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Abstract: The quadrature coupling error is an important factor that affects the detection output of
microelectromechanical system (MEMS) gyroscopes. In this study, two quadrature error control
methods, quadrature force-to-rebalance control (Mode I) and quadrature stiffness control (Mode II)
were analyzed. We obtained the main factors affecting the zero-rate output (ZRO) under force-to-
rebalance (FTR) closed-loop detection. The analysis results showed that the circuit phase delay in
Mode I caused the quadrature channel to leak into the in-phase channel. However, in Mode II, the
quadrature coupling stiffness was corrected in real time, which effectively improved the stability
of the ZRO. The changes in the vibration displacement and Q-factor were the main factors for the
ZRO drift in Mode II. Therefore, we propose an online compensation method for ZRO drift based on
multiparameter fusion. The experimental results on a cobweb-like disk resonator gyroscope (CDRG)
with a 340 k Q-factor showed that the bias instability (BI) of Mode II was significantly better than
that of Mode I. After online compensation, the BI reached 0.23◦/h, and the bias repeatability reached
3.15◦/h at room temperature.

Keywords: MEMS gyroscope; closed-loop detection; quadrature control; ZRO drift; online
compensation

1. Introduction

A microelectromechanical system (MEMS) vibrating gyroscope based on the Coriolis
effect has many advantages, such as its small size, light weight, and low cost [1,2]. It has
wide application prospects in the military and civil engineering fields. The axisymmetric
structure helps improve the energy transfer efficiency and vibration resistance, and has
become an important candidate for high-performance MEMS gyroscopes. Compared to
open-loop detection, force-to-rebalance (FTR) closed-loop detection can extend bandwidth,
increase range, and improve detection stability [2–4].

Due to imperfections in micro-processing technology, the uniformity of the structure
is difficult to control [5], which inevitably leads to damping coupling and stiffness coupling
interference, resulting in in-phase and quadrature errors. The quadrature error was 90◦

out of phase with the Coriolis force. Ideally, quadrature errors can be eliminated by 90◦

demodulation. However, the gyroscope control circuit generates phase delays, which cause
the drive mode to operate in a non-resonant state. This phase delay directly affects the
demodulation accuracy, resulting in interference of the quadrature error with the zero-rate
output (ZRO). There are two main quadrature error control methods under FTR closed-loop
detection: quadrature FTR control (Mode I) and quadrature stiffness control (Mode II). In
Mode I, a feedback force with the same frequency and phase as the quadrature force was
applied to the sense mode to counteract the effect of the quadrature force. In Mode II, the
quadrature coupling stiffness was adjusted by applying a DC voltage to the stiffness-axis
tuning electrode on the gyroscope to inhibit the formation of the quadrature force.
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Mode I has been used in [6–12]. Among them, a bias instability (BI) of 4◦/h was
realized on a tuning fork gyroscope with a Q-factor of 2 k [6]. A BI of 0.9◦/h was realized
on a quadrupole mass gyroscope (QMG) with a Q-factor of 1.2 million [7]. A BI of 3.0◦/h
was realized on a pendulum gyroscope with a Q-factor of 1 k [8]. A BI of 1.5◦/h was
realized in a three-fold symmetric gyroscope with a Q-factor of 18 k. A BI of 2.8◦/h was
realized on a triangular-electrode-based gyroscope with a Q-factor of 7 k [10]. A BI of
1.5◦/h was realized on a ring gyroscope with a Q-factor of 22 k, along with mode-matching
technology [11]. A BI of 0.2◦/h was realized on a ladder gyroscope with a Q-factor of
120 k [12].

Mode II was used in [13–17]. Among them, a BI of 0.83◦/h was realized on a gyroscope
with a 9 k Q-factor combined with mode-matching technology [13]. A BI of 0.18◦/h was
realized on a disk gyroscope with a 100 k Q-factor [14]. A BI of 0.015◦/h was realized
on a honeycomb disk resonator gyroscope (HDRG) with a 650 k Q-factor [15]. A BI of
0.09◦/h was realized on a slot-structure gyroscope with a 26 k Q-factor by combining
a constant frequency drive and mode-matching [16]. A BI of 0.01◦/h was realized on a
birdbath resonator gyroscope (BRG) with a 1.5 million Q-factor [17]. In contrast, most
high-performance gyroscopes reported in recent years have adopted Mode II.

