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Abstract: X-ray imaging machines are widely used in border control checkpoints or public trans-
portation, for luggage scanning and inspection. Recent advances in deep learning enabled automatic
object detection of X-ray imaging results to largely reduce labor costs. Compared to tasks on natural
images, object detection for X-ray inspection are typically more challenging, due to the varied sizes
and aspect ratios of X-ray images, random locations of the small target objects within the redundant
background region, etc. In practice, we show that directly applying off-the-shelf deep learning-based
detection algorithms for X-ray imagery can be highly time-consuming and ineffective. To this end,
we propose a Task-Driven Cropping scheme, dubbed TDC, for improving the deep image detection
algorithms towards efficient and effective luggage inspection via X-ray images. Instead of processing
the whole X-ray images for object detection, we propose a two-stage strategy, which first adaptively
crops X-ray images and only preserves the task-related regions, i.e., the luggage regions for security
inspection. A task-specific deep feature extractor is used to rapidly identify the importance of each
X-ray image pixel. Only the regions that are useful and related to the detection tasks are kept and
passed to the follow-up deep detector. The varied-scale X-ray images are thus reduced to the same
size and aspect ratio, which enables a more efficient deep detection pipeline. Besides, to benchmark
the effectiveness of X-ray image detection algorithms, we propose a novel dataset for X-ray image
detection, dubbed SIXray-D, based on the popular SIXray dataset. In SIXray-D, we provide the
complete and more accurate annotations of both object classes and bounding boxes, which enables
model training for supervised X-ray detection methods. Our results show that our proposed TDC
algorithm can effectively boost popular detection algorithms, by achieving better detection mAPs or
reducing the run time.

Keywords: X-ray imaging; objective detection; image cropping; deep learning; features extraction

1. Introduction

X-ray screening is a commonly-used security measure at airports, border checkpoints
and public transportation due to the merits such as real-time imaging and non-invasiveness.
The investigation of X-ray images was typically done by human screeners, while such
a manual process is expensive, inefficient, tiring, and can be affected by factors such as
mental exhaustion and workplace conditions [1,2]. Additionally, the different view angles
of clutter and overlapped objects in security X-ray images will further increase the risk of
missing prohibited items [3,4]. Owing to these reasons, it is desired to automate the X-ray
screening process using advanced object detection algorithms.

While classic methods [5–8] exploited image processing and model-based optimization
for X-ray object detection, recently proposed deep learning algorithms [9–13] have proved
to be a better method with higher detection accuracy. Along with an increase in the number
of available detection algorithms, more security X-ray image datasets [13–16] are published
and made publicly available from 2016 onward, which enable more deep learning methods
to solve the X-ray image detection or classification problems. Although providing valuable
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auto-detection benchmarks, these datasets all share the same common trait: the images
are manually cleaned and processed, i.e., the objects of interest are manually amplified
and centered to fit the viewport. However, in the realistic situations, the scanned items
do not always fit the viewport and may appear very small compared to the redundant
background. Figure 1 show some examples of the manually process X-ray images from the
GDXray [14] and OPIXray [13] datasets, compared to the realistic images from Sixray [17].
Besides, to run the trained detection models, X-ray images are typically required to be
resized to square, but such process may distort the original resolution and aspect ratios
of the relevant objects. Research has also pointed out that the smaller sizes of the input
image can decrease the detector’s accuracy [18–20]. The redundant spaces also contribute
nothing to the detection’s ability but more processing time, as large size input images
tend to increase the inference time of the model, so a method of removing such spaces is
much needed. Conventional cropping techniques such as center cropping or edge cropping
might not perform well on security X-ray images due to the variety in size and objects’
location along with X-ray artifacts [21,22]. Alternatively, deep learning-based cropping or
retargeting techniques [23–26] using feature extraction mainly focus on the aesthetic aspect
of images. They focus on improving the visual quality and often neglect the inference time
of the model and the effect of cropping on detection time and accuracy.

