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Abstract: We used MoS2 nanosheets (MoS2 NSs) for surface modification of screen-printed electrode
(MoS2NSs-SPE) aimed at detecting isoniazid (INZ) in the presence of acetaminophen (AC). According
to analysis, an impressive catalytic performance was found for INZ and AC electro-oxidation,
resulting in an appreciable peak resolution (~320 mV) for both analytes. Chronoamperometry,
differential pulse voltammetry (DPV), linear sweep voltammogram (LSV), and cyclic voltammetry
(CV) were employed to characterize the electrochemical behaviors of the modified electrode for the
INZ detection. Under the optimal circumstances, there was a linear relationship between the peak
current of oxidation and the various levels of INZ (0.035–390.0 µM), with a narrow limit of detection
(10.0 nM). The applicability of the as-developed sensor was confirmed by determining the INZ and
AC in tablets and urine specimens, with acceptable recoveries.

Keywords: isoniazid; acetaminophen; MoS2 nanosheets; voltammetric sensors; modified electrode

1. Introduction

Drug analysis as one of the main branches of analytical chemistry is essential to
control the quality of drugs. Drug analysis has used a variety of analytical techniques
such as high-performance liquid chromatography (HPLC) [1,2], mass spectrometry [3],
liquid chromatography–mass spectrometry/mass-spectrometry (LC–MS/MS) [4], and
chemiluminescence [5–7]. Despite the many advantages of all of these methods, there
are some drawbacks such as sophisticated analysis, high cost, low sensitivity, and long
response times.

Analytical approaches based on electrochemical sensing systems possess multiple
merits such as cost-effectiveness, portability, simple devices, narrow limit of detection
(LOD), high-speed analysis, extended linear dynamic range, and selectivity in exposure
to interferants [8–12]. Voltammetric determinations, such as DPV, exhibit rapid reaction,
excellent sensitivity, and impressive selectivity [13–15].

Screen-printing electrodes (SPEs) have been extensively employed for the mass-
production of disposable electrochemical sensing systems [16]. The SPEs are affordable
with the capability for mass production while maintaining sufficient reproducibility, with
advantages of versatility and miniaturization [17–21]. The electrocatalytic activity of the
bare electrode displays very substandard behavior [22]. Therefore, the electrode surface
modification increases the sensitivity, reproducibility, and stability [23–27]. Detection
of trace level of analytes can be increased by combining nanomaterials, significantly re-
inforcing the surface properties and electroconductivity of the electrodes, from such a
function [28–31]. Nanomaterial-supported electrochemical sensors have recently attracted
the attention of researchers [32–34].
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Two-dimensional (2D) layered nanomaterials such as transition metal dichalcogenides
(TMDs) and graphene are of the ideal electrode surface modifiers because of specific physic-
ochemical features [35]. Molybdenum disulfide (MoS2) is one of the key TMDs, having
an impressive layered structure, which contains monolayer of Mo atoms located within
two layers of S atoms in a trigonal prismatic arrangement. These sandwich layers in the
crystalline lattice are linked together by weak Van der Waals forces, such that the distance
of inter-sheet molybdenum atoms are 0.65 nm [36–38]. A silicon-like semiconductor of bulk
MoS2 has an indirect 1.23-eV bandgap, and the two-dimensional sheets of MoS2 (2D-MoS2)
form a direct 1.89-eV bandgap (visible red) due to the removal of interplays between layers
and confining electrons in a single plane. Furthermore, MoS2 nanosheets possess numerous
unparalleled features, including impressive biocompatibility, huge surface area, durable
structural stability, and appreciable junction area with electrode/reactants. Such structural
merits and resultant electrical and optical features suggest the applicability of 2D-MoS2
NSs and other 2D-TMDs to develop various optoelectronic and electronic equipment
such as photodetectors, field-effect transistors (FETs), varied sensors, and photovoltaic
devices [39–42].

N-acetyl-p-aminophenol, known as acetaminophen, paracetamol, Tylenol, or AC, is
a drug globally used for relieving moderate pain and declining fever. AC is a noncarcino-
genic and effective aspirin substitute for people with hypersensitivity to acetylsalicylic
acid [43,44]. The analgesic pathway of AC is to impede production of prostaglandin
in the central nervous system (CNS). It can reduce fever through sedation of the hy-
pothalamic heat-regulating center. This drug is mainly metabolized in the liver where
toxic metabolites are produced. The overdose of AC (about 4 g/day) can result in
side effects such as hepatoxicity, nephrotoxicity, gastrointestinal problems, and tissue
failures [45,46].