Based on previous work on gyroscope closed-loop detection [18–20], this study com-
pares and analyzes the two quadrature error control modes (Mode I and Mode II) under
closed-loop detection. System models of the two control modes were constructed, and
the effects of circuit phase delay, quadrature coupling, in-phase coupling, phase of drive,
and sense mode on the ZRO were analyzed. Moreover, an online ZRO bias compensation
method based on multiparameter fusion is proposed. Comparative experiments were
performed on a cobweb-like disk resonator gyroscope (CDRG) [21,22]. The results showed
that Mode II is more suitable for high-Q gyroscopes whose quadrature error fluctuates
easily, and the bias stability can be effectively improved by compensation.

2. Gyroscope Dynamic Model with Structural Error

The vibratory gyroscope model can be described using a second-order mass-damper-
spring system. Manufacturing process errors create stiffness and damping asymmetries,
such that the main stiffness axis and main damping axis have stiffness axis deflection angle
θω and damping axis deflection angle θτ with the reference coordinate system x-o-y. In
addition, there may be a deflection angle between the direction of the excitation force input
electrode and the reference coordinate system. We set αx as the driving force deflection
angle in drive mode and αy as the feedback force deflection angle in the sense mode. The
establishment process of the dynamic model has been described in detail in the relevant
literature [23,24], and is described by
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where x and y are the displacement of the gyroscope oscillator in drive mode and sense
mode, respectively; τ is the attenuation time constant τx,y = 2Qx,y/ωx,y; ωx,y is the resonant
frequency of drive or sense mode; Qx,y is the quality factor of drive or sense mode; m is the
mass; Fx and Fy are the excitation forces of the drive and sense modes, respectively; Ag is
the angular gain; n is the mode order; Ω is the input rotation rate; and Ax is the amplitude
of displacement x.

Because αx and αy are usually significantly small, we ignored their impact. The damp-
ing coupling coefficient is cyx = ∆(1/τ) sin 2θτm, and the stiffness coupling coefficient is
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kyx = ω∆ω sin 2θωm. Then, the amplitude AI of the in-phase coupling force FI and the
amplitude Aq of the quadrature coupling force Fq are expressed as follows:{

AI = −∆(1/τ) sin 2θτmωx Ax
Aq = −ω∆ω sin 2θωmAx

(3)

The higher and more matched the Q-factor of the two modes, the more beneficial it is
to reduce AI . Aq is negatively correlated with the frequency split between the two modes.

3. Closed-Loop Control of Drive Mode

The drive mode control system is composed of a classical amplitude gain control
(AGC) and phase-locked loop (PLL) system, as shown in Figure 1. AGC is used to maintain
the vibration displacement amplitude Ax at a constant, and the PLL maintains the drive
mode in the resonant state (ωd = ωx). In addition, using the electromechanical ampli-
tude modulation (EAM) signal pickoff method, a high-frequency carrier is applied to the
gyroscope mass block to modulate the amplitude of the vibration displacement signal to
suppress the feed-through interference.

Because the analog circuits of the drive and sense modes are completely consistent,
the phase delay of each part is the same. Let ϕCV be the phase delay of the C/V circuit; ϕF
be the phase delay of the demodulation and filter circuit; and ϕDA and ϕAD be the phase
delays of the DAC and ADC circuits, respectively. The total phase delay of the analog
circuit is then given by ϕe = ϕCV + ϕF + ϕAD + ϕDA.