(a) (b)

(c) (d)

Image

Object

Figure 1. Examples of security X-ray images from popular public datasets: (a) GDXray [14],
(b) OPIXray [13], (c,d) SIXray [17].

In this work, we propose Task-Driven image Cropping (TDC)—a novel and efficient
scheme of cropping security X-ray images using activation output of convolutional layers
of the detection network to simultaneously achieve two objectives, i.e., reduction of run
time and improvement of detection accuracy. By utilizing the change in the energy of the
feature maps extracted from the network backbone, we can efficiently crop the unwanted
background and preserve regions of interest. To test the cropping performance of TDC for
real-life classification and detection problems, we select SIXray [17] because it provides
extra challenges with multiple viewpoints, complex backgrounds, and overlapping objects.
However, only the test SIXray dataset has bounding box-level annotation and some samples
are wrongly annotated as negative (without prohibited items) in the dataset. To provide
better annotations, we propose a novel X-ray image detection benchmark, named SIXray-D,
which is a fully annotated detection dataset with more positive images and objects.

Our contribution can be summarized as follows:
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1. We propose SIXray-D, an improved dataset based on the popular SIXray [17] as a fully
annotated dataset for contraband items detection. SIXray-D provides a comprehensive
detection benchmark, which can be used to evaluate and improve the effectiveness of
deep X-ray detection networks.

2. We propose TDC, a task-driven X-ray image cropping pipeline to efficiently remove
redundant background and preserve the task-related objects by utilizing the features
extracted from the network’s backbone.

3. We conduct experiments to evaluate several state-of-the-art single-stage detectors
on the proposed SIXray-D. We show that TDC can effectively improve the detection
methods such as RFB-Net, by achieving better mAPs or reducing the inference time.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
background and related works. Section 3 presents our proposed SIXray-D dataset for X-ray
image detection tasks. Section 4 describes the details of the proposed TDC scheme and
how it improves the X-ray image detection tasks. The experimental results are presented in
Section 5, and Section 6 provides several concluding remarks.

2. Related Works

X-ray security inspection task. X-ray screening is a universal security measure at
border checkpoints, airports, and public transportation due to the thoroughly real-time
imaging and non-invasiveness. The procedure can be conducted on both passengers and
their luggage to identify any prohibited and potentially dangerous items carried through
the border checkpoints or stations. The inspection of X-ray images is mostly done by
security personnel, and human factors such as physical well-being, mental health, and work
satisfaction could affect the process and lead to errors in detecting contraband items.
According to a survey on airport security professionals in 18 Brazilian airports [2], 61% of
the professionals admit that they have committed an error during security inspection and
try to correct it. The main factors contributing the most to the errors are the tiring, repetitive
and monotonous jobs, the neglect of following work procedures, and the complacency on
the jobs. Furthermore, training the human operators for threat detection is expensive and
requires a great amount of effort, hence automated X-ray screening process is desired using
object detection algorithms.

X-ray security dataset. There are several public datasets in the X-ray security field
such as the GDXray dataset [14] and OPIXray dataset [13]. Each dataset has a different
way of labeling images, and the number of classes is also varied. These datasets contain
non-complex X-ray images with no redundant background, and there is usually only one
object of interest per image. Moreover, the proportion between positive and negative
samples does not reflect realistic scenarios, thus making such datasets non-ideal for security
inspecting applications. HiXray [27] is another security X-ray inspection dataset with
high-quality images, multiple objects of interest per image, and object occlusion. However,
it focuses on airport cabin baggage as the classes consist of phone charger, water bottle,
mobile phone, tablet, and laptop, which are usually scanned separately with airplane cabin
baggage. On the other hand, these items are allowed in checked-in baggage and general
security X-ray inspection such as subway station or land border checkpoint. Furthermore,
the images are pre-processed, and the luggage is situated at the center of the viewport, thus
making the dataset less realistic. Meanwhile, SIXray [17] provides a complex dataset with
extra challenges such as overlapped objects, various image sizes, and difficult background
content. It proves to be the largest security X-ray dataset up to date with over 1 million
images, including both positive and negative samples. However, the manual annotations
for SIXray are done coarsely with only the test set annotated with bounding boxes, hence
more detailed annotations on the whole dataset can lead to improvement in the accuracy of
the detection model.

