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Abstract: The motion control of high-precision electromechanitcal systems, such as micropositioners,
is challenging in terms of the inherent high nonlinearity, the sensitivity to external interference, and
the complexity of accurate identification of the model parameters. To cope with these problems,
this work investigates a disturbance observer-based deep reinforcement learning control strategy
to realize high robustness and precise tracking performance. Reinforcement learning has shown
great potential as optimal control scheme, however, its application in micropositioning systems is still
rare. Therefore, embedded with the integral differential compensator (ID), deep deterministic policy
gradient (DDPG) is utilized in this work with the ability to not only decrease the state error but also
improve the transient response speed. In addition, an adaptive sliding mode disturbance observer
(ASMDO) is proposed to further eliminate the collective effect caused by the lumped disturbances.
The micropositioner controlled by the proposed algorithm can track the target path precisely with
less than 1 µm error in simulations and actual experiments, which shows the sterling performance
and the accuracy improvement of the controller.

Keywords: micropositioners; reinforcement learning; disturbance observer; deep deterministic
policy gradient

1. Introduction

Micropositioning technologies based on smart materials in precision industries have
gained much attention for numerous potential applications in optical steering, micro-
assembly, nano-inscribing, cell manipulation, etc. [1–7]. One of the greatest challenge in
this research field is the uncertainties produced by various factors such as the dynamic
model, environmental temperature, sensors performance, and the actuators’ nonlinear
characteristics [8,9], which make the control of micropositioning system a demanding
problem.

To address the uncertain problem, different kinds of control approach have been
developed, such as the PID control method [10], sliding mode control [11,12], and adaptive
control [13]. In addition, many researchers have integrated these control strategies to
further improve the control performance. Victor et al. have proposed a scalable field-
programmable gate array-based motion control system with a parabolic velocity profile [14].
A new seven-segment profile algorithm was developed by Jose et al. to improve the
performance of the motion controller [15]. Combined with the backstepping strategy, Fei et
al. proposed an adaptive fuzzy sliding mode controller in [16]. Based on the radial basis
function neural network (RBFNN) and sliding mode control (SMC), Ruan et al. developed a
RBFNN-SMC for nonlinear electromechanical actuator systems [17]. Gharib et al. designed
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a PID controller with a feedback linearization technique for path tracking control of a
micropositioner [18]. Nevertheless, the performance and robustness of such model-based
control strategies are still limited by the precision of the dynamics model. On the other hand,
a sophisticated system model frequently leads to a complex control strategy. Although
many researchers have considered the factors of uncertainties and disturbances, it is still
difficult for the system to provide a precise and comprehensive process.

As the rapid development in artificial intelligence in recent years has roundly im-
pacted the traditional control field, learning-based and data-driven approaches, especially
reinforcement learning (RL) and neural networks, have become a promising research tropic.
Different from traditional control strategies that need to make assumptions based on the
dynamics model [19,20], reinforcement learning can directly learn the policy by interacting
with the system. Back in 2005, Adda et al. presented a reinforcement learning algorithm
for learning control of stochastic micromanipulation systems [21]. Li et al. designed a
state–action–reward–state–action (SARSA) method using linear function approximation to
generate an optimal path by controlling the choice of the micropositioner [22]; however,
the reinforcement learning algorithms such as Q-learning [23] and SARSA [24] utilized
in the aforementioned works are unable to deal with complex dynamics problems, es-
pecially the continuous state action space problem. With the spectacular improvement
enjoyed by deep reinforcement learning (DRL), primarily driven by deep neural networks
(DNN) [25], the DRL algorithms, such as the deep Q network (DQN) [26], policy gradient
(PG) [27], deterministic policy gradient (DPG) [28], and deep deterministic policy gradient
(DDPG) [29] with the ability to approximate the value function, have played an important
role in continuous control tasks.

Latifi et al. introduced a model-free neural fitted Q iteration control method for micro-
manipulation devices; in this work, the DNN is adopted to represent Q-value function [30].
Leinen introduced the concept of experience playback in DQN and the approximate value
function of the neural network into the SARSA algorithm for the control of a scanning
probe microscope [31]. Both simulation and real experimental results have shown that
their proposed RL algorithm based on the neural network could achieve better perfor-
mance compared to traditional control methods to some extent; however, due to the
collective effects of disturbances generated from nonlinear systems and deviations in value
functions [29,32,33], the RL control method could induce significant inaccuracies in the
tracking control tasks [34]. To improve the anti-disturbance capability and control accuracy,
disturbance rejection control [35], time-delay estimation based control [36], disturbance
observer-based controllers [37,38] have been proposed successively. To deal with this
issue, a deep reinforcement learning controller integrated with an adaptive sliding mode
disturbance observer (ASMDO) is developed in this work. Previous research on trajectory
tracking control of DRL has shown that apparent state errors have always existed [39–42].
One of the main reasons is the inaccurate estimation of the action value function in DRL
structure. As indicated in [43], even in elementary control tasks, accurate action values
cannot be attained from the same action value function; therefore, in this work, the DDPG
algorithm is developed with an integral differential compensator (DDPG-ID) added to
cope with this situation. In addition, the comparison of the reinforcement learning control
method with various common state-of-the-art control methods are listed in Table 1, which
shows the pros and cons of these different methods.

