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Abstract: This study aimed to investigate the consequences of the Darcy–Forchheimer medium and
thermal radiation in the magnetohydrodynamic (MHD) Maxwell nanofluid flow subject to a stretch-
ing surface. The involvement of the Maxwell model provided more relaxation time to the momentum
boundary layer formulation. The thermal radiation appearing from the famous Rosseland approx-
imation was involved in the energy equation. The significant features arising from Buongiorno’s
model, i.e., thermophoresis and Brownian diffusion, were retained. Governing equations, the two-
dimensional partial differential equations based on symmetric components of non-Newtonian fluids
in the Navier–Stokes model, were converted into one-dimensional ordinary differential equations
using transformations. For fixed values of physical parameters, the solutions of the governing ODEs
were obtained using the homotopy analysis method. The appearance of non-dimensional coeffi-
cients in velocity, temperature, and concentration were physical parameters. The critical parameters
included thermal radiation, chemical reaction, the porosity factor, the Forchheimer number, the
Deborah number, the Prandtl number, thermophoresis, and Brownian diffusion. Results were plotted
in graphical form. The variation in boundary layers and corresponding profiles was discussed,
followed by the concluding remarks. A comparison of the Nusselt number (heat flux rate) was
also framed in graphical form for convective and non-convective/simple boundary conditions at
the surface. The outcomes indicated that the thermal radiation increased the temperature profile,
whereas the chemical reaction showed a reduction in the concentration profile. The drag force (skin
friction) showed sufficient enhancement for the augmented values of the porosity factor. The rates
of heat and mass flux also fluctuated for various values of the physical parameters. The results can
help model oil reservoirs, geothermal engineering, groundwater management systems, and many
others.

Keywords: Maxwell nanofluid; Darcy–Forchheimer model; thermal radiation; chemical reaction;
Brownian diffusion
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1. Introduction

The concept of nanofluid and nanotechnology in fluid flow phenomena has received
enormous attraction in the community of researchers working in fluid mechanics. For sure,
the thermophysical properties of fluids in the pure state have many variations, and mostly
fluids face a lack of conductivity in the purely natural form. However, a mixture based
on nanoparticles of some highly conductive metals in base fluids categorically reduces this
deficiency, and the performance of the fluid increases drastically. Notable improvements
have appeared in industry due to this innovation in nanotechnology. Specifically, the in-
dustries based on drug delivery, paints, ceramics, coatings, and similar products have been
quite famous in the recent past. Similarly, enhancing the nanofluids’ heat absorption prop-
erties due to a mixture of metallic nanoparticles is another significant achievement in this
regard. Nanofluids are considered top coolants in fluid flow. Therefore, the performance
rate increases sufficiently. The pioneering study introducing the concept of nanofluids was
reported by Choi [1], which received much attention, and after that, millions of studies
have been reported so far to testify to the properties of nanofluid formulations; how-
ever, experimental evidence was provided by Buongiorno [2] in the form of the two-phase
model by introducing the terms of the Brownian diffusion and thermophoresis in nanofluid
flow. Benos et al. [3] reported an analytic investigation on magnetohydrodynamic nat-
urally convective nanofluids via a horizontal cavity with local heat generation capacity.
Bhattacharyya et al. [4] analyzed the impact of the hybrid structure in nanofluids and
applied a statistical approach to judge the characteristics of graphene- and copper-type
nanoparticles in nanofluids. Gowda et al. [5] analyzed the significance of the activation
energy and second-order chemical reaction in the context of heat and mass flux rates in non-
Newtonian Marangoni-driven nanofluid flow. Hussain et al. [6] disclosed the features
of thermal enhancement in nanofluid flow using an embrittled cone as the core surface.
Benos et al. [7] reported some crucial effects of aggregations focusing on CNT–water-based
nanofluid flow subject to magnetohydrodynamic (MHD) impact. Yusuf et al. [8] considered
Williamson nanofluid using an inclined surface involved with gyrotactic microorganisms to
analyze the implications of MHD and bio-convection together with entropy optimization.
Benos et al. [9] reported a theoretical investigation on the natural convection of CNT–water-
based nanofluid flow subject to MHD under the umbrella of the revised Hamilton–Crosser
theory. Apostolos et al. [10] analyzed the flow of Al2O3–water-based nanofluid considering
the printed circuit heat exchangers to see the impact of the interfacial layer in the context
of heat flux. Some further relevant studies can be found in [11–14] and the references cited
therein.