Let the drive mode excitation signal Vd(t) generated by the FPGA be (point A) given by

Vd(t) = Ad cos(ωdt) (4)

where Ad is the signal amplitude and ωd is the signal frequency. The excitation signal is
loaded on the gyroscope electrode after the DAC, and the resulting vibration displacement
x(t) of the drive mode is

x(t) = Ax cos(ωdt + ϕDA + ϕx) (5)

where ϕx is the drive-mode phase. Due to the existence of the circuit phase delay ϕe, when
there is no phase delay compensation, the vibration displacement signal (point B) entering
the PLL is xB(t) = ke Ax cos(ωdt + ϕe + ϕx). The function of the PLL is to lock the phase
difference between the input signal xB(t) and the output signal cos(ωdt) at −90o:

ϕe + ϕx = −90o (6)

Therefore, in practical applications, it is necessary to compensate for the phase delay
of the circuit (i.e., make ϕe = 0) to ensure that the driving mode works in the resonant state
(ϕx = −90o).
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4. Closed-Loop Control of the Sense Mode

For gyroscopes with a high Q-factor, the change in the sense mode gain under open-
loop detection significantly affects detection stability. In contrast, FTR closed-loop detection
can make the detection output insensitive to the sense mode gain, and alleviate the influence
of environmental parameters on ZRO and the scale factor [8]. In closed-loop detection, a
feedback force was used to offset the Coriolis force. In addition, a quadrature control loop
was required to suppress the quadrature displacement on the sense axis to keep the sense
mode relatively stationary.

In quadrature control Mode I, a suppression force signal in phase with the drive mode
displacement signal x was applied to the excitation electrode of the sense mode; hence,
the quadrature displacement was suppressed. In quadrature control Mode II, according to
the quadrature displacement of the sense mode, the regulating voltage was applied to the
stiffness axis tuning electrode to adjust the stiffness axis deflection angle θω to zero.

4.1. Quadrature FTR Control (Mode I)

The Mode I closed-loop gyroscope system including the quadrature FTR loop and
in-phase FTR loop is shown in Figure 2. In a field-programmable gate array (FPGA)
digital circuit system, the output of the pickoff circuit was demodulated in the phase
and quadrature. After the four-order Butterworth low-pass filter (LPF) with a cut-off
frequency of 800 Hz, the magnitude of the Coriolis and quadrature responses were obtained.
Thereafter, two feedback forces were generated by the proportional-integral (PI) controller
to suppress the Coriolis and quadrature forces and to maintain the sense mode relatively
static. The PI output of the in-phase channel was the rotation-rate detection output.
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Because the analog circuit of the sense-mode system was consistent with the drive
mode, the total circuit phase delay was also ϕe. The above shows that ϕe caused the
drive mode to operate in a nonresonant state (ϕx 6= −90o). Under Mode I control, this
led to mutual leakage between the quadrature feedback channel and in-phase feedback
channel [18].

According to the vibration displacement x(t) of the drive mode, the in-phase force
FΩ+I(t) (Coriolis force and in-phase coupling force) and quadrature force Fq(t) input to the
sense mode are expressed as{

FΩ+I(t) = (AΩ + AI) sin(ωdt + ϕDA + ϕx)
Fq(t) = Aq cos(ωdt + ϕDA + ϕx)

(7)

where AΩ represents the amplitudes of the Coriolis force, i.e., AΩ = −2nAgΩmωx Ax.
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Two digital feedback signals were generated and added through the double-loop
FTR system, and an analog feedback signal (point C) was formed after passing through
the DAC:

Vbalance
(
t) =VΩ cos(ωdt + ϕDA) + Vq sin(ωdt + ϕDA) (8)

where VΩ and Vq are the amplitudes of in-phase and quadrature feedback signals, respectively.
According to the principle of FTR closed-loop detection, the sense mode was stationary

in the steady state. At this time, the resultant force input to the sense mode was zero:

FΩ+I(t) + Fq(t)−Vbalance(t)Kv f = 0 (9)

Substituting Equations (7)–(9), we obtain VΩ and Vq as{
VΩ =

[
(AΩ + AI) sin(ϕx) + Aq cos(ϕx)

]
/Kv f

Vq =
[
(AΩ + AI) cos(ϕx)− Aq sin(ϕx)

]
/Kv f

(10)

ZRO is the output under a zero-rate input, that is, VΩ|AΩ=0. Then, the ZRO in Mode I
is expressed as:

ZRO1 =
[
AI sin(ϕx) + Aq cos(ϕx)

]
/Kv f (11)