In this study, deep reinforcement learning is leveraged into a novel optimal control
scheme for complex systems. An anti-disturbance, stable, and precise control strategy is
proposed for the trajectory tracking task of the micropositioner system. The contribution of
this works are presented as follows:

(1) A DDPG-ID algorithm based on deep reinforcement learning is introduced as a basic
micropositioner system motion controller, which avoided the limitation of traditional
control strategies to the accuracy and comprehensiveness of the dynamic model;
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(2) To eliminate the collective effect caused by the lumped disturbances from the micropo-
sitioner system and inaccurate estimation of the value function in deep reinforcement
learning, an adaptive sliding mode disturbance observer (ASMDO) is proposed;

(3) An integral differential compensator is introduced in DDPG-ID to compensate for the
feedback state of the system, which improves the accuracy and response time of the
controller, and further improves the robustness of the controller subject to external
disturbances.

The manuscript is structured as follows. Section 2 presents the system description
of the micropositioner. In Section 3, we develop a deep reinforcement learning control
method combined with ASMDO and compensator, and parameters of the DNNs are
illustrated. Then, simulation parameters and tracking results are given in Section 4. To
further evaluate the performance of the proposed control strategy in the micropositioner,
tracking experiments are presented in Section 4. Lastly, conclusions are given in Section 5.

Table 1. Comparison of different control algorithms.

Method Advantages Disadvantages

PID control
Simple design structure
Easy to implementation

Mainly used in linear systems
Requirement of full-state feedback

Lack of adaptivity

SMC control
Simple design structure
Easy to implementation

High robustness

Excessive chattering effect
Lack of adaptivity

Adaptive control
Lower initial cost

Lower cost of redundancy
High reliability and performance

Stability is not treated rigorously
High gain observes needed

Slow convergence

Backstepping control
Global stability

Simple design structure
Easy to be integrated

Low anti-interference ability
Sensitive to system models

Lack of adaptivity

RL control
No need of accurate model

Improved control performance
High adaptivity

Poor anti-interference ability
Easy to generate state error

2. System Description

The basic structure of micropositioner is shown in Figure 1, which consists of a base,
a platform, and a kinematic device. The kinematic device is composed with an armature,
an electromagnetic actuator, and a chain mechanism driven by electromagnetic actuator.
As shown in Figure 1, there are mutual-perpendicular compliant chains actuated by the
electron-magnetic actuator (EMA) in the structure. The movement of the chain mechanism
is in accordance with the working air gap y. The EMA generates the magnetic force Tm,
which can be approximated as:

Tm = k
(

Ic

y + p

)2
(1)

where k and p are constant parameters related to the electronmagnetic actuator, Ic is the
excitation current, and y is the working air gap between the armature and the EMA. Then,
the electrical model of the system can be given as:

Vi = RIc +
d
dt
(HIc) (2)

where Vi is the input voltage from the EMA, R is the resistance of the coil and H denotes
the coil inductance, which can be given as:

H = H1 +
pH0

y + p
(3)
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where H1 is the coil inductance while the air gap is infinite, and H0 is the incremental
inductance when the gap is zero. The motion equation for the micropositioner can be
expressed as:

m
d2y
dt2 = ι(α0 − y)− Tm (4)

where ι is the stiffness along the motion direction in the system, and α0 is the initial air gap.
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Figure 1. The diagrammatic model of EMA actuated micropositioner. (a) The front view of micropo-
sitioner. (b) The end view of micropositioner. (c) The vertical view of micropositioner.
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where f0(x) and g0(x) denote the nominal part of the micropositioner system and ∆ f (x),
∆g(x) denote the uncertainties of the modeling system; d denotes the external disturbances.
Then define D = (∆ f (x) + ∆g(x)u) + d, we have
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sitioner. (b) The end view of micropositioner. (c) The vertical view of micropositioner.