Single-stage detectors. Top-performing image detectors are usually two-stage detec-
tors using deep convolutional neural networks (CNN) backbones such as Inception [28],
Mask-RCNN [29], or ResNet [30] with the trade-off of high computational complexity and
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slow runtime. Alternatively, several one-stage detectors provide real-time speed and perfor-
mance comparable to these two-stage detectors, namely RetinaNet [31], SSD [32]. RetinaNet
utilizes feature pyramid networks [33], and couples with the ResNet [30] backbone network
for feature extraction. It also introduces FocalLoss to handle the class imbalance problem
of a single-stage detector to provide a good detection performance. SSD introduces the
application of dividing the image into a grid with the pre-defined anchor boxes in each
grid cell. The anchor boxes have different sizes and aspect ratios, and they are responsible
for matching the objects of interest during the training and detecting process. Liu et al. [34]
proposed a lightweight detector consisting of Receptive Field Block (RFB) modules inspired
from Receptive Fields (RFs) in human eyes to make features more distinguishable on top of
the SSD network. Besides, with the recent work of YOLOv5 [35] and image transformer
for one-shot detector [36], the performance of single-stage detectors could surpass their
double-stage detector counterparts in some experiments. X-ray image detection at a secu-
rity checkpoint requires fast inference time, thus by using single-stage detectors on the task
we can achieve good accuracy and relatively real-time detection speed.

Image retargeting/cropping methods. Image cropping and retargeting are popular
methods to remove the redundant area of an image. The main goal of image retarget-
ing [25,37–39] is improving the aesthetic of the image by warping but with a risk of warping
objects of interest and generating artifacts. Alternatively, image cropping is much simpler,
as it only selects an area that contains saliency regions. The SIXray dataset provides a
challenge to auto image cropping methods such as center cropping due to the different
locations of objects and variety of image sizes. Additionally, X-ray artifacts [21] such as
vertical or horizontal bars prevent cropping using conventional methods such as edge
detection [40] to crop the interest region. Furthermore, image retargeting usually requires a
target aspect ratio [25,38,39], which is hard to determine due to the dataset’s characteristics.

Object detection in security X-ray inspection. The methods for automated object
recognition in X-ray can be categorized into conventional image analysis, machine learning-
based approach, and deep learning-based approach. Classic methods range from fusion,
de-noising, and enhancement of dual-energy X-ray images [6] to Threat Image Projection
(TIP) [16] for enhancing X-ray detection performance. Such methods exploit image process-
ing and threshold-based optimization to improve the operators’ performance and alertness.
Before the rise in the number of deep learning-based algorithms, the bag of visual words
(BoVW) was the popular machine learning method for both object classification [41,42]
and object detection [43,44]. Besides BoVW, some other common approaches [45,46] based
on feature descriptors and k-NN classifier [47] were used for multi-view X-ray images.
Recently, with the introduction of deep learning algorithms, object detection methods based
on both single-stage detectors [9,11,48] and double-stage detectors [48–50] prove to be the
better choice for automated X-ray image inspection. Furthermore, pixel-level analysis [51]
can be conducted to enhancing the performance of the deep learning detector for large-
scale X-ray security images. They achieve high accuracy and reasonable inference time on
different X-ray image datasets such as DBF3 [52], GDXray [14], and SIXray [17] datasets.

