the constraint of the bandwidth allocated by a QoS server. The block diagrams of a bridge
and a QoS server in the virtual LAN are shown in Figure 1.

We can see from Figure 1 that dedicated FPGA circuits are implemented as accelerators
for the VNFs in the SoC for QoS management. In this way, the latency for QoS management
can be effectively reduced. The FPGA-assisted SoC can be separated into two portions: hard
processor system (HPS) and FPGA accelerator. The HPS contains a hard core processor,
a main memory, and an Ethernet physical layer. The HPS is responsible for delivering
control packets between the QoS server and a bridge. The delivery of control packets is
based on the Openflow protocol. The HPS operates with the FPGA accelerator through
HPS-FPGA interface. The FPGA accelerator carries out the GRNN-based quality prediction
and the proposed profile updating algorithms in the SoC.
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Figure 1. The block diagrams of a bridge and a QoS server in the virtual LAN. The bridge is a general
purpose computer with a virtual switch. The QoS server is an SoC consisting of FPGA and HPS.
In this study, the highlighted blocks are implemented.

The bridges in the LAN can operate in a general-purpose computing platform. It con-
tains a virtual switch supporting link aggregation and traffic shaping based on the com-
mands from QoS server by the Openflow protocol. In addition, each bridge supports
the delivery of data packets to/from the other bridges in the LAN by user datagram proto-
col (UDP). In Figure 1, the components developed by this study are highlighted. We have
also marked the corresponding sections for the highlighted components.

3.2. QoS Level

In this study, we define a service as a dataflow between two appliances from different
domains. The service is delivered subject to a QoS level, which is dependent on the redun-
dant bandwidth reserved for a service. Let x = {x1, . . . , xn} be the bandwidth allocation
to the service, where xj, j = 1, . . . , n, is the bandwidth of link j reserved for the service,
and n is the number of links in the core network. Let

|x| =
n

∑
j=1

xj (1)

be the bandwidth allocated by the QoS server. Let R be the actual source data rate of
the service. Note that R and |x|may not be identical. When |x| ≥ R, we define

RAB = |x| − R (2)

as the residual allocation bandwidth (RAB) for data delivery, which can be regarded as
the unused network resources for the service. Conversely, when |x| < R, let

DLR = R− |x| (3)

be the data loss rate (DLR) of the service because of the lack of bandwidth. The RAB and
DLR are the basic performance metrics for QoS management. Based on RAB and DLR,
we define the Extended RAB (ERAB) as
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ERAB =

{
RAB when |x| ≥ R,
−DLR when |x| < R.

(4)

Clearly, when ERAB in (4) is positive, the service is not able to utilize all the available
bandwidth. In contrast, the service needs more network bandwidth when a negative ERAB
is observed. The ERAB could be regarded as useful feedback information for the service.
In this study, an approach based on quantized ERAB is adopted for QoS management. Let
L be the number of quantization levels. Based on L, let Ik ⊂ R, k = 0, . . . , L− 1, be a set
of ERAB intervals defined as

Ik =


(−∞, η1] when k = 0,
(ηk, ηk+1] when k = 1, . . . , L− 2,
(ηL−1, ∞] when k = L− 1,

(5)

where {η1, . . . , ηL−1} is a set of thresholds satisfying ηi < ηj for i < j. The output of
the quantizer, denoted by y, is given by

y = k when ERAB ∈ Ik. (6)

In the proposed algorithm, the quantization result y is regarded as a service quality.
Table 1 shows an example of six service qualities (i.e., L = 6) and the corresponding ERAB
intervals. From (4), the ERAB can be regarded as the redundant bandwidth reserved for
a service. Therefore, a positive service quality (i.e., y > 0) has redundant bandwidth.
A positive service quality with a large y value would provide a large reserved network
resource for a service for the accommodation of unexpected increases in the source data
rate. It is then beneficial for maintaining low DLR for the service. On the contrary, there
may be no redundant bandwidth for the service quality with y = 0. Furthermore, the
bandwidth shortage of a negative service quality is likely, so that packet losses are possible.

Table 1. An example of service qualities and their corresponding ERAB intervals. In this example,
the network system has six service quality levels (i.e., L = 6). The set of thresholds is given as
{η1, . . . , η5} = {1.25, 3.75, 6.25, 8.75, 11.25}.

Service Quality y ERAB Intervals Interval Range (Mbps)

5 I5 [11.25, ∞)
4 I4 [8.75, 11.25)
3 I3 [6.25, 8.75)
2 I2 [3.75, 6.25)
1 I1 [1.25, 3.75)
0 I0 [−∞, 1.25)

In the proposed algorithm, it is necessary to specify a QoS level before QoS manage-
ment. The QoS level can be determined from the requirements for the service. One simple
approach to designate a QoS level is to set the constraint on the lower bound T of expected
service qualities for the data delivery, where 0 < T ≤ L− 1. Therefore, QoS levels with
higher T values imply better service qualities. Given the quantizer in (6), there are (L− 1)
QoS levels for QoS management. As a result, the number of QoS levels supported by
the proposed QoS management scheme would grow with L. It provides larger flexibilities
as compared with the studies in [9], where only a fixed number of QoS levels are considered.

Table 2 shows an example of a set of QoS levels based on the service qualities defined
in Table 1. It can be observed from Table 2 that QoS levels with higher T values allow fewer
ERAB intervals for the service. In particular, for the delivery of a service with the highest
QoS level (i.e., T = (L− 1) = 5), the goal of the delivery is only to maintain ERAB values
in the interval I5 = [11.25, ∞).
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Table 2. An example of a set of QoS levels and their corresponding service qualities and ERAB
intervals. This example is based on the service qualities and ERAB intervals defined in Table 1.