According to Equations (1)–(4), they define x1 = y, x2 = ẏ, x3 = Ic as the state
variables and the control input u = Vi. Then, the dynamics model of the electromagnetic
actuator can be written as:





ẋ1 = x2

ẋ2 = ι
m (α0 − x1)− k

m

(
x3

x1+p

)2

ẋ3 = 1
H

(
−Rx3 +

H0 px2x3

(x1+p)2 + u
) (5)

Define the variables z1 = x1, z2 = x2, z3 = ι
m (α0 − x1)− k

m

(
x3

x1+p

)2
, then we have





ż1 = z2
ż2 = z3
ż3 = f (x) + g(x)u

(6)

where f (x) = − ιx2
m +

2kx2
3

m(x1+p)2

(
H(x1+p)−pH0

H(x1+p)2 x2 +
R
H

)
, g(x) = − 2kx3

Hm(x1+p)2 , and z1 is the

system output.
In realistic engineering application, there always exist some uncertainties of the system,

then system Equation (6) can be rewritten as:
{

żi = zi+1, i = 1, 2
ż3 = f0(x) + g0(x)u + (∆ f (x) + ∆g(x)u) + d

(7)

where f0(x) and g0(x) denote the nominal part of the micropositioner system and ∆ f (x),
∆g(x) denote the uncertainties of the modeling system; d denotes the external disturbances.
Then, defining D = (∆ f (x) + ∆g(x)u) + d, we have

{
żi = zi+1, i = 1, 2
ż3 = f0(x) + g0(x)u + D

(8)
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where D is the lumped system disturbances. The following assumption is exploited [44]:

Assumption 1. The lumped interference D is bounded and its upper bound is less than a fixed
parameter β1 and the derivative of D is unknown but bounded.

Remark 1. Assumption 1 is reasonable since all micropositioner platforms are accurately designed
and parameter identified, and all disturbances are remained in a controllable domain.

3. Design of ASMDO and DDPG-ID Algorithm

In this section, the adaptive sliding mode disturbance observer (ASMDO) is introduced
based on the dynamics of the micropositioner. Then, the DDPG-ID control method and
pseudocode are given.

3.1. Design of Adaptive Sliding Mode Disturbance Observer

To develop the ASMDO, a virtual dynamic is firstly designed as

{
η̇i = ηi+1, i = 1, 2
η̇3 = f (z) + g(z)u + D̂ + ρ

(9)

where ηi, i = 1, 2, 3 are auxiliary variables, D̂ is the estimation of lumped disturbances, ρ
denotes the sliding mode term, which is introduced afterwards.

Define a sliding variable S = σ3 + k2σ2 + k1σ1, where σi = xi − ηi, i = 1, 2, 3, k1 and k2
are positive design parameters. Then the sliding mode term ρ is designed as

ρ = λ1S + k2σ3 + k1σ2 + λ2sgn(S) (10)

where λ1, λ2 are positive design parameters with λ2 ≥ β1.
Choosing an unknown constant β2 to present the upper bound of Ḋ, the ASMDO is

proposed as:
˙̂D = k(ẋ3 − f0(z)− g0(z)u− D̂) + (β̂2 + λ3)sgn(ρ) (11)

where k and λ3 are positive design parameters and β̂2 is defined as the estimation of β2

given by ˙̂β2 = −δ0 β̂2 + ‖ρ‖, with δ0 is a small positive number.
Then, the output D̂ of the ASMDO is used as a compensation of the control input to

eliminate the uncertainties generated by the system and external disturbances.

Remark 2. Choosing V1 = 1
2 S2 and V2 = 1

2 (D̃2 + β̃2
2), where D̃ = D − D̂, β̃2 = β2 − β̂2 as

two Lyapunov function, derivative V1 and V2 with respect to time, it is easy to prove that both S
and D̃ will exponentially converge to the equilibrium point, so the proof process is not repeated.

3.2. Design of DDPG-ID Algorithm for Micropositioner

The goal of reinforcement learning is to obtain a policy for the agent that could
maximizes the cumulative reward through interactions with the environment. The environ-
ment is usually formalized as a Makov decision process (MDP) described by a four-tuple
(S, A, P, R), where S, A, P, and R represent the state space of environment, set of actions,
state transition probability function, and reward function separately. At each time step t,
the agent in current state st ∈ S takes action at ∈ A from policy π(at|st), then the agent ac-
quires a reward rt ← R(st, at) and enters the next state st+1 according to the state transition
probability function P(st+1|st, at). Based on the Markov property, the Bellman equation of
action–value function Qπ(st, at), which is used for calculating the future expected reward,
can be given as:

Qπ(st, at) = Eπ(rt + γQπ(st+1, at+1)) (12)

where γ ∈ [0, 1] denotes the discount factor.
In trajectory tracking control task of micropositioner, state st is state array about the

air gap y of micropositioner at time t. Action at is the voltage u applied by the controller
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to micropositioner. As shown in Figure 2, DDPG is one of actor–critic algorithms, which
has an actor and a critic. The actor is responsible for generating actions and interacting
with the environment, and the critic evaluates the performance of the actor and guides the
action in the next state.