4.2. Quadrature Stiffness Control (Mode II)

The Mode II closed-loop gyroscope system, including the quadrature stiffness control
loop and the in-phase FTR loop, is shown in Figure 3. The output of the quadrature PI
controller was directly converted into a voltage signal through the DAC, added with a
bias voltage Vre f , and loaded on the stiffness axis tuning electrode for quadrature coupling
stiffness correction.
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The sense modal displacement y(t) caused by the in-phase and quadrature forces is
given by the following:

y(t) = Ays
[
(AΩ + AI) sin(ωdt + ϕDA + ϕx + ϕy) + Aq cos(ωdt + ϕDA + ϕx + ϕy)

]
(12)

where Ays and ϕy are the mechanical gain and the phase of the sense mode, respectively.
When the frequencies of the two modes match (ωy = ωx), Ays becomes the largest and
ϕy = −90o.
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After passing through the signal pickoff circuit and ADC, signal y(t) becomes (point D).

yD(t) = Ke Ays
[
(AΩ + AI) sin(ωdt + ϕe + ϕx + ϕy) + Aq cos(ωdt + ϕe + ϕx + ϕy)

]
ϕe+ϕx=−90o

= Ke Ays
[
−(AΩ + AI) cos(ωdt + ϕy) + Aq sin(ωdt + ϕy)

] (13)

When there is no phase delay compensation, after being demodulated by cos(ωdt)
and LPF, the signal yD(t) becomes (point E)

yE(t) =
1
2

Ke Ays
[
−(AΩ + AI) cos(ϕy) + Aq sin(ϕy)

]
(14)

In the quadrature stiffness control loop, the PI controller always keeps yE(t) = 0 by
adjusting the quadrature correction voltage. Hence,

Aq = (AΩ + AI) cot(ϕy) (15)

According to the above analysis, VΩ in the in-phase FTR loop is given by

VΩ =
[
(AΩ + AI) sin(ϕx) + Aq cos(ϕx)

]
/Kv f (16)

Substituting Equation (13) into (16), we obtain

VΩ = (AΩ + AI)
[
sin(ϕx) + cot(ϕy) cos(ϕx)

]
/Kv f (17)

Then, ZRO in Mode II is expressed as

ZRO2 = AI
[
sin(ϕx) + cot(ϕy) cos(ϕx)

]
/Kv f (18)

4.3. Comparative Analysis

We assume that the frequency split ∆ f is 1 Hz and the angles θω and θτ are 0.1◦ and 1◦,
respectively. When the drive mode works in the resonant state (ωx = ωd), AI and Aq can
be estimated (see Table 1) using Equation (3), and the parameters of the CDRG gyroscope
are presented in Table 2. For high-Q-factor gyroscopes, Aq is usually several orders of
magnitude larger than AI , without perfect quadrature stiffness correction.

Table 1. Theoretical calculation of the amplitude of the quadrature and in-phase coupling force.

Parameters |AI|(N) |Aq|(N)

θω = 1◦, θτ = 1◦ 1.04 × 10−11 1.15 × 10−8

θω = 0.1◦, θτ = 1◦ 1.04 × 10−11 1.24 × 10−9

Table 2. Measurement of parameter changes during gyroscope power on stage.

Parameters Initial Value during Power-On Stage
(about 20 ◦C)

Value during Stable Stage
(about 32 ◦C) Variation (∆) Rate of Change

ωx 4142.9 Hz 4141.6 Hz 1.3 Hz 0.031%
Ad 0.33 V 0.38 V 0.05 V −15.15%

ϕx −88.5◦ −89.8◦ 1.3◦ −0.032%
(sin(ϕx))

Qx 373.2 k 341.3 k 31.9 k 8.55%
∆(1/τ ) * 1.112 × 10−3 1.071 × 10−3 0.041 × 10−3 3.68%

θτ - - - -

* Calculated using Q-factor and frequency parameters.

Equation (11) shows that ZRO1 is primarily affected by Aq and ϕx. The main function
of circuit phase delay ϕe is to cause ϕx 6= −90o, which introduces the quadrature interfer-
ence term Aq cos(ϕx) to ZRO1. In a high-Q gyroscope Aq(t) >>AI(t) ; hence, Aq is easy
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to change under the influence of temperature. The constant term in Aq is equivalent to
introducing a fixed bias to ZRO1, while the varying term is equivalent to introducing an
uncontrollable low-frequency fluctuation, which leads to a large drift in ZRO1. Even if
Aq is corrected to approximately 0 by a fixed correction voltage in the start-up stage, the
changes in ambient temperature and other factors will lead to fluctuations in Aq and ϕe,
resulting in a large drift of ZRO1.