QoS Level with T Allowed Service Qualities Allowed ERAB Intervals

5 5 I5
4 4, 5 I4, I5
3 3, 4, 5 I3, I4, I5
2 2, 3, 4, 5 I2, I3, I4, I5
1 1, 2, 3, 4, 5 I1, I2, I3, I4, I5

3.3. GRNN-Based Service Quality Prediction

Let B be the set of bandwidth allocations provided by the core network of the LAN
for the service. It is given by

B = {x : xj = k j∆, 0 ≤ xj ≤ Bj, 1 ≤ j ≤ n}, (7)

where Bj is the maximum allowed bandwidth at the link j for the service, ∆ > 0 is the step
size, k j ≥ 0 is an integer. For each bandwidth allocation x ∈ B, we carry out the service
quality prediction.

Let P = {(xi, yi), i = 1, . . . , p} be a profile containing p records of past services,
where (xi, yi) is the i-th record consisting of bandwidth allocation xi and the corresponding
service quality yi. Based on the profile P , the GRNN is adopted for the service quality
prediction. Given x and P , let y′ be the result of the GRNN [10] computation. That is,

y′ =
∑

p
i=1 yiW(x, xi)

∑
p
i=1 W(x, xi)

, (8)

where

W(x, xi) = exp(
−D(x, xi)

σ2 ), (9)

D(x, xi) =
n

∑
j=1

(xj − xi,j)
2, (10)

and xi,j is the j-th element of xi. Let ŷ be the predicted service quality, which can be obtained
from y′ by a rounding operation as

ŷ =


L− 1 when y′ ≥ L− 1.5,
k when k− 0.5 ≤ y′ < k + 0.5, k = 1, . . . , L− 2,
0 when y′ < 0.5.

(11)

Only the bandwidth allocations with ŷ larger or equal to T are considered as candidates
for the service. Let

O = {x : ŷ ≥ T}. (12)

Let x∗ be the optimal bandwidth allocation in O, satisfying

x∗ = min
x∈O
|x|. (13)

In the proposed algorithm, the x∗ is then served as the bandwidth allocated to the ser-
vice. From (13), it can be observed that the search space O is required before the identifica-
tion of x∗. To find the search space O, a full-search scheme for the computation of service
quality prediction ŷ over all elements in B may be necessary.

Algorithm 1 summarizes the operations of the proposed algorithm. As shown
in Algorithm 1, each service based on the bandwidth allocation x∗ of the current time
slot results in a new service quality y. The profile P will then be updated after the new
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record (x∗, y) is available. It is not necessary to carry out a training process for profile
updating. Only record appending or replacement operations are necessary. After the profile
is updated, the new bandwidth allocation x∗ is determined for the next time slot. Detailed
discussions of the profile updating are presented in the next section.

Algorithm 1 The GRNN-based QoS Management Algorithm

Require: Search space B.
Require: Upper bound of profile size C.
Require: Number of service qualities L.
Require: The set of threshold {η1, . . . , ηL−1} for determining service qualities.
Require: Initial profile P = {xi, yi, i = 1, . . . , p}.
Require: QoS level specified by T.

1: loop
2: if service required in new time slot then
3: Compute the optimal bandwidth allocation x∗ from P by (13).
4: Current time slot← new time slot.
5: Bandwidth allocation of current time slot← x∗.
6: Measure the ERAB defined in (4).
7: Compute y from ERAB by (6).
8: (P , p)← PROFILE_UPDATE(x∗, y, P , p, C, T)
9: Wait till the end of the current time slot.

10: end if
11: end loop

4. The Proposed Profile Updating Algorithm

To facilitate the presentation of the profile updating algorithm, we first define positive
responses, negative responses, and self-aware QoS management. Given a QoS level T,
a response y is said to be positive when y ≥ T. Otherwise, y is said to be negative. A QoS
management algorithm is said to be self-aware when two conditions are met for a given
service with QoS level T. Firstly, after a negative response is acquired, the algorithm
will increase the total bandwidth allocated to the service. In addition, the algorithm will
maintain or reduce the total allocated bandwidth after a positive response is obtained. In the
remaining parts of this section, we show that the proposed profile updating algorithm has
the advantage of being self-aware.

4.1. QoS Self-Awareness for Proposed GRNN Algorithm after Appending a New Record

Given a service with QoS level T, we can rewrite (12) for the search space O by (11) as

O = {x : y′ ≥ T − 1/2}. (14)

Because y′ is dependent on the profile size p from (8), the set O is also dependent on p.
Let O(p) be the set O with profile size p. By substituting (8) to (14), it can be derived that

O(p) = {x :
∑

p
i=1 yiW(x, xi)

∑
p
i=1 W(x, xi)

≥ T − 1
2
}. (15)

We then rewrite (15) as

O(p) = {x : S1 + S2 ≥ S3}, (16)

where

S1 =
L−1

∑
u=T

∑
i∈Ju

(u− T)W(x, xi), S2 =
1
2

p

∑
i=1

W(x, xi), S3 =
T−1

∑
u=0

∑
i∈Ju

(T − u)W(x, xi), (17)



Micromachines 2022, 13, 594 8 of 24

and
Ju = {i : 1 ≤ i ≤ p, yi = u}. (18)

From (9), we see that W(x, xi) ≥ 0. Therefore, It follows from (17) that S1 ≥ 0, S2 ≥ 0
and S3 ≥ 0.

We next consider the scenario where the new record (x∗, y) is appended as the (p + 1)-th
record of the profile. In this case, there are p + 1 records in the new profile. Therefore,
the resulting set O is given by

O(p + 1) = {x :
yW(x, x∗) +

p
∑

i=1
yiW(x, xi)

W(x, x∗) +
p
∑

i=1
W(x, xi)

≥ T − 1
2
}. (19)

Two cases are then studied separately: a new positive response (i.e., y ≥ T) and a new
negative response (i.e., y < T).

4.1.1. New Positive Response

In this case, y ≥ T. Based on the similar approaches for obtaining (16) from (15), it can
be shown from (19) that

O(p + 1) = {x : S1 + S2 + (y− T +
1
2
)W(x, x∗) ≥ S3}, (20)

where S1, S2 and S3 are given in (17). Because S1 > 0, S2 > 0, S3 > 0, and y ≥ T, it can be
easily shown that all the terms in (20) are positive. By comparing (16) with (20), we see that

O(p + 1) ⊇ O(p), when y ≥ T. (21)

From (13) and (21), it follows that

|x∗(p + 1)| ≤ |x∗(p)|, when y ≥ T, (22)

where x∗(p) is x∗ when the size of profile P is p. Consequently, from (22), it can be observed
that the proposed algorithm reduces the allocated bandwidth after a new positive response
is obtained.