Micropositioner simulation
training environment

online policy networktarget policy network

online Q networktarget Q network
𝑄 (𝑠 , 𝜋 (𝑠 ), 𝑤 )

optimizer

optimizer

noise

update: 𝑤

Q gradient

gradient

Soft update

update: 𝑤

policy gradient

save: 𝑠 , 𝑎 , 𝑟 , 𝑠

actor

critic

𝑎

𝜋  𝑠

𝑎 = 𝜋 𝑠

Soft update

𝜋  𝑠

𝑟 + 𝛾𝑄

𝑀 ∗ 𝑠 , 𝑎 , 𝑟 , 𝑠
experience

replay buffer Ψ

Compensator

𝑠 , 𝑟 , 𝑠

𝑦
ASMDO

𝐷

Figure 2. The structure diagram of DDPG-ID algorithm.

The action–value function and policy approximation are parameterized by DNN to
solve the continuous states and actions problem in micropositioner with Q(st, at, wQ)

.
=

Qπ(st, at), πwµ(at|st)
.
= π(at|st), where wQ and wµ are the parameters of neural networks

in action–value function and policy function. Under the prerequisite of using the neural
network approximation representation policy function, the neural network gradient update
method is used to seek the optimal policy π.

DDPG-ID uses deterministic policy π(st, wµ) rather than traditional stochastic policy
πwµ(at|st), where the output of policy is the action at with highest probability to current
state st, π(st, wµ) = at. The policy gradient is given as

∇wµ J(π) =Es∼ρπ[∇wµ π(s, wµ)∇aQ(s, a, wQ)
]

(13)

where J(π) = Eπ [∑T
t=1 γ(t−1)rt] is the expectation of discount accumulative rewards, T

denotes the final time of a whole process, ρπ is the distribution of state following the
deterministic policy. Value function Q(st, at, wQ) is updated by calculating time temporal-
difference error (TD-error), which can be defined as

eTD = rt + γQ(st+1, π(st+1))−Q(st, at) (14)

where eTD is the TD-error, rt + γQ(st+1, π(st+1)) represents the TD target value. By min-
imizing the TD-error, the parameters are updated backwards through the neural net-
work gradient.

To avoid the convergence problem of single network caused by correlation between TD
target value and current value [45,46], A target Q network Q′T(st+1, a′t+1, wQ′) is introduced
to calculate network portion of TD target value and an online Q network QO(st, at, wQ)
is used to calculate current value in critic. Both these two DNN have the same structure.
The actor also has an online policy network πO(st, wµ) to generate current action and a
target policy network πT(st, wµ′) to provide the target action a′t+1. wµ′ and wQ′ separately
represent the parameters of target policy and target Q networks.
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In order to improve the stability and efficiency during RL training, experience replay
technology is utilized in this work, which saves transition experience (st, at, rt, st+1) into the
experience replay buffer Ψ at each interaction with the environment for subsequent updates.
In each training time t, a minibatch of M transitions (sj, aj, rj, sj+1) from the experience
replay buffer are extracted to calculate the gradients and update neural networks.

An integral differential compensator is developed in deep reinforcement learning
structure to improve the accuracy and responsiveness of tracking tasks in this work, which
is shown in Figure 2. The integral portion of the state is utilized to increase the control
input continuously, which would eventually reduce tracking error. The differential part
is integrated to reduce the system oscillation and accelerates stability. The proposed
compensator is designed as follows:

st
ID = yt

e + α
t

∑
n=1

yt
e + β

(
yt

e − yt−1
e

)
(15)

where st
ID represents the compensator error at time t, yt

e =
√(

yt
d − ŷt

)2, yt
d represents the

desired trajectory at time t, ŷt is the measured air gap at time t and yt
e is the error between

them. α is the integral gain and β is the differential gain.
Then the state st at time t can be described as:

st =
[
st

ID ŷt ˙̂yt yt
d ẏt

d
]T (16)

where ˙̂yt and ẏt
d represent the derivatives of ŷt and yt

d.
The reward rt function designed is to measure the tracking error:

rt =





−4, yt
e > 0.005

+5, 0.003 < yt
e 6 0.005

+10, 0.001 < yt
e 6 0.003

+18, yt
e 6 0.001

(17)

As shown in Figure 3, the adaptive sliding mode disturbance observer (ASMDO) is
embedded into the DDPG-ID between the actor and micropositioner system environment.
Action at with the environment is expressed as

at = πO(st, wµ) + D̂t +Nt (18)

where wµ is the parameters of online policy network πO, D̂t is the estimation of the
micropositioner system at time t, and Nt is Gaussian noise for action exploration.