3. SIXray-D Dataset

GDXray [14] and OPIXray [13] are popular public security X-ray datasets serving the
detection task, and the key attributes of these datasets can be summarized in Table 1. In
GDXray and OPIXray datasets, images are manually cleaned, and redundant background
and noise are removed as shown in Figure 1. The GDXray only contains simple settings and
non-clutter baggage with one contraband item per image, hence the dataset does not align
with the realistic situation where objects of interest appear together with other items and
are hard to be detected. On another hand, the image in OPIXray has object occlusion, but it
also has only one prohibited object per baggage. Besides, the dataset only consists of knives
and scissors classes, thus excluding some contraband classes such as guns or wrenches.
Furthermore, both GDXray and OPIXray have the trouble of retrieving the datasets from
the sources.
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Table 1. Key attributes of popular detection security X-ray datasets, namely GDXray [14] and
OPIXray [13], as well as the proposed SIXray-D dataset.

Dataset Class Types Positive
Images

Negative
Images

Multiple
Objects per

Image

Object
Occlusion

Real X-Ray
Artifacts

Realistic
Orientation
of Luggage

GDXray Shuriken,
gun, knife 8850 10,550 7 7 7 7

OPIXray
Scissors and
variants of

knife
8885 0 7 1 3 7 7

SIXray-D
Scissors,

pliers, gun,
wrench, knife

11,401 1,050,302 3 3 3 3

1 For OPIXray, there are only 35 out of 8885 images with multiple objects per image.

Due to the aforementioned limitations, we choose to prepare our new benchmark using
SIXray [17] as our data baseline, which provides more complex X-ray images, multiple
contraband items per image, and easier accessibility. The original SIXray dataset has
8,929 positive images with contraband items and 1,050,302 negative images. The ratio
between positive and negative samples of SIXray is around 1:1000, and it reflects the
realistic frequency of appearance of prohibited items. Though SIXray intends to provide 6
object classes, images containing hammers were not available for download. Thus, in the
proposed SIXray-D dataset, we proceeded with only 5 item classes, namely Pliers, Scissors,
Gun, Knife, and Wrench. More importantly, the SIXray is designed for the classification
task, hence originally only 1200 positive images were annotated at the bounding box level
in the testing set. In practice, training a detection deep model with only a few annotated
images usually leads to overfitting, e.g., the detection mAP for the original SIXray is only
65.62 [17] when using DenseNet [53].

To this end, we propose a new X-ray object detection benchmark by utilizing the
image data from SIXray [17] with more comprehensive annotation for detection, named
SIXray-D. There are 8823 positive images in total that are publicly available from SIXray
and around 1 million negative images. We train the RFB network for object detection using
the positive images. Then, we apply the network to conduct detection on the negative
images. The network detects some contraband items in these negative images (inspected
set). We manually inspect the inspected set and we find that there are two categories. The
first one is images that contain contraband items, but are the false-negative image of the
SIXray dataset (wrongly annotated as negative). Such false-negative samples usually have a
large area of redundant background with multiple overlapped objects, and the contraband
items are small compared to the other components. Figure 2 illustrates some of the Scissors
and Knife images that are false-negative. The second category does not contain contraband
images but is marked as positive by our network. The second catagory is the false-positive
images to the detector, and Figure 3 illustrates such images. In the proposed SIXray-D
dataset, we complete the annotation for the first category images and add them to the
positive set. For the second category image, we separate them from the negative images to
prevent confusion and misdetection. Table 2 summarizes the detailed information about
our contribution to SIXray-D.
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Figure 2. False-negative images from the SIXray dataset [17]. The red bounding boxes that are newly
annotated by SIXray-D indicate the contraband items from the classes Knife and Scissors.

Figure 3. Negative images that are marked as positive by the detection network.

Table 2. Comparison between SIXray [17] and SIXray-D datasets.