Equation (18) shows that ZRO2 is no longer affected by Aq, so the bias value and
bias stability will be effectively improved. ZRO2 is affected by ϕy. When ϕx 6= −90o

and ϕy 6= −90o, the interference term cot(ϕy) cos(ϕx) is introduced into ZRO. After a
one-time circuit phase delay compensation, ϕx will be close to −90o; hence, |sin(ϕx)| >>
|cos(ϕx)|. In addition, closed-loop control keeps the sense mode relatively stationary,
effectively suppresses the influence of frequency splitting, and expands the mechanical
bandwidth [20,25]. In other words, when the frequency difference between the two modes is
less than the mechanical bandwidth, the sense mode is approximately in the mode-matched
state, that is, ϕy ≈ −90o. Therefore, the influence of the interference term cot(ϕy) cos(ϕx)
was significantly small.

To intuitively express the influence of various factors in Mode I and Mode II on ZRO,
it is assumed that θτ and ∆ f are fixed at 1◦ and 1 Hz, respectively. θω can be changed by
correction (i.e., Aq is variable), and the phase ϕx changes from −50◦ to −130◦.

The calculated values of ZRO1 under different ϕx and Aq are shown in Figure 4; ZRO1
changes greatly under different ϕx and the change increases with Aq; ZRO1 is relatively
stable only when Aq is corrected to a significantly small value. However, in practical
applications, Aq changes as the environmental factors change. Even if Aq is corrected
to zero when the gyroscope system is started, its subsequent long-term stability cannot
be guaranteed.
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Under the same conditions, the calculated values of ZRO2 under different ϕx and ϕy
are shown in Figure 5. The comparison shows that the change in ZRO2 was significantly
less than that of ZRO1. In practical applications, ϕe may change within ±5 degrees in
the temperature range of commercial grade [18,26], which will cause fluctuations in ϕx
near −90o. In this case, the stability of ZRO2 was significantly better than that of ZRO1.
In addition, ZRO2 was also affected by ϕy; however, the change was marginal. In the
mode-matched state (ϕy = −90o), ZRO2 was more stable.
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In summary, in addition to the in-phase error component in ZRO under the control of
Mode I, the shifting of ϕx introduced a large quadrature error. Under the control of Mode
II, ZRO was affected only by the in-phase error. For high-Q gyroscopes, the quadrature
error was much greater than the in-phase error; thus, Mode II was more suitable for high-Q
gyroscopes, which could effectively improve ZRO stability.

5. Online Compensation for ZRO Drift under Mode II

Although Mode II had better ZRO stability than Mode I, there was still obvious drift
due to the rise in chip temperature during the power-on stage. Therefore, it was necessary
to analyze and compensate for the main factors leading to drift in Mode II. According to
Equation (3), the in-phase error AI is related to the vibration displacement amplitude Ax.
Because displacement x(t) is excited by the driving signal Vd(t), we have

Ax = AdKv f Axs (19)

where Axs denotes the mechanical gain of the drive mode. In the drive mode resonance
state (i.e., ωd = ωx),

Axs =
1

ω2
xm

√(
1− (ωd/ωx)

2
)2

+ (ωd/ωxQx)
2
≈ Qx

ω2
xm

(20)

Combined with Equations (3) and (18)–(20), ZRO2 can be approximately expressed
as follows

ZRO2 ≈ AIsin(ϕx)/Kv f
≈ −∆(1/τ) sin 2θτmωx Axsin(ϕx)/Kv f

≈ −∆(1/τ) sin 2θτ Ad
Qx
ωx

sin(ϕx)

(21)

Next, we analyzed the main factors leading to ZRO temperature drift. As can be
seen from Equation (21), ZRO2 is affected by ∆(1/τ), θτ , Ad, Qy, ωx, and ϕx. Because
the damping axis deflection angle θτ cannot be directly observed or estimated, it was not
considered here. During the gyroscope power-on stage (the chip temperature rises from
approximately 20 ◦C to 32 ◦C), we measured the changes in other relevant factors, as shown
in Table 2. Among these, ωx and Ad could be observed online from the control system, and
ϕx was measured using the method in [18]. Qx and Qy were obtained through an offline
free attenuation vibration test, and ωy was obtained through an offline frequency sweep
for calculating ∆(1/τ).