4.1.2. New Negative Response

For the case of y < T, we can derive from (19) that

O(p + 1) = {x : S1 + S2 ≥ (T − y− 1
2
)W(x, x∗) + S3}. (23)

Note that S1 > 0, S2 > 0, S3 > 0, y < T, and y and T are integers. As a result, all
terms in (23) are positive. It can then be concluded from (16) and (23) that

O(p + 1) ⊂ O(p), when y < T. (24)

Therefore,
|x∗(p + 1)| > |x∗(p)|, when y < T. (25)

Both (22) and (25) conclude the self-awareness of the GRNN-based QoS manage-
ment algorithm.

4.2. QoS Self-Awareness for Proposed GRNN Algorithm after Replacing an Old Record

The profile size p grows as new records are acquired during the service. Therefore,
for a service with long transmission, a large profile may be produced. This would increase
the computation overhead for QoS management. One way to solving the issue is to
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maintain the profile size p as it reaches a predefined upper limit C. That is, when p = C,
an old record {xq, yq}, q ∈ {1, . . . , C}, is replaced by the new record {x∗, y}. In this
subsection, we investigate the conditions under which the selection of the old record
{xq, yq} for the replacement would still attain the QoS awareness.

Because the replacement only occurs after the profile size p reaches C, let Oold(C)
and Onew(C) be the set O(C) before and after replacement, respectively. In this operation,
the old record {xq, yq} is replaced by new record {x∗, y}. That is,

Oold(C) = {x :
∑C

i=1 yiW(x, xi)

∑C
i=1 W(x, xi)

≥ T − 1
2
}, (26)

and

Onew(C) = {x :
yW(x, x∗)− yqW(x, xq) +

C
∑

i=1
yiW(x, xi)

W(x, x∗)−W(x, xq) +
C
∑

i=1
W(x, xi)

≥ T − 1
2
}. (27)

We can rewrite (26) and (27) as

Oold(C) = {x : S1 + S2 ≥ S3}, (28)

Onew(C) = {x : S1 + S2 + S4 ≥ S3}, (29)

where S1, S2 and S3 are given by (17), and

S4 = (y− (T − 1
2
))W(x, x∗) + ((T − 1

2
)− yq)W(x, xq). (30)

Two cases are also considered separately: a new positive response (i.e., y ≥ T) and
a new negative response (i.e., y < T).

4.2.1. New Positive Response

Consider a setM satisfying

M = {(xq, yq) : (xq, yq) ∈ P , S4 > 0, ∀x}. (31)

When a new positive response is received (i.e., y ≥ T), it is desired that the selected
old record (xq, yq) to be replaced belongs toM so that S4 > 0. From (28) and (29), it can
then be concluded that

Onew(C) ⊇ Oold(C), when y ≥ T and (xq, yq) ∈ M. (32)

Let x∗old(C) and x∗new(C) be the optimal bandwidth allocation before and after replace-
ment, respectively. Therefore, it can be shown that

|x∗new(C)| ≤ |x∗old(C)|, when y ≥ T and (xq, yq) ∈ M. (33)

Consequently, when the new response is positive, and the selected old record (xq, yq) ∈
M, the proposed algorithm is self-aware after record replacement.

4.2.2. New Negative Response

Define a set N as

N = {(xq, yq) : (xq, yq) ∈ P , S4 ≤ 0, ∀x}. (34)

We can then see that

Onew(C) ⊂ Oold(C), when y < T and (xq, yq) ∈ N . (35)
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As a result,

|x∗new(C)| > |x∗old(C)|, when y < T and (xq, yq) ∈ N . (36)

Therefore, for the cases of new negative responses, when the old record to be replaced
satisfies (xq, yq) ∈ N , the proposed algorithm is also self-aware.

4.2.3. Hardware-Friendly Replacement Strategy

Although the self-awareness can be achieved by the proposed algorithm by record
replacement, high computation complexities may be required for the search of old record
(xq, yq) satisfying (33) or (36). This is because the search involves the computation of S4
in (30) over all the x. To simplify the search operations, it can be shown from (30) that

S4 > 0, ∀x, when y ≥ T and yq < T, (37)

S4 ≤ 0, ∀x, when y < T and yq ≥ T. (38)

Therefore, when y ≥ T and yq < T, then the record {xq, yq} belongs toM by (31)
and (37). Likewise, the record {xq, yq} belongs to N for y < T and yq ≥ T by (34) and (38).
Based on the results, we can further derive from (33) and (36) that

|x∗new(C)| ≤ |x∗old(C)|, y ≥ T and yq < T, (39)

|x∗new(C)| > |x∗old(C)|, y < T and yq ≥ T. (40)

Only simple comparisons are necessary for (39) and (40) for the selection of record
{xq, yq} achieving QoS awareness without the computation of S4 values.

Given a new record {x∗, y}, there may exist more than one old record satisfying (39) or
(40). In this study, we select the old record as the replacement target in the First-In First-Out
(FIFO) fashion. Define

Q =

{
{(xr, yr) : yr < T, (xr, yr) ∈ P}, when y ≥ T,
{(xr, yr) : yr ≥ T, (xr, yr) ∈ P}, when y < T.

(41)

The target record to be replaced (xq, yq) is then the oldest record in Q. In this way,
the most recent records will be kept in the profile for accurate QoS prediction. Algorithm 2
summarizes the corresponding record replacement and profile updating schemes for at-
taining QoS awareness.

Algorithm 2 The Profile Updating Algorithm

1: procedure PROFILE_UPDATE(x∗, y, P , p, C, T)
2: if p < C then
3: p← p + 1.
4: else
5: Determine set Q by (41).
6: if Q 6= ∅ then
7: (xq, yq)← oldest record in Q.
8: else
9: (xq, yq)← oldest record in P .