Dataset SIXray SIXray-D

Supervised task Classification Detection

Bounding box annotations Test Set Train + test set

Positive images 8823 11,401

Positive objects 20,729 23,470

4. Task-Driven Image Cropping by Deep Feature Extraction

With the new SIXray-D dataset available, our goal is to develop a more efficient
and effective X-ray image detection pipeline that can overcome practical challenges, such
as varied image sizes, aspect ratios as well as arbitrary locations of small target objects.
We propose the Task-Driven image Cropping (TDC) module, which utilizes activation
feature maps from convolutional layers for determining the redundant data to be removed.
Figure 4 shows the proposed TDC-based X-ray image detection pipeline, which consists
of the TDC module based on the feature map generated by the task network backbone,
and the detection process using the output of the cropping module. As shown in Figure 4,
the cropping process can utilize the same network backbone with the detection network
to save memory and computation. Figure 5 illustrates the detailed structure of the TDC
module. Next, we will first introduce preliminaries about CNN feature maps, followed by
the detailed TDC module and how it works for adaptive image cropping.
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Figure 4. The proposed X-ray image detection pipeline with the TDC module for task-driven cropping.
The network backbone for the feature extraction is the same in the detection network. In this work,
we use RFB-Net [34] for the detection task, while TDC could also be used for other single-stage
detection networks.

n x 1

1 x n
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Horizontal cropping threshold
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n
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Extracted
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Figure 5. Construction of TDC module by combining the columns/rows wised summation of pixel
energy, the median filter to filter out the X-ray artifact spikes, the min-max normalization, and the
threshold-based cropping. The cropping region is then combined with the input image to produce
the output cropped image.

4.1. Feature Map Generation

In a CNN model, the feature map F ∈ RW×H×C is the result of the input image
after the convolution process, where W and H are the width and height of the feature
map, and C is the number of channels. Usually, the first few layers provide details about
low-level features such as edges and colors. The deeper layers will provide information
about high-level features like positions and shapes of salient objects [54,55].

Let F be the output from a convolutional layer, in which F = {F1, F2, ..., FC} where C
is the number of channels and Fi is the output per channel. To generate an overall feature
map of a layer, the sum of magnitudes of each channel output is calculated and then
averaged as follows:

Favg =
1
C

C

∑
i=1
|Fi|, (1)

where |Fi| is the element-wise absolute value of Fi and Favg is also a 2D array.
For scanned security X-ray images, objects of interest overlap with the container or

luggage. Hence, to provide a suitable feature map that distinguishes the items from the
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background, we decide to extract middle convolutional layers. Activation from such layer
contains moderate information about objects, but does not omit the suitcases containing
them, which helps distinguish against the plain background of the X-ray image. Figure 6
presents the original image and three different feature maps from three layers: the 2nd
convolutional layer, the 15th convolutional layer, and our choice, the 9th layer of the
backbone of RFB Net. Note that we can use the output from any convolutional layer to
perform feature extraction. The ablation study in Section 5.4 proves that the 9th layer gives
the best detection accuracy improvement after the image cropping process.

(a) (b)

(c) (d)

Figure 6. Original X-ray image and feature outputs from different convolutional layers from the
backbone of RFB Net. (a) is the original image, (b) is the 2nd layer output, (c) is the 15th layer output
and (d) is the 9th layer output.

4.2. TDC Module and Image Cropping

Dimension reduction of feature matrix. Figure 5 summarizes our TDC module for
efficient task-driven feature-based cropping. We propose that the pixel magnitude of the
feature map in the regions of interest is higher in other areas. To prove this idea and
utilize it for the cropping process, we construct a column-wised feature matrix Fc through
summation of all pixels Favg(x, y) in the feature map Favg vertically:

Fc =
H

∑
j=1
Favg(x, j), (2)

where H is the vertical resolution of the feature map Favg. Fc = {Fc1, Fc2, .., FcW} where Fci
is the magnitude of column i in the feature map, and W is the horizontal resolution of Favg.