O
perator

Actor

Critic

DDPG-ID

Control&Signal
processing unit

Driving 
unit

Sensing 
unit

Micropositioner

Electromagnetic
actuators

Micropositioner
system environment

ASMDO

Compens
ator

Figure 3. System signal flow chart.
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3.2.1. Critic Update

After selecting M transitions (sj, aj, rj, sj+1) samples from experience replay buffer Ψ,
the Q value is calculated. The online Q network is responsible for calculating the current Q
value, which is as follows:

QO(sj, aj, wQ) = wQφ(sj, aj) (19)

where φ(sj, aj) represents the input of online Q network, which is an eigenvector consisting
of state sj and action aj.

The target Q network Q′T is defined as:

Q′T(sj+1, πT(sj+1, wµ′), wQ′) = wQ′φ(sj+1, πT(sj+1, wµ′)) (20)

where φ(sj+1, πT(sj+1, wµ′)) is the input of the target Q network, which is a eigenvector
consisting state sj+1 and target policy network output πT(sj+1, wµ′).

For target policy network πT , the equation is:

πT(sj+1, wµ′) = wµ′ sj+1 (21)

Then, we rewrite the target Q value QT as:

QT = rj + γQ′T(sj+1, πT(sj+1, wµ′), wQ′) (22)

where rj is the reward from the selected samples.
Since M transitions (sj, aj, rj, sj+1) are sampled from experience buffer Ψ, the loss

function of the update critic is shown in Equation (23).

L
(

wQ
)
=

1
M

M

∑
j=1

(
QT −QO

(
sj, aj, wQ

))2
(23)

where L
(
wQ) is the loss value of critic.

In order to smooth the target network update process, the soft update is applied
without copying parameters periodically as:

wQ′ ← τwQ + (1− τ)wQ′ (24)

where τ is the update factor, usually a small constant.
The diagram of Q network is shown in Figure 4 , which is a parallel neural network.

The Q network includes both state and action portions, and the output value of Q network
is based on state and action. The state portion of the neural network consists of a state
input layer, three full connection layers, and two ReLU layers clamped between the three
full connection layers. The neural network of the action portion contains an action input
layer and a full connection layer. The output layers of the above two portions are combined
entering the neural network of the common part, which contains a ReLU layer and one
output layer.
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State
Input

Critic
StateFC1 Critic

StateFC2

ReLU

Critic
StateFC3

Critic
ActionFC1

add
Layer

STATE

ACTION

… … …
…

Action
Input

Critic
Output

ReLU

ReLU

Figure 4. The diagram of Q network.

The parameters of each layer in the Q network are shown in Table 2.

Table 2. Q network parameters.

Network Layer Name Number of Nodes

StateLayer 5
CriticStateFC1 120
CriticStateFC2 60
CriticStateFC3 60
ActionInput 1

CriticActionFC1 60
addLayer 2

CriticOutput 1

3.2.2. Actor Update

The output of online policy network is

πO = wµsj (25)

On account of using deterministic policy, the calculation of the policy gradient has no
integrals of action a, but instead has the derivatives of the value function QO with respect
to action a in comparison with stochastic policy. The gradient formula can be rewritten as
follows:

∇wµ J ≈ 1
M

M

∑
j
(∇aj QO(sj, aj, wQ)∇wµ πO

(
sj, wµ

)
) (26)

where the weights wµ are updated with the gradient back-propagation method. The target
policy network is also updated with soft update pattern as follows:

wµ′ ← τwµ + (1− τ)wµ′ (27)

where τ is the update factor, usually a small constant.
Figure 5 shows the diagram of the policy network in this paper, which contains a state

input layer, a full connection layer, a tanh layer, and an output layer. The parameters of
each layer in the policy network are shown in Table 3.
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State
InputLayer

ActorFC1

ACTION

tanh

ActorOutput

…

STATE

Figure 5. The diagram of policy network.

Table 3. Policy network parameters.

Network Layer Name Number of Nodes

StateLayer 5
ActorFC1 30

ActorOutput 1

The Algorithm 1 pseudocode can be shown as:

Algorithm 1 DDPG-ID Algorithm.