The contagious infection of tuberculosis (TB) caused by Mycobacterium tuberculosis
(MB-TB) bacteria can influence various body organs, in particular the lungs. Pyridine-
4-carboxylic acid hydrazide, called an isonicotinic acid hydrazide, isoniazid, or INZ,
is an essential organic compound and a beneficial antibiotic capable of exhibiting
strong bactericidal performance in the early steps of anti-TB therapy [47,48]. Many
new cases of tuberculosis are treated each year with isoniazid as the most effective
and the safest treatment. TB-related medications should be prescribed for a longer
period of time. It should be noted that INZ may induce hepatotoxicity in people
suffering from inflammation and may even cause death after long-term exposure to
INZ [49,50]. Since antibacterials (INZ) and AC are routine, commercially available
medications, a growing concern has been aroused over liver damage because of INZ
co-administrated with AC [51]. Accordingly, it is substantial to develop a sensitive and
selective electrochemical sensor in pharmaceutical and clinical preparations to detect
INZ co-administrated with AC.

Herein, we used MoS2 NSs for surface modification of a screen-printed electrode aimed
at simultaneously and voltammetrically detecting INZ and its common interferant AC. The
MoS2 NSs were synthesized by a single-pot hydrothermal protocol. Thus, drop-casting
of dispersed MoS2 NSs on SPE surfaces leads to the preparation of sensors (MoS2NSs-
SPE). These sensors had a greater electrocatalytic response to detecting INZ in buffer
solution (pH = 7.0) when compared with bare (unmodified) SPEs. The applicability of the
as-developed sensor was confirmed by determining the INZ and AC in real tablets and
urine specimens, with acceptable recoveries.

2. Experimental
2.1. Materials and Instrumentations

A potentiostat/galvanostat AUTOLAB PGSTAT 302N (Metrohm, Herisau, Switzer-
land) was utilized to carry out all experiments during the electrochemical processes, under
monitoring of the General Purpose Electrochemical System (GPES) software Version 4.9.
The DropSens SPE (DRP-110, Oviedo, Spain) was used for all electrochemical tests. The
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three-electrode composition contained a 4 mm graphite as the working electrode, graphite
as the auxiliary electrode, and a silver as pseudo-reference electrode. A Metrohm 713 pH
meter (Metrohm, Herisau, Switzerland) equipped with a glass electrode was utilized to
measure the pH values of all solutions. Deionized water from Direct-Q®® 8 UV water
purification system (Millipore, Darmstadt, Germany) was applied to freshly prepare all
solutions. X-ray diffraction (XRD) spectra were obtained from Panalytical X’Pert Pro X-ray
diffractometer (Etten Leur, The Netherlands) with Cu/Ká radiation at ë value of 1.5418 nm.
Fourier-transform infrared (FTIR) patterns were obtained from a Tensor II spectrometer
(Bruker, Mannheim, Germany). Energy dispersive X-ray (EDX) patterns and scanning elec-
tron microscopy (SEM) images were obtained by the MIRA3 scanning electron microscope
(Tescan, Brno, Czech Republic).

All materials in this study were of analytical grade with no extra purification, sourced
from Sigma-Aldrich. Phosphoric acid was utilized to prepare phosphate buffer solutions
(PBSs) with various pH values adjusted by NaOH.

2.2. Fabrication of MoS2 NSs

Based on a protocol, (NH4)6Mo7O24·4H2O (3 mmol) and thiourea (2.3 g) dispersed in
deionized water (30 mL) were transferred to a Teflon autoclave (40-mL) at 200 ◦C for 24 h.
The resultant product was adequately rinsed with ethanol and deionized water, followed
by vacuum drying at 50 ◦C for six hours.

2.3. Preparation of MoS2 NSs-SPE

For the preparation of MoS2 NSs-SPE, 1 mg of synthesized MoS2 NSs was poured into
1 mL of deionized water under ultrasonication, followed by drop casting of the prepared
solution (4 µL) on SPE and subsequently drying at ambient temperature. The prepared
MoS2 NSs-SPE was used in electrochemical experiments.

The surface areas of the MoS2 NSs-SPE and the bare SPE were obtained by CV using
1 mM K3Fe(CN)6 at different scan rates. Using the Randles–Sevcik equation [52] for MoS2
NSs-SPE, the electrode surface was found to be 0.16 cm2 which was about 5.1 times greater
than bare SPE.