Columns difference and artifact removal. We take the absolute difference between
columns, Fdi f f , to observe the rapid change in magnitude between column, and to identify
the region of interest as follows:

Fdi f f (i) = |Fc(i+1) − Fci|. (3)
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However, the vertical and horizontal bars appear as artifacts in the scanned image
horizontally and vertically due to the scanner or image processing steps [21]. Such artifacts
can cause spikes in Fdi f f shown in Figure 7. We use a median filter to filter our matrix:

Fmed = Φ(Fdi f f , n), (4)

where Φ(x, n) indicates median filter of x with kernel n. We normalize Fdi f f using min-max
normalization to derive Fnorm as the final column difference matrix:

Fnorm(i) =
Fmed(i)−min(Fmed)

max(Fmed)−min(Fmed)
, (5)

where Fnorm = {Fn1, Fn2, ...Fd(W−1)} indicates the normalized horizontal change in magni-
tude of the feature map.

(a) (b)

(c)

Energy difference between columns, Ӻdiff

Index of columns

M
ag

n
it

u
d

e

Index of columns

M
ag

n
it

u
d

e

Normalized and filtered energy difference, Ӻnorm

Figure 7. Result of median filtering and normalizing process. (a) is the visualization of Fdi f f ,
the energy difference between columns of feature map. (b) is the visualization of Fnorm, the result of
normalization and filtering process of Fdi f f . (c) is the feature map, and the spikes labeled by the red
circles caused by X-ray artifacts in Fdi f f can be seen in (a,c), which are removed by the median filter.

Threshold-based cropping. We determine a threshold k based on Fnorm to efficiently
crop the image without removing salient objects. If Fni > k, the rate of change of column i
is higher than the threshold, and column i indicates the start of regions of interest. Fnorm
is scanned from left to right and vice versa to determine the horizontal boundary of the
cropping region. We repeat the process vertically to decide the vertical boundary for the
region of interest (RoI). After that, the original image will be cropped according to the RoI
on the feature map.
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5. Experiments
5.1. Experiment Setup

Baseline and dataset. We use some of the most common single-stage detectors with
relatively good detection performance, namely SSD [32], RetinaNet [31], and RFB Net [34]
to set up the default baseline model for the cropping procedure. The dataset used for
benchmarking is the SIXray-D dataset. We follow the PASCAL VOC 2007 dataset structure
to split the train-test set. The original SIXray dataset contains 8820 positive images. We
randomly split the dataset with a ratio of 90/10 for train/test, and reserve the test set
for testing only to provide an unbiased evaluation of the model’s performance. We use
the recommended training parameters of SSD-512, RetinaNet, and RFB-512 from publicly
available codes in PyTorch [56]. We set the training epochs to 200, and the training takes
around 1–2 days to complete for each model.

For TDC, we use the baseline with the best result from the baseline benchmark to
perform image cropping. The baseline is used in the image cropping and detection tasks for
the test dataset. We use two configurations on the baseline: one is the default configuration,
which resizes the input image to 512 × 512, the other is a dynamic input configuration
that takes in arbitrary sizes image. We try to use the dynamic input model to increase
the detection performance at the cost of model runtime. We use a median filter of kernel
9 to remove the X-ray artifacts and set a baseline threshold k of 0.5. We believe a 50%
difference between the energy of columns/rows of feature map can indicate the starting
of the region of interest, then we tune it to optimize the cropping performance based on
two criteria, (1) to achieve the best detection mAP and (2) to prevent over-cropping and
cutoff objects of interest. We discover that ranging the threshold k from 0.15 to 0.3 achieves
the best performance satisfying both criteria, and k being 0.15 has the highest detection
performance. Thus, k is set at 0.15 for both horizontal and vertical cropping.

To compare the performance of TDC with both conventional and deep learning-based
image cropping, we choose two methods: the first is Canny edge detection [40] based
cropping implemented using Python 3 [57], and the second method is the aesthetic-based
cropping proposed by Peng et al. [24]. For the problem of cropping off white space
and preserving the objects of interest, Canny edge detection is a simple and powerful
unsupervised method to detect the saliency region. For the deep learning-based cropping,
as there is no task-driven based image cropping and almost all of the currently available
methods focus on improving the aesthetic aspect of the cropped image, we choose the
method that provides the highest aesthetic scores and is available to the public. We follow
the recommended parameters and use the pre-trained 512 × 512 model for the aesthetic-
based cropping method [24] using TensorFlow [58]. All experiments are conducted on
a single NVIDIA GTX 1080Ti GPU. Figure 8 displays some results from TDC where the
background of images is cropped off and the main content is preserved.