1: Randomly initialize online Q network with weights wQ

2: Randomly initialize online policy network with weights wµ

3: Initialize the target Q network by wQ′ ← wQ

4: Initialize the target policy network by wµ′ ← wµ

5: Initialize the experience replay buffer Ψ
6: Load the simplified micropositioner dynamic model
7: for episode = 1, MaxEpisode do
8: Initialize a noise process N for exploration
9: Initialize ASMDO and ID compensator

10: Randomly initialize micropositioner states
11: Receive initial observation state s1
12: for step = 1, T do
13: Select action at = πO(st) + D̂t +Nt
14: Use at to run micropositioner system model
15: Process errors with integral differential compensator
16: Receive reward rt and new state st+1
17: Store transition (st, at, rt, st+1) in replay buffer Ψ
18: Randomly sample a minibatch of M transitions (sj, aj, rj, sj+1) from Ψ

19: Set QT = rj + γQ′T(sj+1, πT(sj+1, wµ′), wQ′)

20: Minimize loss: L(wQ)= 1
M∑M

j=1(QT −QO(sj,aj,wQ))2 to update online Q network
21: Use the sampled policy gradient to update online policy network:

∇wµ J= 1
M ∑M

j (∇ajQO(sj, aj, wQ)∇wµ πO
(
sj, wµ

)
)

22: Update the target networks: wQ′ ← τwQ + (1− τ)wQ′ , wµ′ ← τwµ + (1− τ)wµ′

23: end for
24: end for

4. Simulation and Experimental Results

In this section, two kinds of periodic external disturbances were added to verify the
practicability of the proposed ASMDO and three distinct desired trajectories were utilized
to evaluate the performance of proposed deep reinforcement learning control strategy. An
traditional DDPG algorithm and a well-tuned PID strategy were adopted for comparison.
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To further verify the spatial performances of the proposed algorithm, two kinds of different
trajectories were introduced in the experiments.

4.1. Simulation Results

The parametric equations of two kinds of periodic external disturbances are defined
as d1 = 0.1 sin(2πt) + 0.1 sin(0.5πt + π

3 ), and d2 = 0.1 + 0.1 sin(0.5πt + π
3 ). Based on the

micropositoner model proposed in [44], the effectiveness of the observer is presented in
Figures 6 and 7

The disturbance estimation results from the proposed ASMDO are presented in
Figures 6a and 7a, it is can be seen that the observer could track the given disturbance
rapidly. The estimation errors are less than 0.01 mm in Figures 6b and 7b, which shows the
effectiveness of the ASMDO as interference compensation.

The dynamics model of micropositioner is given in Section 2, and its basic system
model parameters are from our previous research [44,47], which is shown in Table 4. The
DDPG algorithm is defined in same neural network structure and training parameters as
DDPG-ID in this paper. The training parameters of the DDPG-ID and DDPG are shown in
Table 5.

The first desired trajectory designed for tracking control simulation is a waved signal.
According to the initial conditions, the parametric equation of the waved trajectory is
defined as:

yd(t) = 0.985− 0.015 sin(
πt
4
− π

2
) (28)

The training process of both DDPG-ID and DDPG are run on the same model with
stochastic initialized micropositioner states. During the training evaluation, a larger episode
reward indicates a more accurate and lower error control policy. It is shown in Figure 8 that
DDPG-ID reaches the maximum reward score with fewer episodes compared to DDPG,
which reveals that DDPG-ID algorithm converge faster than DDPG algorithm. Comparing
Figure 8a with Figure 8b, the average reward of DDPG-ID training process is larger than
DDPG’s average reward in stable state, which further indicates that policy learned by
DDPG-ID algorithm has better performance. The trained algorithms are employed for
tracking control of micropositioner system simulation experiments.
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Figure 6. Observation result of ASMDO with d2. (a) Observing result based on the ASMDO. (b) Ob-
serving error based on the ASMDO.
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Figure 7. Observation result of ASMDO with d1. (a) Observing result based on the ASMDO. (b) Ob-
serving error based on the ASMDO.

Table 4. Parameters of the micropositioner model.

Notation Value Unit

L1 13.21 H
L0 0.67 H
a 1.11× 10−5 m
R 43.66 Ω
c 8.83× 10−5 Nm2 A−2

k 1.803× 10N5 Nm−1

m 0.0272 Kg

Table 5. Training parameters of DDPG-ID and DDPG.

Hyperparameters Value

Learning rate for actor ϕ1 0.001
Learning rate for critic ϕ2 0.001

Discount factor γ 0.99
Initial exploration ε 1

Experience replay buffer size ψ 100,000
Minibatch size M 64

Max episode v 1500
Soft update factor τ 0.05

Max exploration steps T 250 (25 s)
Time step Ts 0.01 s

Intergal gain α 0.01
Differential gain β 0.001
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Figure 8. The training rewards of two RL schemes. (a) The training rewards generated by DDPG-ID.
(b) The training rewards generated by DDPG.