2.4. Preparation of Real Specimens

Five AC tablets (containing 325 mg/tablet, Tehran Chemie Pharmaceutical Co., Tehran,
Iran) were first powdered and then 325 mg of the powder was dissolved in water (25 mL)
under ultrasonication. Next, various volumes of as-diluted solution were diluted to the
mark of a 25 mL volumetric flask with PBS (pH = 7.0). The standard addition method was
followed to determine the AC content.

Similarly, five INZ tablets (containing 300 mg/tablet, Tehran Chemie Pharmaceutical
Co., Tehran, Iran) were first powdered and then 300 mg of the powder was dissolved in
water (25 mL) under ultrasonication. Next, various volumes of as-diluted solution were
diluted to the mark of a 25 mL volumetric flask with PBS (pH = 7.0). The standard addition
method was followed to determine the AC content.

The instantly refrigerated urine specimens, at a certain volume (10 mL), were cen-
trifuged at 2000 rpm for 15 min. Then, the supernatant was filtered by a 0.45 µm filter,
and various volumes of it were diluted to the mark of a 25 mL volumetric flask with PBS
(pH = 7.0). Next, the diluted specimens were spiked by various concentrations of INZ
and AC.

3. Results and Discussion
3.1. Determination of MoS2 NSs Characteristics

A scanning electron microscope was employed to capture images for the exploration of
the morphology of MoS2 nanostructures (Figure 1). The MoS2 nanostructure is composed of
thin sheets and the sheets are slightly curved and look like clusters composed of randomly



Micromachines 2022, 13, 369 4 of 14

assembled NSs. Moreover, SEM images show that the as-prepared MoS2 has a sheet-like
morphology of about 12.8 nm thickness.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 14 
 

 

3.1. Determination of MoS2 NSs Characteristics 
A scanning electron microscope was employed to capture images for the 

exploration of the morphology of MoS2 nanostructures (Figure 1). The MoS2 
nanostructure is composed of thin sheets and the sheets are slightly curved and look like 
clusters composed of randomly assembled NSs. Moreover, SEM images show that the 
as-prepared MoS2 has a sheet-like morphology of about 12.8 nm thickness. 

 
Figure 1. The SEM images captured for MoS2 NSs. 

The XRD spectra was captured to determine the crystallographic structures of MoS2 
NSs. Figure 2 shows the crystallite properties of MoS2 NSs based on the XRD spectra 
profiled at 57.8°, 35.3°, 32.22°, and 13.66° attributed to (110), (103), (100), and (002) crystal 
planes of the MoS2 structure, respectively, in line with the relevant standard card (JCPDS 
card No. 37-1492). There were no peaks related to any impurity or other phases [53]. 

Figure 1. The SEM images captured for MoS2 NSs.

The XRD spectra was captured to determine the crystallographic structures of MoS2
NSs. Figure 2 shows the crystallite properties of MoS2 NSs based on the XRD spectra
profiled at 57.8◦, 35.3◦, 32.22◦, and 13.66◦ attributed to (110), (103), (100), and (002) crystal
planes of the MoS2 structure, respectively, in line with the relevant standard card (JCPDS
card No. 37-1492). There were no peaks related to any impurity or other phases [53].
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Figure 2. The XRD pattern captured for MoS2 NSs.

Figure 3 shows the FTIR analysis of the prepared MoS2 NSs, the results of which
exhibited the following absorption peaks for MoS2 at 614.55 cm−1, 884 cm−1, 1100 cm−1,
1385.5 cm−1, 1642 cm−1, and 3448 cm−1. The peaks at 614.55 cm−1, 884 cm−1, and 1642
cm−1 corresponded to Mo–S and S–S bonds and Mo–O vibrations, respectively. Moreover,
the peaks at 1100 cm−1 and 3448 cm−1 were related to hydroxyl stretching vibration
resulting from the absorbed water molecules [54,55].
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3.2. Electrochemical Evaluation of MoS2 NSs-SPE towards INZ Detection

The electrochemical determinations of INZ are significantly influenced by the solution
pH. Hence, we conducted the tests to determine the pH effect on electrocatalytic behavior
of MoS2 NSs-SPE towards INZ. The DPV was employed to study the effect of electrolyte
solution pH (0.1 M PBS) under different values (2.0–9.0) in the presence of 40.0 µM of INZ
at 50 mV/s on the MoS2 NSs-SPE. The oxidation peak current of INZ was maximum at pH
7.0, thereby selecting this value as the optimum pH in the INZ detection.