The concept of fluid flow in a porous medium is quite natural. The flow-through a
rocky surface, the natural flow of fluids through sand and dusty areas, etc., are the very
realistic situations around us since the creation of the universe. In the modern world,
this concept is now widely used in the manufacturing industry for multiple purposes,
especially in modeling oil reservoirs, geothermal engineering, groundwater management
systems, and many similar aspects [15–17]. Attention was received by classical Darcy law,
which was valid under exceptional circumstances in situations where the porosity factor
remains low. However, the classic law fails to accept the higher rate of fluid momentum
through the porous medium. Thus, an improvement was needed in the classical Darcy
law to enhance its applicability. Therefore, Forchheimer [18] added the squared velocity
term in the momentum equation of the governing model for the classical Darcy law to
tackle the higher porosity rates. Later on, Muskat [19] named this term the Forchheimer
term, and the governing model was called the Darcy–Forchheimer model of fluid flow.
Pal and Mondal [20] reported interesting findings on convective diffusion of the species
using a non-uniform heat sink/source under the umbrella of the Darcy–Forchheimer model.
Hayat et al. [21] presented the variable thermal-conductivity-based Darcy–Forchheimer
flow of nanofluids using the Cattaneo–Christov model. Eid and Mabood [22] implemented
the Darcy–Forchheimer model using the two-phase cross nanofluid flow. The conse-
quence of Arrhenius activation was disclosed. Furthermore, entropy optimization was
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analyzed in this study. Shankaralingappa et al. [23] configured the impact of the Cattaneo–
Christov theory of double diffusion on an Oldroyd-B-type fluid using a stretching surface
considering the thermophoresis deposition of particles and the chemical reaction. Liq-
uids incorporating the MHD and thermal radiation effects have been hot spots recently.
The involvement of fluids with the MHD impact is relatively high in many industrial
processes such as gastric medications, wound treatments, sterilized devices, medical sci-
ences, X-ray technology, and many others. Numerous studies have been reported so far
mentioning the impact of these variables in industrial applications of nanofluids. The sig-
nificance of MHD is also very relatable in fluid flow analysis because it helps to control
the fluid motion and thermal state of the fluid. The sudden bumps created by the mag-
netic field in the fluid flow phenomena are remarkably used to tackle various abnormal
situations in fluid flow. Numerous related articles mention multiple parameters such
as MHD, thermal radiation, chemical reaction, and many others in nanofluid flow analysis.
Jamshed et al. [24] reported second-grade nanofluidic flow considering the radiation impact
in a single-phase model via a flat porous surface. Sheikholeslami et al. [25] reported an ana-
lytic investigation of the MHD-type nanofluid flow subject to a semi-permeable channel.
Kumar et al. [26] explored the influence of a magnetic dipole in radiative nanofluidic flow
via the stretching surface using the KKL model. Kumar et al. [27] modeled Casson-type
nanofluid flow using a curved stretching surface to highlight the impact of MHD and the
chemical reaction. Hayat et al. [28] reported essential findings on radiative chemically
reactive three-dimensional flow. Sarada et al. [29] reported the impact of magnetohydro-
dynamics on the heat flux rate in non-Newtonian fluids flowing over a stretching surface
subject to local non-equilibrium thermal conditions. Sheikholeslami [30] analyzed the effect
of thermal radiation and MHD in nanofluid flow. Charakopoulos et al. [31] examined
the influence of magnetohydrodynamics in a channel flow using complex network analysis.
Hamid et al. [32] reported critical data in axisymmetric nanomaterial flow towards a radia-
tive shrinking disk. Furthermore, the impact of the Darcy–Forchheimer model, together
with various parameters, including thermal radiation, chemical reaction, activation energy,
and many others, were already reported (see, for example, [33–39]). Wakif et al. [40]
reported a novel approach to the MHD analysis of Casson fluids over the horizontal surface
(stretching) using the impact of thermal conductivity and temperature-dependent viscosity.
Ramesh and Joshi [41] reported the MHD analysis of Jeffrey-type fluid flow between two
parallel plates through a porous medium using an unsteady flow model.