10: end if
11: P ← P \ {xq, yq}.
12: end if
13: P ← P ∪ {x∗, y}.
14: return P , p.
15: end procedure
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5. Proposed FPGA Accelerator for QoS Management

It is usually desired to employ a SoC for the QoS management in a LAN because of low
power consumption and low deployment costs. However, because the processor of the SoC
may have only limited computation capacities, the computation time of the software imple-
mentation of the algorithm in the SoC is high. By adopting the dedicated hardware circuits
as the accelerator for the processor, we are then able to achieve realtime QoS management
for the GRNN-based delivery quality prediction with dynamic profile updating.

As shown in Figure 2, the proposed FPGA accelerator contains three parts: the GRNN
prediction unit, the profile updating unit, and the interface unit. The interface unit is
designed for the interaction with the processor of the SoC. The interface unit has simple
architecture mainly containing buffers. The processor of the SoC is able to access the buffers
in the interface unit for providing source data and collecting computation results from
the accelerator. The goal of the GRNN unit is carry out the computation of (13) by FPGA.
The profile updating unit is responsible for performing the record replacement operations
in Algorithm 2. In the following subsections, we focus on the discussions of GRNN
prediction unit and the profile updating unit.

Figure 2. The architecture of the proposed FPGA accelerator. It can be separated into three parts:
the GRNN prediction unit, the profile updating unit, and the interface unit.

5.1. GRNN Prediction Unit

The GRNN prediction unit is a hardware implementation of operations in (13). Based
on the profile P provided by the profile updating unit and the QoS level T provided
by the interface unit, the goal of GRNN unit is to search for x∗, the optimal bandwidth
allocation for the service. As revealed in Figure 3, there are 5 modules in the GRNN unit,
which are termed the SDC (e.g., Squared Distance Computation), the EXP (e.g., EXPonent),
the ACC (e.g., ACCumulation), the DIV (e.g., DIVision), and the QUAN (e.g., QUANtiza-
tion) modules, respectively.
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Figure 3. The architecture of the GRNN prediction unit.

Given a candidate x ∈ B, the goal of SDC module and EXP module are to compute
D(x, xi) in (10) and W(x, xi) in (9), respectively. Specifically, the computations of (xj − xi,j)

2

in (10) are carried out in the SDC module. In this study, the core network contains only
2 links (i.e., n = 2). Therefore, we need only two Floating Point (FP) multipliers and
three FP adders in the SDC module. In the FP arithmetic operators, all the numbers are
in IEEE 754 single precision format [23]. In the EXP module shown in Figure 4, there is
only a single FP exponent computation unit for the computation of W(x, xi). The σ2 in (9)
is chosen as a power of 2 so that the division operation for W(x, xi) is equivalent to simple
shifting operations.

Figure 4. The architectures of the SDC module, EXP module, ACC module and DIV module.

The ACC module is responsible for the computations of both ∑
p
i=1 yiW(x, xi) and

∑
p
i=1 W(x, xi). Note that the EXP module only provides W(x, xi) for i = 1, . . . , p, sequen-

tially. As a result, the ACC module offers the accumulation of the partial sums S1(i) and
S2(i), defined as

S1(i) =
i

∑
k=1

yiW(x, xk), S2(i) =
i

∑
k=1

W(x, xk). (42)

In the ACC module, the computation of S1(i) and S2(i) are performed by separate FP
accumulators. When i = p, the S1(p) and S2(p) can serve as the inputs to the DIV module
for the computation of y′.

There is only a single FP divider for the computation of y′ in (8) in the DIV module.
From Figure 5, we see that the y′ is further processed by QUAN module. It then produces
the final result ŷ in (11). As shown in Figure 5, we let xmin be the current x∗. When ŷ > T,
and |x| < |xmin|, then xmin is updated as x. When all the x in B is searched, the final xmin is
the final bandwidth allocation result x∗.
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Figure 5. The architecture of the QUAN module.

Given a bandwidth allocation x, an advantage of the proposed architecture is that
the SDC, EXP, and ACC modules are operating in a pipelined fashion for enhancing
the throughput for GRNN computation. As shown in Figure 6, given x, profile records
(xi, yi), i = 1, . . . , p, are fetched one at a time. The adders and multipliers in the SDC
module are pipelined. Therefore, for different profile records, D(x, xi) can be computed
concurrently. Likewise, the exponent computation unit in the EXP module is pipelined.
The W(x, xi) for different profile records are also computed in an overlapping fashion.
The multiplication and accumulation operations can also be carried out in parallel in the ACC
module. Let K be the latency for updating xmin from x. It can then be observed from Figure 6
that K is given by

K = p + KSDC + KEXP + KACC + KDIV + KQUAN (43)

the latency KSDC, KEXP, KACC, KDIV and KQUAN are independent of the profile size p. They
are determined by the latency of FP adders, multipliers, comparators, exponent operators,
and/or dividers. Therefore, the latency K only grows linearly with p.

Figure 6. The pipeline operations for the GRNN prediction unit.

The pipelined operations can also be extended for different search candidates x′s
∈ B. Let J be the number of search candidates. The number of candidates is dependent
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on the search step size ∆ and the search algorithm [13]. Furthermore, t1 be the total latency
for finding x∗. Let t̄ be average latency per search candidate. That is,

t̄ =
t1

J
. (44)

When operations for different search candidates are not overlapping, t1 = J × K.
In this case, (44) decreases to t̄ = K.

5.2. Profile Updating Unit

The profile updating unit contains the profile P = {(xi, yi), i = 1, . . . , p}. Further-
more, the unit is responsible for updating P based on Algorithm 2. Recall that the set
Q ⊆ P defined in (41) plays an important role for the record replacement by Algorithm 2.
In the profile updating unit, Q can be easily identified. The oldest record in Q can also be
easily removed. These advantages facilitate the updating process for the profile.