Cyclic voltammetry was utilized to carry out all electrochemical determinations for
comparison of unmodified SPE and MoS2 NSs-SPE in exposure to INZ (200.0 µM) at
50 mV/s (Figure 4). Findings revealed an oxidation peak, but no reduction peak, on
the electrode surfaces, which means the irreversible electrochemical action of INZ on the
electrodes. There was a weak and broad anodic peak current (Ipa) of INZ oxidation on
the unmodified SPE at 1000 mV with 3.0 µA, underlining weak INZ oxidation on the
unmodified SPE. Compared with the unmodified SPE, the Ipa of INZ obtained on the MoS2
NSs-SPE increases to 14.0 µA, which is almost a 4.6-fold elevation when compared with
the unmodified SPE. In addition, the oxidation of INZ was seen at a lower potential when
compared with the unmodified SPE. The most sensitive voltammetric response of INZ at
MoS2 NSs-SPE was obtained from the good electrocatalytic activity of MoS2 NSs.
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spiked with INZ (200.0 µM) at the scan rate of 50 mV/s.

3.3. Effect of Scan Rate

Figure 5 shows the use of LSV to determine the scan rate influence on the INZ oxida-
tion electrocatalytically on the MoS2 NSs-SPE. As seen in Figure 5, the peak potential of
oxidation was towards more positive directions by elevating the scan rate, which means
the kinetic restriction in electrochemical process. The peak height (Ip) plot versus the scan
rate square root (ν1/2) was linear ranging from 10 mV/s to 400 mV/s, which means the
diffusion process is the main mechanism.
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To study the rate-determining step as shown in Figure 6, the data related to the rising
section of current vs. voltage curve obtained at 10 mV/s scan rate were applied to draw
a Tafel plot for 100.0 µM of INZ. The linearity of E versus log I plot reveals the kinetics
of the electrode process. The slope obtained from this plot was utilized to compute the
electrons transfer number in the rate-determining step. Figure 6 illustrates the Tafel slope
of 0.0989 V for a linear part of the plot, underlining the rate-limiting step of one-electron
transfer having a transfer coefficient (α) of 0.4.
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3.4. Chronoamperometric Measurement

Chronoamperometric determinations of INZ on the MoS2 NSs-SPE surface were done
by adjusting the potential of the working electrode at 810 mV (Figure 7). The findings
from various INZ contents in PBS (at a pH value of 7.0) are depicted in Figure 8. The
chronoamperometric measurement of electroactive moieties under the limited conditions
of mass transfer was based on the Cottrell equation as follows:

I = nFAD 1/2Cbπ
−1/2t−1/2

In this equation, D stands for the diffusion coefficient (cm2/s) and Cb for the bulk
concentration (mol/cm3). The I plot against t−1/2 was on the basis of empirical data
(Figure 7A), with the optimal fits for various INZ contents. Then, the slopes from straight
lines (Figure 7A) were drawn against INZ content (Figure 7B). At last, the slope from the
plot in Figure 7B and the Cottrell equation were applied to calculate the mean D value,
which was 1.0 × 10−5 cm2/s.
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3.5. DPV Detection of INZ on the Developed Sensor Surface

DPV can increase sensitivity and better features for analytical purposes. Therefore,
the voltammetric sensor of MoS2 NSs-SPE towards INZ detection was investigated by DPV.
Figure 8 shows the DPV curves of INZ with various concentrations in PBS (0.1 M, pH
7.0) solution. Based on Figure 8, the anodic peak currents exhibited linear elevation with
various INZ contents (0.035–390.0 µM). The LOD was estimated 10.0 nM. The LOD and
linear range of INZ at MoS2 NSs-SPE electrode presented in this work were compared with
the reported modified electrodes and are provided in Table 1.

Table 1. Comparison of the efficiency of the MoS2 NSs-SPE with literature modified electrodes for
INZ determination.

Electrochemical Sensor Electrochemical
Method Linear Range LOD Ref.

Ordered mesoporous
carbon/glassy carbon

electrode
Amperometry 0.1–370 µM 83.5 nM [8]

Electrochemically
reduced graphene

oxide/glassy carbon
electrode

Linear sweep
voltammetry 2–70 µM 0.17 ìM [48]
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Table 1. Cont.

Electrochemical Sensor Electrochemical
Method Linear Range LOD Ref.