Table 2 shows that the changes in ωx and ϕx were very small and had a limited
effect on the ZRO drift. For ∆(1/τ), because CDRG had a symmetrical structure, the
change trajectories of the frequency and Q-factor of the two modes with temperature
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were essentially the same [22]; therefore, the change in ∆(1/τ) was not significant. In
contrast, the changes in Ad and Qx were large, which contributed significantly to the ZRO
drift. Among them, the change in Ad was mainly caused by the change in the vibration
displacement Ax and circuit gain.

According to the above analysis, to realize the online compensation of ZRO, it was
necessary to monitor the two main influencing factors, Ad and Qx, in real time. However,
Qx could not be monitored directly. Fortunately, the resonant frequency could be used
to estimate the change in Q-factor. According to a previous study [22], the temperature
coefficient of the Q-factor (TCQ) was taken as the exponent of the temperature T, that
is, Qx ∝ T−TCQ. For CDRG, TCQ was approximately 2. In addition, the frequency was
approximately linear with the temperature T, that is, ωx = ωx0(1 + kω∆T). Therefore, we
used ωx to estimate the change of Qx.

The proposed ZRO online compensation method based on multiparameter fusion is
illustrated in Figure 6. In the multiparameter fusion module, the compensation parameter
kc was calculated according to the real-time change of each parameter relative to the initial
value during the power-on stage. Because the temperature drift was a slow changing
process, to reduce the interference of noise and outliers, kc was smoothed and then used to
compensate for the temperature drift of ZRO. The calculation expression for kc is

kc = 1− ∆Ad(t)/Ad0 + ∆Qx(t)/Qx0 + ∆(1/ωx(t))/(1/ωx0) (22)

where Ad0, Qx0 and ωx0 are the initial values during the power-on stage. ∆Ad(t), ∆Qx(t)
and ∆(1/ωx(t)) are the difference between the real-time monitoring value and the ini-
tial value.
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6. Experimental Results
6.1. Gyroscope and Control Circuit

A vacuum-packed CDRG designed by Soochow University was used in this exper-
iment [21,22]. Instead of the traditional ring structure, CDRG uses the latest polygon
structure, which effectively reduces the structural symmetry error, resulting in a signif-
icantly small frequency split. A frequency split of ∆f < 0.05 Hz could be achieved by
electrostatic tuning. The drive mode was in the directions of 0◦ and 90◦, and the sense
mode was in the directions of 45◦ and 135◦. The Q-factors of the two modes were as high as
340k. The internal structure of the gyroscope and the control circuit are shown in Figure 7.

A Xilinx artix-7 series FPGA was used as the gyroscope digital control system platform.
The programming language was Verilog, the input clock frequency was 100 MHz, and the
working rate was set to 1.6 × 10−6 s. Relevant data were collected through serial ports and
LabVIEW at a sampling rate of 5 Hz. Table 3 lists some of the parameters of the gyroscope.
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Table 3. Basic parameters of gyroscope and circuit.

Parameters Values

Proof mass (m) 1 mg
vibration displacement (Ax) * 2 µm

Drive-mood resonant frequency ( fx) 4141.7 Hz
Sense-mood resonant frequency ( fy) 4140.6 Hz

Drive-mood Q-factor (Qx) 341.3 k
Sense-mood Q-factor (Qy) 351.5 k

Scale Factor (SF) 147 mV/(◦/s)
Carrier signal 6Vpk@1 MHz

* Estimated by the output voltage amplitude of the drive mode.