As shown in Figure 7, there are two buffers in the profile updating unit: the posi-
tive response buffer, and the negative response buffer. Each record (xi, yi), i = 1, . . . , p,
in the profile P is assigned to one of the buffers. Given a threshold T > 0, a record (xi, yi)
is assigned to the positive response buffer when yi ≥ T. Otherwise, the record is assigned
to the negative response buffer.

Figure 7. The architecture of the profile updating unit. In the architecture, both the positive response
buffer and negative response buffer are used for storing response records in P .

Both the positive response buffer and negative response buffer have the same architec-
ture, as revealed in Figure 8. We can see from Figure 8 that the each buffer is a C-stage shift
register supporting serial-in parallel-out (SIPO) operations, where C is the upperbound
of the profile size. Therefore, each buffer accepts at most one response record at a time.
All the registers in the buffers are connected to the output multiplexer shown in Figure 7.
In this way, the content of each register of the buffers can be easily fetched.

Because the actual profile size p < C, some stages in the shift register may be empty,
or contain invalid profile record. To facilitate the profile updating process, each buffer
in the profile updating unit is associated with a counter. The value of each counter indi-
cates the number of valid records in the corresponding buffer. Let u and v be the value
of the counter associated with positive response buffer and negative response buffer, re-
spectively. Therefore, u + v = p, u ≥ 0, and v ≥ 0. In addition, the u valid records and
v valid records are located in the first u stages and the first v stages of the shift registers
in positive response buffer and negative buffer, respectively. Only the stages with valid
records in the shift registers are accessed by the GRNN prediction unit.
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Figure 8. The architecture of positive response buffer and negative response buffer. Each buffer is
a C-stage shift register supporting SIPO operations.

Given a newly received record (x∗, y) for updating the profile P , two cases are consid-
ered separately in the profile updating unit: p < C and p = C.

5.2.1. Updating Buffers in the Profile Updating Unit for p < C

In this case, only record appending is necessary. Dependent on the value of y,
the newly received record (x∗, y) is appended to the positive response buffer or nega-
tive response buffer. When y ≥ T, the record (x∗, y) is assigned to the positive response
buffer. In addition, both p and u are incremented by 1, and v remains the same. When
y < T, we append (x∗, y) to the negative response buffer. Both p and v are incremented by
1, and u remains the same.

Figure 9 shows a simple example for the corresponding operations, where C = 4,
p = 3, u = 2, and v = 1 before the updating. It is assumed y < T in this example.
As a result, (x∗, y) is assigned to the negative response buffer. That is, after the updating,
p = 4, u = 2, and v = 2.

(a)

(b)

Figure 9. A simple example for updating buffers in profile updating unit for p < C. In this example,
C = 4, p = 3, u = 2, and v = 1 before updating. Assume y < T for the new record. The new record
is then assigned to negative response buffer. After updating, p = 4, u = 2, and v = 2. (a) Before
updating; (b) After updating.
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5.2.2. Updating Buffers in the Profile Updating Unit for p = C

The record replacement is required in this case because the size of the profile has
already attained its upperbound. To carry out the replacement operations, the set Q ∈ P
should be first found, as shown in Algorithm 2. The oldest record in Q is subsequently
removed. The newly received record (x∗, y) is then appended to the profile P .

From (41), we observe that the setQ can be easily identified based on positive response
buffer and negative response buffer. When y ≥ T, the set Q is the negative response buffer
by (41). The v-th stage in the shift register of negative response buffer contains the oldest
record. It is then removed. The record (x∗, y) is assigned to the positive response record.
After the replacement operations, the profile size p remains the same. However, the value
of v is decreased by 1 because of the removal operation for the negative response buffer.
Furthermore, since the new record is appended to the positive response record, we increase
the u by 1.

By contrast, when y < T, the set Q is the positive response buffer. The record located
at the u-th stage of the shift register of the positive response buffer is the oldest record,
and is removed. The record (x∗, y) is appended to the negative response record. Therefore,
u and v are incremented by 1 and decremented by 1, respectively. The profile size p remains
the same.

An example of record replacement for p = C = 4 is provided in Figure 10. In this
example, u = v = 2 before updating. Furthermore, the new record (x∗, y) with y ≥ T
is considered. The set Q is then the negative response buffer. Because v = 2 before
updating, the record in the second cell of the negative response buffer is removed. The new
record (x∗, y) is assigned to the positive buffer. Consequently, after the record replacement,
u = 3, v = 1. Furthermore, because the profile size remains the same, p = 4 after
record replacement.

(a)

(b)

Figure 10. A simple example for updating buffers in profile updating unit for p = C. In this example,
p = 4, C = 4, u = 2 and v = 2 before updating. Assume y ≥ T for the new record. The new record
is then assigned to positive response buffer. After updating, p = 4, u = 3, and v = 1. (a) Before
updating; (b) After updating.
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6. Experimental Results

This section presents some experimental results of the proposed smart SoC, which have
been deployed in the real LAN for QoS management. The setup for the experiments is first
provided in detail. This is followed by the evaluations of hardware costs and computation
speed of the SoC. The performance metrics of the SoC for QoS management in terms of
DLR and RAB for different services are subsequently included with comparisons.

6.1. Experimental Setup

As shown in Figure 11, the LAN for the experiments contains 2 bridges, 1 QoS server,
and a single core network. There are two links (i.e., n = 2) in the core network. Each link is
a Gigabyte Ethernet. The communication between the QoS server and each bridge is by
WiFi. The ERAB measurements for a service are carried out by the Bridge 1 or Bridge 2
depending on the location of the source. The corresponding ERAB reports are then sent to
the QoS server. Upon receiving the reports, the QoS server computes the new bandwidth
allocation for the service. The new allocation is subsequently sent to the corresponding
bridge for traffic control operations.

Figure 11. The real LAN for the experiments. The proposed SoC is deployed as the QoS server for
the LAN.