Palladium
nanoparticles/carbon
ionic liquid electrode

Cyclic
voltammetry 5–100 µM 0.47 ìM [56]

WS2/carbon
nanotubes/glassy
carbon electrode

DPV 10–80 µM 0.24 ìM [57]

Au–Pt core-shell
nanoparticles/glassy

carbon electrode
Amperometry 0.05–100 µM 29 nM [58]

MoS2 NSs-SPE DPV 0.035–390.0 µM 10.0 nM This work

3.6. Determination of INZ in Combination with AC on MoS2 NSs-SPE

The DPVs for the detection of INZ in combination with AC via MoS2 NSs-SPE are
presented in Figure 9. The peaks at 440 and 760 V were related to the AC and INZ
oxidation, respectively. The peak current intensity was linearly elevated for both analytes
by simultaneously elevating their concentrations. Figure 9 (insets A and B) shows the
corresponding calibration curves for AC and INZ. The slope from the linear regression
line for the calibration curve of INZ (0.0613 µA µM−1) was nearly equal to that without
AC (0.0611 µA/µM−1, Section 3.5), highlighting the applicability of MoS2 NSs-SPE for
detection of the concentrations of INZ and AC simultaneously.
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3.7. Stability

The DPV method was used to test the stability of MoS2 NSs-SPE in ambient conditions.
Based on the observations, the peak current of the INZ (50.0 µM) on the modified electrode
maintained 96.5% of its initial current after one week, 94.7% after two weeks, and 92.6%
after four weeks, which demonstrates the exceptional long-term stability of the produced
sensor.

3.8. Interference Studies

The possible interfering effect of some potentially coexisting species with INZ in real
samples was investigated. The results showed that the presence of an 800-fold concentration
of Na+, Mg2+, Cl−, and NO3

−; 500-fold concentration of glucose, Zn2+, Al3+, CO3
2−, and

SO4
2−; and a 150-fold concentration of dopamine, ascorbic acid, uric acid, and sodium

citrate caused signal changes less than ±5% for 50.0 µM INZ. However, cysteine and
tryptophan with two-folds excess showed interferences. The interference experiment
showed that the MoS2 NSs-SPE has good selectivity for determination of INZ.

3.9. Real Sample Analysis

The applicability of the as-developed MoS2 NSs-SPE towards the detection of INZ
and AC was tested for INZ tablets, AC tablets, and urine specimens using the standard
addition method (Table 2). According to data, the proposed electrode could preserve its
efficiency for sensing INZ and AC in real specimens. As seen, reasonable recovery of INZ
and AC and also satisfactory reproducibility were confirmed based on the mean relative
standard deviation (RSD).

Table 2. Determining AC and INZ in real specimens on MoS2 NSs-SPE. All concentrations are in µM
(n = 5).

Sample Spiked Found Recovery (%) R.S.D. (%)

AC INZ AC INZ AC INZ AC INZ

AC Tablet

0 0 3.7 - - - 3.5 -

2.0 5.0 5.6 5.1 98.2 102.0 2.7 3.2

3.0 6.0 6.8 5.8 101.5 96.7 3.1 1.7

4.0 7.0 7.9 6.9 102.6 98.6 1.9 2.9

5.0 8.0 8.6 8.3 98.8 103.7 2.4 2.5

INZ Tablet

0 0 - 3.2 - - - 2.9

5.0 2.0 4.9 5.3 98.0 101.9 2.7 3.2

7.5 3.0 7.7 6.0 102.7 96.8 3.1 2.2

10.0 4.0 9.9 7.5 99.0 104.2 2.1 2.4

12.5 5.0 12.6 8.0 100.8 97.6 1.8 3.0

Urine

0 0 - - - - - -

5.0 4.0 5.1 3.9 102.0 97.5 1.6 3.3

7.0 6.0 6.9 6.1 98.6 101.7 3.5 1.9

9.0 8.0 9.3 7.9 103.3 98.7 2.7 2.4

11.0 10.0 10.7 10.3 97.3 103.0 2.2 2.8

4. Conclusions

A novel electrochemical sensor on the basis of MoS2-NSs-modified SPE was estab-
lished for the determination of INZ in the presence of AC. According to the findings, the
MoS2 NSs exhibited a huge surface area and an admirable conductivity, thereby providing
good electron transfer and unparalleled electrocatalytic performance in INZ and AC oxida-
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tion. There were distinct INZ and AC oxidation peaks that predisposed the detection of
these two analytes concurrently on MoS2 NSs-SPE. A low cost of production, impressive
sensitivity, and narrow limit of detection make this sensor an appropriate candidate for
selective determinations of target analytes in clinical and pharmaceutical preparations. The
applicability of the as-developed sensor was confirmed by determining the INZ and AC in
real tablets and urine specimens, with acceptable recoveries.
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