6.2. Measurement of Circuit Phase Delay

To observe the actual influence of ϕx on ZRO, we needed to know the value of the
circuit phase delay ϕe, and to then set different compensation phase delay values to achieve
different values of ϕx. There are several methods for measuring ϕe, such as (1) a method
based on the amplitude of the excitation signal or the amplitude of the vibration response
under the drive mode closed-loop and (2) a method based on the coupling relationship
between quadrature feedback and in-phase feedback under a double-loop FTR closed-
loop [18]. The first method was adopted for visual representation. First, the drive mode
closed-loop system adopted the AGC-PLL control scheme and the amplitude Ab of the
drive mode displacement signal was locked at 2 V. The amplitude Ad of the excitation
signal under different compensation phase delays was tested. Then, the drive mode only
adopted the PLL control, set the Ad = 0.2 V, and tested Ab under different compensation
phase delays, as shown in Figure 8.

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 17 
 

 

Drive-mood Q-factor ( xQ ) 341.3 k 

Sense-mood Q-factor ( yQ ) 351.5 k 

Scale Factor (SF) 147 mV/(°/s) 
Carrier signal 6Vpk@1 MHz 

* Estimated by the output voltage amplitude of the drive mode. 

6.2. Measurement of Circuit Phase Delay 

To observe the actual influence of xϕ  on ZRO, we needed to know the value of the 

circuit phase delay eϕ , and to then set different compensation phase delay values to 

achieve different values of xϕ . There are several methods for measuring eϕ , such as (1) a 
method based on the amplitude of the excitation signal or the amplitude of the vibration 
response under the drive mode closed-loop and (2) a method based on the coupling re-
lationship between quadrature feedback and in-phase feedback under a double-loop 
FTR closed-loop [18]. The first method was adopted for visual representation. First, the 
drive mode closed-loop system adopted the AGC-PLL control scheme and the amplitude 

bA  of the drive mode displacement signal was locked at 2 V. The amplitude dA  of the 
excitation signal under different compensation phase delays was tested. Then, the drive 

mode only adopted the PLL control, set the dA  = 0.2 V, and tested bA  under different 
compensation phase delays, as shown in Figure 8. 

47°

D
isp

la
ce

m
en

t s
ig

na
l a

m
pl

itu
de

 A
b 
(V

)

Ex
ci

ta
tio

n 
sig

na
l a

m
pl

itu
de

 A
d 

(V
)

Compensation phase delay (°)  
Figure 8. Influence of different compensation phase delays on the excitation signal amplitude. 

This figure shows that when the compensation phase delay was approximately 47°, 
the amplitude of the excitation signal was the lowest and the vibration displacement am-
plitude was the largest, indicating that the drive mode worked in the resonant state (

o90xϕ ≈ − ). In other words, the phase delay of the circuit at room temperature was 
o47eϕ ≈ − . 

6.3. Comparison of Influence xϕ  on ZRO 

The experiment was used to verify the influence of the drive mode phase xϕ  on 
ZRO. In the experiment, the compensation phase delay was set to 10°–80° and the change 

step was 10°, which made xϕ  equal to −53°, −63°, −73°, −83°, −93 °, −103°, −113°, and −123°. 

Figure 8. Influence of different compensation phase delays on the excitation signal amplitude.



Micromachines 2022, 13, 419 11 of 15

This figure shows that when the compensation phase delay was approximately 47◦, the
amplitude of the excitation signal was the lowest and the vibration displacement amplitude
was the largest, indicating that the drive mode worked in the resonant state (ϕx ≈ −90o).
In other words, the phase delay of the circuit at room temperature was ϕe ≈ −47o.