The above-mentioned studies motivated the authors to look for a model comprising
the given flow constraints and physical parameters. Herein, we considered the Darcy–
Forchheimer flow model together with the Maxwell nanofluid boundary layer assumptions to
examine the influence of thermal radiation and a porous medium using Buongiorno’s model
of Brownian diffusion and thermophoresis phenomena. The governing system of equations
was subject to the homotopy analysis method (HAM) (see, for example, [42–46]), which is
a highly efficient and frequently used analytic approach to solve highly nonlinear governing
equations providing the freedom of choice for choosing the linear auxiliary operators and
base functions. The results were plotted graphically, and data of the skin friction and the
Nusselt and Sherwood numbers are given in tables. The study concludes with a discussion
on the results and concluding remarks. A comparison of results for the Nusselt number
for convective boundary and the non-convective boundary is provided. The results can help
model oil reservoirs, geothermal engineering, groundwater management systems, and many
others.

2. Formulation of the Problem

Assume the two-dimensional flowchart based on a Maxwell nanofluid. The thermal
radiation appearing from the famous Rosseland approximation is involved in the energy
equation. In addition, the Darcy–Forchheimer model was adopted to saturate the fluid
in a certain porous boundary. Furthermore, thermophoresis, Brownian diffusion, and
the first-order chemical reaction were retained. The surface that generates the fluid flow
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was assumed to stretch linearly. Uniform magnetic impact directly influences the flow
model with a term in the momentum equation. However, considering a small Reynolds
number helps dismiss the magnetic field induction. The fluid was assumed to proceed
alongside the x-axis, while no velocity was considered alongside the y-axis. At the initial
condition, the velocity is the same as the stretching rate of the sheet, and it becomes
zero as the distance approaches the free surface from the solid sheet towards the y-axis.
The temperature and concentration terms are typically considered T and C, respectively
having wall conditions (Tw, Cw) at the surface and ambient conditions (T∞, C∞) at the free
surface. The physical scenario can be visualized in Figure 1. The governing equations (see,
for example, [42,43,47,48]) are as follows.
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Figure 1. Geometry of the nanofluid flow.
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δCDT
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∂
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(
∂T
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)
− Cr(C− C∞). (4)

u = Uw = ex, v = 0, T = Tw C = Cw at y = 0, (5)

u→ 0, T → T∞, C → C∞ as y → ∞. (6)
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In the last term in Equation (3), the quantity qr actually represents the radiative heat
flux appearing from the famous Rosseland’s approximation (see, for example, [49]).

Mathematically,

qr = −
4
3

σSB
kABS

∂T4

∂y
, (7)

where σSB is called the Stefan–Boltzmann constant and kABS is known as the mean ab-
sorption factor. Using the Taylor series expansion on T4 and neglecting the second- and
higher-order terms in (T − T∞), one can write:

∂qr

∂y
= −16

3
σSBT3

∞
kABS

(
∂2T
∂y2

)
. (8)

Therefore, Equation (3) re-appears as follows:

u
∂T
∂x

+ v
∂T
∂y

= α
∂

∂y

(
∂T
∂y

)
+

τDB
δC

∂T
∂y

∂C
∂y

+
τDT
T∞

(
∂T
∂y

)2
+

16
3(ρc)

σSBT3
∞

kABS

∂2T
∂y2 . (9)

Furthermore, in Equation (4), Cr represents the first-order chemical reaction.
Define (see, for example, [42,50]):

u = ex f ′(η), v = −(eν)1/2 f (η), θ(η) = (T−T∞)
(Tw−T∞)

, φ(η) = (C−C∞)
(Cw−C∞)

, (10)

η =
( e

ν

)1/2y. (11)

The application of Equations (10) and (11) in Equations (1), (2), (4) and (9) results
in the following non-dimensional ODEs:

f ′′′ +
(

1 + M2γ
)

f f ′′ + 2γ f f ′ f ′′ − γ f 2 f ′′′ −
(

λ + M2
)

f ′ − (Fr + 1) f ′2 = 0, (12)(
1 +

4
3

Rd
)

θ′′ + Pr f θ′ + PrNbθ′φ′ + PrNtθ
′2 = 0, (13)

φ′′ + PrLe f φ′ +
Nt

Nb
θ′′ − Kφ = 0, (14)

f (0) = 0, f ′(0) = 1, θ(0) = 1 φ(0) = 1, (15)

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0. (16)

In the process of non-dimensionalization, the quantities that appeared as the coef-
ficient of f , θ, φ are called various physical parameters involved in the problem model.
These quantities are mathematically defined as follows:

M2 =
σ

e
B2

0
ρ

, γ = λ1e, λ =
ν

eK1
, K =

Cr
e

, (17)

Fr =
Cb√
K1

, Pr =
ν

α
, Le =

α

DB
, (18)

Nt = τDT
(Tw − T∞)

νT∞
, Nb = τDB

(Cw − C∞)