Raspberry Pi 4 computers are adopted for the implementation of Bridge 1 and Bridge 2.
The QoS server is built on Terasic DE-10 Nano board. The FPGA device for the DE-10
Nano board is Intel Cyclone V 5CSEBA6. The HPS associated with the DE-10 board
is based on ARM Cortex A9 processor with 800 MHz clock rate The proposed FPGA
accelerator has been simulated, implemented and mapped in FPGA using Cyclone V
5CSEBA6. The ModelSim is the simulator for the RTL level verification. Furthermore,
the Qsys is used for building the SoC for the evaluation of the proposed algorithms and
architectures for QoS management. The FPGA accelerator operates at maximum clock rate
of 50 MHz.

The virtual switch in each bridge is implemented by the Open vSwitch (OVS) [24].
In our experiments, the virtual switch is adopted for link aggregation and traffic shaping.
Let rj be the source data rate assigned to the j-th link of the core network. In the proposed
link aggregation scheme, rj is computed by

rj = R
xj

|x| , (45)

where R is the total source data rate. The flow tables for packet matching operations
in the virtual switch is used for traffic shaping. The matching rules for the flow ta-
bles are updated by the SDN controller in the QoS server. An Openflow controller
operating in accordance with the bandwidth allocation results from the proposed algo-
rithm is adopted as the SDN controller. The OpenFlow protocol [3] is used for the de-
livery of commands produced by the SDN controller. In our experiments, there are
twelve response levels (i.e., L = 12) for the QoS management. We set {η1, . . . , η11} =
{−11.25,−8.75,−6.25,−3.75,−1.25, 1.25, 3.75, 6.25, 8.75, 11.25, 13.75} (in Mbps) for convert-
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ing the ERAB to service quality y by (6). For the search space B for each service, we set
the step size ∆ = 0.25 Mbps in (7). Furthermore, both Link 1 and link 2 have the same
maximum bandwidth B1 = B2 = 40 Mbps.

6.2. Hardware Costs and Computation Speed

In the proposed FPGA accelerator, both the arithmetic operators and memory buffers
are the major contributing factors to the utilization of hardware resources. The arithmetic
operators are the FP adders, FP multipliers, FP accumulators, exponent operators, FP
dividers, and FP comparators. The memory buffers are the shift registers. Table 3 shows
the asymptotic analysis of number of arithmetic operators, and the size of shift registers.
The analysis is against the profile size upper bound C, the number of links n, and the
number of service quality levels L for the GRNN prediction unit and profile updating unit.
The analysis is based on the big-O function.

Table 3. Asymptotic analysis of number of arithmetic operators and the size of shift registers for
the proposed FPGA architecture.

Unit Name FP Adder FP Mult. FP Acc. FP
Divider

Exponent
Operator

FP
Comparator

Shift
Register

GRNN Prediction Unit O(n) O(n) O(1) O(1) O(1) O(L) 0
Profile Updating Unit 0 0 0 0 0 0 O(nC)

Overall O(n) O(n) O(1) O(1) O(1) O(L) O(nC)

It can be observed from Table 3 that the number of FP accumulators, exponent opera-
tors, FP dividers are independent of C, n and L. This is because only 2 FP accumulators,
1 exponent operator, and 1 FP divider are used for GRNN prediction, as revealed in Figure 4.
Because all the FP operators are pipelined, we can see from Figure 6 the latency for GRNN
prediction may still be low even for large profile size.

We see from Table 3 that the number of FP adders and FP multipliers grows with
the number of links n because of the squared distance computation in SDC unit. We also
conclude from Table 3 that the number of FP comparators increases linearly with L for
the quantization operations in QUAN unit shown in Figure 5. Furthermore, it can be
observed from Table 3 that the size of shift registers grows with C and n. This is because
the shift registers are used for the implementation of positive response buffer and negative
response buffer, as shown in Figure 8. It may not be necessary to specify large number
of links n and/or high number of quality levels L. However, it is usually desired to have
a high upper bound of profile size C so that robust GRNN prediction could be achieved.

Table 4 shows the utilization of FPGA resources of the proposed architecture for
various upper bound C to profile sizes. The area costs considered in the table are Adaptive
Logic Modules (ALMs), dedicated registers, embedded memory bits and DSP blocks. It can
be observed from Table 4 that the number of DSP blocks is independent of C. This is because
the DSP blocks are mainly used for the implementation of arithmetic operators. Both ALMs
and dedicated registers are used for the implementation of buffers for the profile updating
unit. Therefore, their utilizations grow with C. In fact, when C = 360, the proposed
architecture consumes 36,462 ALMs and 84,008 dedicated registers, respectively. The target
FPGA device Cyclone V 5CSEBA6 on Terasic DE-10 Nano FPGA board contains 41,910
ALMs, 167,640 registers, 5,662,720 block memory bits, and 112 DSP blocks. Therefore, when
C = 360, the proposed circuit consumes 87.00% of ALMs, 50.11% of registers, 0.15% of block
memory bits, and 18.75% of DSP blocks of the target FPGA device. That is, the proposed
SoC with large profile size can still be accommodated in the light-weight FPGA devices for
QoS management.
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Table 4. The utilization of FPGA resources of the proposed architecture for various upper bounds C
of profile sizes.

Profile Size Upper Bound 30 50 80 150 300 360

Number of ALMs 9444 11,366 14,385 20,955 33,109 36,462
Number of Registers 19,105 23,521 30,372 46,185 75,091 84,008
Block Memory Bits 8768 8768 8768 8768 8768 8768

Number of DSP Blocks 21 21 21 21 21 21

In addition to the area costs, the computation speed is an important concern for SoC
implementation. There are three speed measurements considered in this study. Recall
from (44) that t̄ is the average latency per search candidate, given a profile P . Furthermore,
t1 is the total latency for finding the optimal bandwidth allocation x∗ over search space
B. The first and the second speed measurements are t̄ and t1, respectively. For our
experiments, the number of candidates J in (44) is found by the subspace search algorithm
in [13]. The third speed measurement is the latency for updating profile P given a new
response record (x∗, y), denoted by t2. The latency for profile updating t2 is not a part of
the latency t1. The measurements of t1 and t2 are carried out independently.