6.3. Comparison of Influence ϕx on ZRO

The experiment was used to verify the influence of the drive mode phase ϕx on ZRO.
In the experiment, the compensation phase delay was set to 10◦–80◦ and the change step
was 10◦, which made ϕx equal to −53◦, −63◦, −73◦, −83◦, −93 ◦, −103◦, −113◦, and
−123◦. The ZRO at different ϕx in Mode I and Mode II are shown in Figures 9 and 10,
respectively. Among them, Mode I was divided into two cases: the initial quadrature
force amplitude Aq was corrected to 0 and not corrected to 0, which is realized by setting
different fixed quadrature tuning voltages VQuad_tune. When VQuad_tune = 5.6 V, Aq was
corrected to approximately 0; simultaneously, we set the fixed frequency tuning voltage
VFreq_tune = 10 V.
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The quadrature feedback signal amplitude Vq in Mode I changed significantly at
different ϕx. Even when the initial Aq was corrected to 0, the maximum change in ZRO1 (∆)
also reached 0.09◦/s. This shows that the phase change led to a drastic change in Aq; hence,
the change in ZRO1 was also significant. In Mode II, Aq was corrected to approximately
0 in real time, and ZRO2 was mainly affected by in-phase coupling AI ; the change was
significantly smaller, with a maximum change (∆) of 0.02◦/s. Therefore, when ϕx drifted
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around −90◦ due to changes in ambient temperature and other reasons, the stability of
ZRO2 became significantly greater than that of ZRO1.

In addition, we attempted to change the sense mode phase ϕy by changing the tuning
voltage VFreq_tune to verify that ZRO2 was affected by ϕy. The change in ZRO2 was not
obvious; in other words, the change in ϕy was not obvious. This may be because the
closed-loop control expanded the mechanical bandwidth of the sense mode. When the
frequency split was less than the bandwidth, it could be in the mode-matched state; that is,
ϕy is close to −90◦.

6.4. Comparison of Bias Stability

First, we tested the repeatability of ZRO. The cold started the gyroscope system for the
ZRO data acquisition at room temperature. The ZRO test was performed four times under
each control mode. The sampling time of each test was 1 h, sampling frequency was 5 Hz,
and power-off time of each test was 0.5 h. The ZRO2 data for the four tests are presented in
Figure 11. The first 20 min were the power-on stage, and the last 40 min were the stable
stages for the bias stability analysis.
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Figure 11. ZRO2 data of gyroscope cold start at room temperature.

We then tested the effect of the online compensation on the ZRO drift during the
power-on stage. Figure 12 shows a comparison of the ZRO2 curves before and after the
compensation in one test. It can be seen that the ZRO2 drift after compensation was
significantly reduced, from 0.023◦/s to 0.008◦/s.
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Figure 12. Online compensation process for ZRO2 during the power-on stage.

The Allan variance curves for ZRO1, ZRO2, and compensated ZRO2 during the stable
stage (from 1500 s to 3500 s) obtained from one test are shown in Figure 13. The results
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of the performance comparison are presented in Table 4. The bias repeatability and bias
average were calculated based on the results of the four tests, and the initial quadrature
coupling Aq in Mode I was corrected to approximately 0.
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Table 4. Comparison of bias performance at room temperature.

Bias Instability
(◦/h)

ARW
(◦/
√

h)
Bias Average

(◦/s)
Bias Repeatability

(◦/h)
Bias Drift

(◦/s)

ZRO1 (initial Aq≈ 0) 1.28 0.020 −0.073 17.01 0.037
ZRO2 0.36 0.019 −0.077 3.44 0.023

ZRO2 (compensated) 0.23 0.017 −0.063 3.15 0.008

In conclusion, the experimental results show that the BI and bias repeatability of ZRO2
reached 0.36◦/h and 3.44◦/h, respectively, which were approximately four times better
than those of ZRO1. This was mainly due to the real-time quadrature stiffness control
in mode II, which effectively weakened the influence of the quadrature error on ZRO.
After online compensation, the BI of ZRO2 reached 0.23◦/h, and the low frequency band
(long-term drift) of Allan variance clearly became smoother, which proved the effectiveness
of the multi parameter fusion compensation method.

In addition, the angle random walk (ARW) was basically the same, because the signal
processing circuit and in-phase feedback loop in the two modes were completely consistent,
so the short-term noise level of ZRO was basically the same.

7. Conclusions

In this study, two quadrature error control modes under closed-loop detection of
MEMS gyroscopes were compared, and the factors affecting the ZRO were analyzed.
Experiments were performed on an axisymmetric gyroscope with a 340 k Q-factor. It was
proven that the quadrature stiffness control mode could effectively improve the stability
and repeatability of ZRO and make the BI reach 0.36◦/h. After online compensation based
on multiparameter fusion, BI reached 0.23◦/h.

In future work, online compensation technology for a scale factor will be studied to
further improve the long-term bias stability.
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