Figure 8. Results from TDC using RFB Net backbone. The red bounding boxes mark the output after
cropping when using k = 0.15.

5.2. SIXray-D Benchmarking

In this section, we benchmark the detection performance on the SIXray-D dataset
using mean Average Precision (mAP) from PASCAL VOC 2007 metric [59] with Intersection



Micromachines 2022, 13, 565 11 of 16

over Union (IoU) of 0.5. Table 3 summarizes the experiment results on the SIXray-D test set
with 836 images.

Table 3. Detection Average Precision on each class and mean Average Precision (mAP) on different
models and test datasets. Red indicates the best and blue indicates the second best performance.

Method Pliers Gun Wrench Scissors Knife Mean

SSD 87.03 96.31 84.73 84.04 82.51 86.92
RetinaNet 82.73 84.51 75.69 79.95 74.64 81.50

RFB 88.78 96.13 85.92 84.73 83.22 87.76
RFB + Edge [40] based crop 88.79 95.85 86.12 86.04 83.93 88.16
RFB + Aesthetic crop [24] 89.43 96.32 86.17 85.48 83.43 88.38

RFB + TDC 89.52 96.63 86.19 87.57 84.37 88.86

Based on Table 3, RFB Net performs better than RetinaNet and SSD Net. Both SSD and
RFB use the same reduced VGG-16 backbone for feature extraction. However, by replacing
Conv2D layers in SSD with the RF module to capture features better [34], RFB Net achieves
slightly higher mAP than SSD on the test set. Although using a ResNet, which is a deeper
backbone [31], RetinaNet cannot match the performance of the above two models. The
difference in mAP could come from the difference in architecture and activation function.
RetinaNet does not have RF modules and uses FocalLoss (sigmoid activation) [31] while
RFB uses Multibox loss (softmax activation) [34]. The softmax activation forces sum of
the classification outputs to 1, which is more suitable in multi-classification. Alternatively,
sigmoid activation is better for binary classification, hence for a dataset with multiple classes
like SIXray-D, softmax in RFB Net is the better loss function. Through the experiment,
the RFB Net is the best option for the cropping process baseline.

5.3. Cropping Performance Assessment

In this experiment, we further evaluate the effectiveness of the proposed TDC module
from two different perspectives: (1) Detection accuracy improvement using a fixed-size
RFB Net; and (2) reduction of runtime using dynamic input RFB model when applying
TDC on the SIXray-D dataset.

5.3.1. Fixed-Size Model

For a fixed-size model, it resizes the input images into 512 × 512. It does not retain the
objects’ aspect ratios, but the inference time is faster than the dynamic shape input model.
Table 3 summarizes the detection performance of RFB net on original and cropped SIXray-D
datasets. From Table 3, TDC surpasses other cropping methods and improves the average
detection mAP by 2 to the original dataset, which can be credited to the enlargement of
small contraband objects such as Scissors and Pliers. While TDC can efficiently crop off
the area with X-ray artifacts and redundant objects, the conventional Canny-edge [40]
based cropping and deep learning-based aesthetic cropping [24] struggle to do so. Figure 9
illustrates several outputs of the three cropping methods on the SIXray-D dataset. An
observation can be made that only TDC can detect the X-ray bar artifacts, the straps of the
bags, and the mouse cursors on the image as noise, while the other two methods fail to
recognize them, hence leading to less efficient cropping and less space reduced.
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Figure 9. Comparison of cropping output between different methods: Green bounding boxes indicate
the outputs from Canny edge [40]-based cropping; Blue bounding boxes indicate the outputs from
aesthetic-based cropping [24]; Red bounding boxes indicate the outputs from our proposed TDC
module.