νδC
, Rd =

4σSBT3
∞

k f kABS
. (19)

The quantities appearing in Equation (17) are the magnetic parameter, the Deborah
number, the porosity parameter, and the first-order chemical reaction. The quantities
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appearing in Equation (18) are the Forchheimer number, the Prandtl number, and the Lewis
factor. The first two quantities in Equation (19) are the two significant nanofluids known
as thermophoresis and Brownian diffusion. The last quantity represents thermal radiation.
In natural fluid flow phenomena, some critical factors affect fluid motion and the thermal
state. The three crucial factors are called the drag force (skin friction), the heat flux rate
(Nusselt number), and the mass flux rate (Sherwood number). The final representation
of these three quantities in non-dimensional form is given below:

Re1/2
f x C f x = f ′′, at η = 0, (20)

Re−1/2
x Nux = −θ′, at η = 0, (21)

Re−1/2
x Shx = −φ′, at η = 0. (22)

where Rex is known as the local Reynolds number.

3. Solution Methodology

The homotopy analysis method was implemented to obtain the convergent series
solutions. The graphs were prepared using Mathematica 9.0. Let,

f0 = 1− e−η , θ0 = e−η , φ0 = e−η , (23)

Ĵ f = f ′′′ − f ′, Ĵθ = θ′′ − θ, Ĵφ = φ′′ − φ, (24)

with the following hypothesis,

Ĵ f

[
L1e−η + L2eη + L3

]
= 0, Ĵθ

[
L4e−η + L5eη

]
= 0, Ĵφ

[
L6e−η + L7eη

]
= 0, (25)

where Li, i = 1, 2, · · · , 7, are constant numbers. Subsequently, the zeroth-order equations

of deformation can be symbolized as Q f

[
f̂
]

for the momentum equations, Qθ

[
f̂ , θ̂, φ̂

]
for the energy equation, and Qφ

[
f̂ , θ̂, φ̂

]
for the concentration equations given in Equa-

tions (12)–(14), such that:

(1− e)Ĵ f

[
f̂ (η, e)− f0(η)

]
= eĥ f Q f [ f̂ ],

(1− e)Ĵθ

[
θ̂(η, e)− θ0(η)

]
= eĥθQθ [ f̂ , θ̂, φ̂],

(1− e)Ĵφ

[
φ̂(η, e)− φ0(η)

]
= eĥφQφ[ f̂ , θ̂, φ̂].

(26)

with the transformed boundary conditions given in (15–16). It is important to mention here
that ĥ f is the auxiliary function corresponding to the velocity equation, ĥθ is the auxiliary
function corresponding to the energy equation, and ĥφ is the auxiliary function correspond-
ing to the concentration equation. Furthermore, e ∈ [0, 1] is called the embedding. Q f̂ , Qθ̂ ,
and Qφ̂ are named the non-linear operators. The Taylor series implementation results
in the following equations:

f̂ =
∞

∑
i=0

fi(η)ei, θ̂ =
∞

∑
i=0

θi(η)ei, φ̂ =
∞

∑
i=0

φi(η)ei, (27)

where Ei(η) =
1
i!

∂iE
∂ei

∣∣∣
e=0

for E = f̂ , θ̂, or φ̂. The efficient and smoothly convergent results

are strictly dependent on the numerical choice of ĥ. The values of e fluctuate between
e = 0, 1. General solutions are given as follows,
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fi = L1 + L2eη + L3e−η + f ?i (η),

θi = L4eη + L5e−η + θ?i (η),

φi = L6eη + L7e−η + φ?
i (η),

(28)

where the functions with ? represent the special solutions.