Table 5 reveals the latency t̄ of the proposed SoC. To evaluate the proposed architecture,
the latency of some existing GRNN hardware architectures is also included in Table 5.
Even with higher profile size, we can see from Table 5 that the proposed architecture has
comparable latency to the architecture in [13], which is also based on pipelined operations.
Furthermore, as compared with the architecture in [21], the proposed architecture has
lower latency. Although architectures in [20,22] have faster computation speeds, their
profile sizes are small, and may not be suitable for accurate delivery quality prediction.
The proposed architecture has efficient computation performance because it is based on
pipelined operations. The parallel operations for different search candidates and response
records are beneficial for enhancing the computation efficiency even with large profile size.

Table 5. The average latency t̄ for a single prediction by various GRNN hardware architectures.

Hardware Architecture FPGA Device Clock Rate Profile Size Average
Latency t̄

Arch. in [13] Cyclone V 5CSEBA6 50 MHz 54 1.22 µs
Arch. in [20] Virtex X2V1000 50 MHz 10 1.00 µs
Arch. in [21] Spartan 3 XC3S2000 10 MHz 55 5.60 µs
Arch. in [22] Cyclone III EP3C120 NA 16 0.74 µs

Proposed Cyclone V 5CSEBA6 50 MHz 80 1.63 µs

Tables 6 and 7 show the latencies t1 and t2 of the proposed SoC for various profile
sizes p, respectively. For comparison purpose, the t1 and t2 measured from software-based
systems running on a personal computer (PC) with Intel I5 CPU operating at 2.90 GHz are
also reported. It can be observed from Tables 6 and 7 that the latencies of the proposed SoC
for bandwidth allocation and profile updating are significantly lower than their software
counterparts. Although the latency t1 increases with profile size p for both SoC and
software-based implementations, only slow growth is observed for the SoC because of
the pipelined operations for the GRNN computation. By contrast, surge in computation
time occurs for the software-based system. As a result, the speedup of the proposed SoC
over its sofware counterpart for t1 computation increases with profile size p.

Because of the simplicity of Algorithm 2, we can observe from Table 7 that both
the proposed SoC and its software counterpart have stable latency t2 for profile updating
as the profile size p increases. It can also be seen from Table 7 that the latency t2 is only
0.12 ms for the proposed SoC. The speeup of the proposed SoC is still above 10 over its
software counterpart.



Micromachines 2022, 13, 594 20 of 24

Table 6. The total latency t1 for finding the optimal bandwidth allocation x∗ for various profile sizes
p over search space B given a profile P .

Profile Size 30 50 80 100 200 300 360

Proposed SoC 22.09 (ms) 28.31 (ms) 34.20 (ms) 38.56 (ms) 52.88 (ms) 64.51 (ms) 67.89 (ms)
Personal Computer 1169.68 (ms) 1864.86 (ms) 3418.17 (ms) 3500.69 (ms) 5700.90 (ms) 7487.50 (ms) 8030.31 (ms)

Speedup 52.95 65.87 99.95 90.79 107.81 116.07 118.28

Table 7. The latency t2 for updating profile P with various profiles sizes p given a new response
record (x∗, y).

Profile Size 30 50 80 100 200 300 360

Proposed SoC 0.11 (ms) 0.12 (ms) 0.12 (ms) 0.12 (ms) 0.12 (ms) 0.12 (ms) 0.12 (ms)
Personal Computer 1.73 (ms) 1.69 (ms) 1.59 (ms) 1.54 (ms) 1.61 (ms) 1.66 (ms) 1.64 (ms)

Speedup 15.72 14.08 13.25 12.83 13.41 13.83 13.67

6.3. Bandwidth Allocation, DLR and RAB

The input source data rates can be tracked by the proposed algorithm for effective
bandwidth allocation, as shown in Figure 12. The profile size constraint for the experiments
is C = 80. We can see from Figure 12 that QoS management results for two services
(termed Service 1 and Service 2) with QoS level T = 6 are evaluated. Each service can be
divided into 100 transmissions, where each transmission is associated with different time
slots. The proposed algorithm is adopted for the QoS management for each transmission.
The source data packets in the experiments are produced by iPerf [25].

(a) (b)

(c) (d)

Figure 12. Bandwidth allocation results of the proposed algorithm with T = 6 and LSTM [16] for
various services. Because LSTM may not be self-aware, parts of bandwidth allocation results where
self-awareness are not attained are marked. (a) Proposed GRNN for Service 1; (b) Proposed GRNN
for Service 2; (c) LSTM for Service 1; (d) LSTM for Service 2.
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For comparison purposes, the tracking results of the input source data rates by long
short term memory (LSTM) [16] are also included in Figure 12. The LSTM algorithm [14,16]
is a neural network capable of exploring the temporal correlation of input source data
for prediction. The offline training operations for the LSTM algorithm are carried out by
NVIDIA Geforce GTX 1060 GPU. In contrast, no offline training operations are required by
the proposed algorithm. In addition, the average DLR and RAB over 100 transmissions for
each service for various algorithms are included in Table 8. The measurements of RAB and
DLR for each transmission are by (2) and (3), respectively.

Table 8. The average DLR and RAB values of the proposed GRNN algorithm with T = 6 and T = 8,
and its LSTM [16] counterparts for source data rate prediction for various services.

Algorithms
LSTM [16] Proposed (T = 6) Proposed (T = 8)

ave RAB ave DLR ave RAB ave DLR ave RAB ave DLR

Service 1 (Mbps) 0.82 2.28 1.08 0.88 5.35 0.02
Service 2 (Mbps) 1.38 1.62 1.12 0.90 5.32 0.00

We can observe from Figure 12 that the proposed algorithm is effective for tracking
the source data rates. To elaborate this fact, as shown in Figure 12, the proposed algorithm
will allocate more bandwidths to a service when the deficiency of bandwidth to the service
has been observed. In addition, it may reduce the bandwidth when the excessive bandwidth
is assigned to to service. These results are consistent with the analytical results shown
in (22), (25), (39), and (40). By contrast, the LSTM algorithm may not be self-aware.
Examples revealing non-awareness for QoS management are exposed in the marked results
in Figure 12, where bandwidth to a service is removed by LSTM even in case of deficiency.