5.3.2. Dynamic Shape Input Model

As the RFB Net reuses the architecture of SSD, anchor boxes are introduced in the
convolutional layers [32]. While these boxes are static in the original network, the anchor
boxes are re-calculated for every single image in the dynamic shape model. Hence, this
will drastically increase the runtime of the detection model. When using dynamic input
shape, our goal is to achieve a better detection mAP at the cost of slower runtime. By
reducing the input size through feature-based cropping, the time for anchors generation
will decrease, and subsequently, the overall inference time will reduce. Table 4 summarizes
the detection result when applying different cropping methods on the SIXray-D dataset
and using dynamic input shape RFB Net. In this experiment, TDC proves to be the best
cropping method with the highest mAP and lowest runtime compared to the other methods.
The average inference time on the Dynamic RFB + TDC is decreased by 8% compared to the
original set. The overall mAP is almost the same across all the cropping methods, with TDC
being 0.3 mAP higher. This can be credited to the removal of the redundant background
area, in which TDC surpasses other approaches as shown in Figure 9.

Table 4. Detector performance on SIXray-D datasets using dynamic shape input RFB Net (Dynamic
RFB) after applying different cropping methods. Red indicates the best results and blue indicates the
second best results.

Method Pliers Gun Wrench Scissors Knife Mean Runtime (s)
↓

Runtime
Reduction

(%) ↑
Dynamic RFB 90.83 98.67 87.26 91.65 83.01 90.28 2.394 N/A

Dynamic RFB + Canny
edge [40]-based crop 89.84 97.93 88.20 90.80 84.69 90.29 2.271 5.13

Dynamic RFB +
Aesthetic crop [24] 90.52 98.36 88.76 89.31 83.90 90.37 2.221 7.23

Dynamic RFB + TDC 91.07 98.54 88.51 92.32 82.78 90.60 2.192 8.44
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5.4. Ablation Study

In this section, we assess the effect on detection accuracy using features extracted from
different convolutional layers in the backbone VGG model of the RFB Net and summarize
the result in Figure 10. We use the 2nd, 9th and 15th layers to represent the low, medium,
and deep feature layers’ outputs. An observation can be made that using the features from
the 9th convolutional layer for the TDC module gives the best detection result. The lower
layers only highlight contraband objects and make the algorithm cut off the important
background and potential objects of interest. Meanwhile, the deep layers’ features provide
little change between columns and rows of the image as the whole baggage is highlighted,
thus making the cropping algorithm ineffective. By using the middle convolutional layer,
we can preserve the crucial background and cut off the unwanted redundant spaces in
the process.

75

80

85

90

95

100

Plier Gun Wrench Scissor Knife mean

mAP Detection mAP using different feature layers

Layer 2 Layer 9 Layer 15

Figure 10. Ablation study: detection AP over each class (and the mean) of SIXray-D dataset using the
RFB + TDC detection pipeline. The feature outputs are varied from the layer 2 to 15 of the RFB Net,
which are used to crop the X-ray images using TDC, thus generating different detection results.

6. Conclusions

In this work, we attempted to tackle the practical challenges in X-ray image detection
tasks. We proposed a fully-annotated SIXray-D dataset with completed positive samples
with annotation boxes to benchmark the X-ray image detection tasks. We proposed the
TDC module, a novel task-driven image cropping method that can effectively improve
the X-ray image detection pipeline. We conducted extensive experiments showing that
our proposed TDC-based X-ray detection scheme can reduce the run time for the dynamic
shape input RFB net and increase the mAP for the fixed-size counterpart. The proposed
TDC scheme is simply based on feature extraction without additional assumptions on the
specific detector, thus it can be extended to other single-stage deep detection models as
well. We plan to further investigate the effect of maintaining salient objects’ aspect ratios
and apply the loss to control the threshold of the cropping method in future work.
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