The tracking results of the waved trajectory is shown in Figure 9. The RMSE value,
MAX value, and mean value of the tracking errors for these three control methods are
provided in Table 6. In terms of tracking accuracy, the trained DDPG-ID controller has
a better performance compared to DDPG and PID, which has smaller state error and
smoother tracking trajectory. The tracking error of the DDPG-ID algorithm ranges from
−8× 10−4 to 9× 10−4 mm, which is almost about a half of the DDPG policy. In the interim,
the DDPG controller has a lesser tracking error than PID. A huge oscillation has been
induced by the PID controller, which will affect the hardware to a certain extent in the
actual operation process. This huge oscillation input signal is much larger than a normal
control input signal, which typically ranges from 0 to 11 V. Based on the characteristics of
reinforcement learning, it is hard for a well-trained policy to generate such a shock signal.

Table 6. Tracking errors comparison of different controllers in the waved trajectory.

RMSE MAX MEAN

DDPG-ID 3.658× 10−4 4.758× 10−4 1.003× 10−4

DDPG 1.093× 10−3 2.615× 10−3 4.414× 10−4

PID 1.654× 10−3 3.144× 10−4 3.104× 10−4



Micromachines 2022, 13, 458 14 of 21

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

0 5 10 15 20 25

A
ir

 g
ap

 (
m

m
)

Time (s)

Desired DDPG-ID DDPG PID

(a)

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0 5 10 15 20 25

T
ra

ck
in

g 
er

ro
r 

(m
m

)

Time (s)

DDPG-ID DDPG PID

(b)

0

5

10

15

20

25

0 5 10 15 20 25

C
on

tr
ol

 in
pu

t (
V

)

Time (s)

DDPG-ID DDPG PID

(c)

Figure 9. Tracking results comparison of the waved trajectory. (a) Tracking results comparison based
on three control schemes. (b) Tracking error comparison based on three control schemes. (c) Control
input comparison based on three control schemes.

As can be seen in these figures, the tracking error of DDPG-ID in periodic trajectory
is still less than the others, which ranges from −1.6× 10−4 to 9× 10−4 mm. Similar to the
previous waved trajectory, the control input based on DDPG has shown better performance
in terms of oscillations.

Another tracking results of a periodic trajectory is illustrated in Figure 10, and the
tracking errors comparison of these three control methods are given in Table 7. The
parametric equation of the periodic trajectory is defined as

yd(t)=0.981− 0.015 sin(
πt
4
− π

2
) + 0.008 sin(

πt
2
− π

16
). (29)
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Table 7. Tracking errors comparison of different controllers in the periodic trajectory.

RMSE MAX MEAN

DDPG-ID 4.272× 10−4 8.471× 10−4 5.404× 10−5

DDPG 1.545× 10−3 3.102× 10−3 1.610× 10−4

PID 1.923× 10−3 3.376× 10−3 3.311× 10−4
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Figure 10. Tracking results comparison of the periodic trajectory. (a) Tracking results comparison
based on three control schemes. (b) Tracking error comparison based on three control schemes.
(c) Control input comparison based on three control schemes.
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To further demonstrate the universality of the DDPG-ID policy, a periodic step tra-
jectory is also utilized for comparison. The step signal with a period of 8 s is designed as
the desired trajectory, which is shown in Figure 11a. The well-tuned PID controller is also
tested in this step trajectory simulation. Since intense oscillations emerge, the results of PID
show extremely worse performance are not shown in this paper.

According to Figure 11, the tracking result of DDPG-ID algorithm remains stable
with the tracking error bounded in −2× 10−4 to 9× 10−4 mm, which is still as a half
of DDPG’s performance. Due to the characteristic of the step signal, the state error will
become tremendous during the step transition. Errors of DDPG-ID and DDPG are observed
dropping quickly after step transition. It can be seen from Table 8 that the errors of DDPG-
ID algorithm are substantially less than that of DDPG algorithm. As to the control inputs,
the value of DDPG still fluctuates considerably when the state converges stable.

Table 8. Tracking errors comparison of different controllers in the step trajectory.

RMSE MAX MEAN

DDPG-ID 4.612× 10−3 0.02953 6.938× 10−4

DDPG 5.279× 10−3 0.02986 1.437× 10−3
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Figure 11. Cont.
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Figure 11. Tracking results comparison of the step trajectory. (a) Tracking results comparison based
on two control schemes. (b) Tracking error comparison based on two control schemes. (c) Control
input comparison based on two control schemes.