Because the proposed algorithm is self-aware, it has low RAB and DLR for tracking
source data rates, as revealed in Table 8. Furthermore, when the DLR is an important
concern, the proposed algorithm is able to further lower the DLR by increasing the QoS level
T. In addition to QoS level T = 6, Table 8 and Figure 13 show the results of the proposed
algorithm with QoS level T = 8 for Service 1 and Service 2. We can observe from Table 8
and Figure 13 that the DLR values for each service are effectively reduced by allocating
more bandwidth for that service. In fact, when T = 8, the DLR for Service 1 and Service 2
are 0.02 Mbps and 0.00 Mbps, respectively. These results confirm that higher QoS levels are
beneficial for data delivery when low DLR values are desired.

(a) (b)

Figure 13. Bandwidth allocation results of the proposed algorithm with T = 8 for various services.
(a) Proposed GRNN for Service 1; (b) Proposed GRNN for Service 2.

To evaluate the impact of the performance of the proposed algorithm on the upper
bound of profile size C, Table 9 shows the average RAB and DLR for different upper bound
on profile sizes C = 30, C = 50 and C = 80, respectively. Both Service 1 and Service 2 are
considered in the experiment. For each service, the performance of two QoS levels T = 6
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and T = 8 are reported. We observe from Table 9 that the proposed QoS management
algorithm based on larger upper bound C has lower average RAB and average DLR values.
This is because larger number of past response records are available for more accurate
quality prediction. Furthermore, given C, lower average DLR values can be attained by
adopting QoS level with higher T at the expense of larger average RAB values. While
attaining accurate tracking for input source data rates, the proposed algorithm is able to
provide high flexibilities for QoS management by specifying different upper bound for
profile sizes and QoS levels for data delivery.

Table 9. The average DLR and RAB values of the proposed GRNN algorithm with different profile
size upper bounds C and different QoS levels T.

Profile Size Upper Bound
C = 30 C = 50 C = 80

ave RAB ave DLR ave RAB ave DLR ave RAB ave DLR

Service 1 T = 6 1.84 1.19 1.02 1.06 1.08 0.88
(Mbps) T = 8 5.73 0.09 5.63 0.02 5.35 0.02

Service 2 T = 6 1.30 0.68 1.28 0.88 1.12 0.90
(Mbps) T = 8 5.58 0.01 5.61 0.01 5.32 0.00

7. Conclusions

A smart SoC has been successfully deployed for QoS management in a virtual LAN.
An FPGA accelerator has been implemented for the GRNN-based service quality prediction
so that the bandwidth allocated for a service can be optimized with low computation
latency. Both analytical and numerical studies have been provided for demonstrating
the self-awareness of the proposed algorithm for QoS management. Subject to the con-
straint on the profile size, the analytical study shows that the proposed profile updating
algorithm is still able to maintain self-awareness. Numerical results reveal that the pro-
posed FPGA accelerator utilizes only limited hardware resources, even for large profile
size upper bounds. When applied for QoS management, the SoC based on the FPGA as
an accelerator has low latency for finding the optimal bandwidth allocation and profile
updating. The proposed SoC therefore is beneficial as a hardware VNF for effective QoS
management over virtual LAN with low implementation costs.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC ACCumulation
ALM Adaptive Logic Module
ARIMA Auto-Regressive Integrated Moving Average
DIV Division
DLR Data Loss Rate
ERAB Extended Residual Allocation Bandwidth
EXP Exponent
FP Floating Point
FPGA Field Programmable Gate Array
GRNN General Regression Neural Network
HPS Hard Processor System
LAN Local Area Network
LSTM Long Short Term Memory
MLP Multilayer Perceptron
NIC Network Interface Card
NFV Network Function Virtualization
PC Personal Computer
OVS Open vSwitch
QUAN Quantization
QoS Quality of Service
RAB Residual Allocation Bandwidth
RNN Recurrent Neural Network
SDN Software-defined Networking
SIPO Serial-In Parallel-Out
SoC System on Chip
SDC Squared Distance Computation
UDP User Datagram Protocol
VNF Virtual Network Function

Appendix A. Frequently Used Symbols

Table A1. A list of frequently used symbols in this study.

∆ Step size for the search of optimal bandwidth allocation.
ηk {η1, . . . , ηL−1} is the set of threshold for determining ERAB intervals Ik , k = 0, . . . , L− 1.
B Set of all possible bandwidth allocations for the service.
Bj Maximum allowed bandwidth at the link j for the service.
C Upper bound of profile size p.
Ik ERAB interval for service quality y = k.
J Number of search candidates for GRNN prediction.
L Number of service quality levels.
n Number of links in the core network.
O Set of bandwidth allocations x whose service quality prediction ŷ is larger or equal to T.
P Profile for GRNN prediction.
p Number of records in the profile P .
Q Set of records in P that can be replaced without losing QoS self-awareness.
R Source data rate.
T Lower bound of the service quality.
t̄ The average latency per search candidate x. t̄ = t1

J .
t1 The latency for finding the optimal bandwidth allocation x∗ given profile P .
t2 The latency for updating profile P given new response record (x∗, y).
u The number of valid response records in the positive response buffer.
v The number of valid response records in the negative response buffer.
x A bandwidth allocation for the service.
|x| Total bandwidth of the bandwidth allocation x.
x∗ Result of optimal bandwidth allocation.
xi (xi , yi) is the i-th record in profile P , where xi is the bandwidth allocation of the record.
xj The bandwidth of the j-th link.
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Table A1. Cont.

y Measured service quality for a bandwidth allocation.
y′ Result of GRNN computation.
ŷ Predicted service quality based on a bandwidth allocation x.
yi (xi , yi) is the i-th record in profile P , where yi is the measured service quality for xi .
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