According to above simulation results, it can be concluded that the control policy
of DDPG-ID has triumphantly dealt with collective effect caused by disturbance and
inaccurate estimation of deep reinforcement learning comparing to DDPG. The comparison
results also have demonstrated the excellent control performance of the policy learned by
DDPG-ID algorithm.

4.2. Experimental Results

The speed, acceleration, and direction of these designed trajectories vary with time,
which makes the experiments results more trustworthy. In each test, the EMA in microposi-
tioner is regulated for tracking the desired path of working air gap.

As shown in Figure 12, a laser displacement sensor is utilized to detect the motion
states. Then DDPG-ID algorithm was administered through a SimLab board transplanted
with Matlab-Simulink. The EMA controls the movement of the chain mechanism by
executing the control signal, which is from the analog output port of SimLab board. The
analog input port of SIMLAB board is connected with the signal output from the laser
displacement sensor.

Figure 13 shows the tracking experiment results of the waved trajectory. It reaches the
starting point on a straight track with a speed of 5.6 µm/s. At time 5 s, it begins to track
the desired waved trajectory in three periods, and the waved trajectory can be described
as yd(t) = 28 + 25 sin(πt

10 + π
2 ). The tracking error fluctuates within ±1.5 µm, which is

demonstrated in Figure 13b. Except for several particular points of time, the tracking errors
could range from ±1 µm.

Another periodic trajectory tracking experiment was also executed. As shown in
Figure 14, the desired periodic trajectory starts at time 5 s, and it is defined as yd(t) =
35− 25 sin( πt

7.5 − 2π
3 ) − 5 sin(πt

15 + π
6 ). The tracking error of the periodic trajectory still

range from ±1.5 µm.
The experimental results show that the proposed DDPG-ID algorithm is able to closely

track above two trajectories. Compared with the simulation results, the tracking error does
not increase significantly, and it can be maintained between −1 µm and +1 µm.
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Figure 12. The schematic diagram of experiment system.
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Figure 13. Tracking results of the waved trajectory. (a) Tracking result of desired trajectory. (b) Track-
ing error of desired trajectory.

0

10

20

30

40

50

60

70

0 20 40 60

A
ir

 g
ap

 (
μm

)

Time (s)

Desired Measured

(a)

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40 50 60

T
ra

ck
in

g 
er

ro
r 

(μ
m

)

Time (s)

(b)

Figure 14. Tracking results comparison of the step trajectory. (a) Tracking result of desired trajectory.
(b) Tracking error of desired trajectory.

5. Conclusions and Future Works

In this paper, a composite controller is developed based on an adaptive sliding mode
disturbance observer and a deep reinforcement learning control scheme. A deep determin-
istic policy gradient is utilized to obtain the optimal control performance. To improve the
tracking accuracy and transient response time, an integral differential compensator is ap-
plied during the learning process in the actor–critic framework. An adaptive sliding mode
disturbance observer is developed to further retrench the influence of modeling uncertainty,
external disturbances, and the effect of inaccurate value function. In comparison with the
existing DDPG and the most commonly used PID controller, the trajectory tracking results
has successfully indicated the satisfactory performances and the precision of the control
policy based on the DDPG-ID algorithm in the simulation. The tracking errors are less
than 1 µm, which shows the significant tracking efficiency of the proposed methods. The
experimental results also indicate the high accuracy and strong anti-interference capabil-
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ity of the proposed deep reinforcement learning control scheme. To further improve the
tracking effect and realize micro-manipulation tasks in the future work, specific operation
experiments will be performed such as cell manipulation, micro-assembly, etc.
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Abbreviations

PID Proportional–integral–derivative control
RBFNN Radial basis neural network
RL Reinforcement learning
SARSA State-Action-Reward-State-Action
Q The Value of Action in reinforcement learning
DRL Deep reinforcement learning
DNN Deep neural networks
DQN Deep Q network
PG Policy gradient
DDPG Deep deterministic policy gradient
ID Integral differential compensator
Tm The magnetic force
y The working air gap in micropositioner
Ic The excitation current in micropositioner
EMA The electron-magnetic actuator
Vi The input voltage from the electron-magnetic actuator
R The resistance of the coil in micropositioner
H The coil inductance in micropositioner
u The control input
D The lumped system disturbance
ASMDO Adaptive Sliding Mode Disturbance Observer
st The state at time t in reinforcement learning
at The action at time t in reinforcement learning
rt The reward at time t in reinforcement learning
ReLU Rectified linear unit activation function
tanh Hyperbolic tangent activation function
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