4. Results and Discussion

In this paper, we investigated the consequences of the Darcy–Forchheimer medium
and thermal radiation in the magnetohydrodynamic (MHD) Maxwell nanofluid flow
subject to a stretching surface confined within the simple boundary conditions. Physi-
cal parameters such as thermal radiation, the chemical reaction, the porosity factor, the
Forchheimer number, the Deborah number, the Prandtl number, thermophoresis, and
Brownian diffusion and their impact on the fluid profiles are discussed in the following
lines. Figures 2 and 3 represent the behavior of the velocity profiles for the variation in
the Deborah number and porosity factor. Specifically, Figure 2 shows the behavior of the
velocity profile for altered values of the Deborah number. The constitution of the Deb-
orah number is based on the relaxation time parameter, which in the physical context
means providing more time to the nanoparticles to be diluted in the base fluid. The higher
the Deborah number is, the lower the fluid velocity, and the consequent boundary layer
drops to a certain extent. This appearance of the velocity profile was obtained fixing
the other three physical parameters involved in the momentum equation. Figure 3 rep-
resents the variations in the velocity profile subject to the altered values of the porosity
factor. Physically, the presence of the porous medium is itself a reason for the increase
in the frictional retardation force offered to the fluid in motion. The higher the porous
ratio in the medium, the more retardation is offered to the fluid. Therefore, the velocity
profile shows a reduction in its trend for incremental values of λ. As for the energy equa-
tions, the final non-dimensional ODE involves several physical parameters already defined
in the previous section. To see their impact on the temperature profile, we plotted the data
in graphs given in Figures 2–8. In particular, Figure 4 represents the consequent impact
of the Deborah number on the temperature profile. The profile apprises the behavior
of the altered, augmented values of the Deborah number. Here again, the justification
of this behavior relates to the relaxation time provided to the model by the Maxwell model.
The more is the relaxation time, the more is the temperature profile and vice versa. The con-
tinuous offering of more friction to the fluid in motion is the main property of the porous
medium, which is mathematically involved in the model using the two important factors,
the porosity factor and the Forchheimer number. The appearance of these parameters
in the energy equation has a high impact on the temperature profile. Figure 5 gives this
impact in the porosity factor versus the temperature profile. The higher the rate of re-
sistance provided to the system, the higher is the system’s temperature due to the high
rate of collisions between the molecules of the base fluid and the nanoparticles diluted
in it. This behavior gives rise to another important aspect of fluid flow analysis, i.e., ther-
mal radiation. The inside-out thermal radiation is another important source of raising
the temperature profile. A dominant rising trend in the temperature profile due to ther-
mal radiation can be seen in Figure 6. The result shows that even with a slight variation
in the thermal radiation, a very high variation is noted in the corresponding boundary
layer formulation of the temperature profile. The impact of Brownian diffusion is given
in Figure 7, which is physically related to the predicted movement of nanoparticles and
collisions. The higher the value of Nb, the higher is the temperature profile and vice versa.
However, an inverse trend was found in the case of the Prandtl number. The higher values
of the Prandtl number, as given in Figure 8, result in a reduction in the temperature profile.
The constituent term of the Prandtl number involves kinematic viscosity inversely related
to the thermal diffusivity. Higher values of the Prandtl number result in a reduction of ther-
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mal diffusivity and an increment in the kinematic viscosity, which results in the reduction
of the temperature profile. The behavior of both the temperature and concentration pro-
files towards the Deborah number is quite similar. In both cases, a rise in the values of
the Deborah number results in the increment of the respective profile. Figure 9 shows
the same thing discussed in the above lines. Higher values of the Deborah number mean
more convenience is provided to the nanoparticles to adjust and be diluted in the base fluid.
The concentration profile rises after that. The porosity factor, when increased, provides
more space for the nanoparticles to be spaced in the base fluid, and therefore, the con-
sequence is shown in Figure 10. The concentration behavior in response to the altered
values of thermal radiation is given in Figure 11. The interval of rising and lowering is
very short. Thus, a shorter, but incremental trend is noticed for higher values of the ra-
diation factor. The impact of Lewis’s number is quite dominant and prominent. From
the Lewis number given in Equation (18), we see that the inverse relation of Brownian
diffusion and thermal diffusivity is called the Lewis number. Thus, Brownian diffusion
and Le are inversely proportional to each other. The higher the values of Le, the lower
the diffusion will be and, therefore, the lower the concentration of nanoparticles in the base
fluid, as displayed in Figure 12. Figure 13 gives the impact of Nb (Brownian motion pa-
rameter) over the concentration profile. Higher values result in a low concentration and
vice versa. The Prandtl number decreases the concentration profile given in Figure 14 with
the same justification as given in Figure 8 because the diffusivity is linked to the Prandtl
number. The first-order chemical reaction is a source of the reduction in the concentration
profile. The fluid faces a descending concentration near the surface at a lower intensity
of the reactive material. However, the concentration reduces sufficiently with higher values
of K, as shown in Figure 15. Table 1 provides the numerical data of the mass flux, heat flux,
and wall drag (also known as skin friction) for fluctuating values of various parameters.
In particular, the porosity, the Forchheimer number, and the Deborah number increase
the drag force. The Nusselt number reduces for the thermal radiation factor; however,
the same parameter enhances the Sherwood number. The mass flux rate is enhanced
for larger values of the Lewis number. Figures 16 and 17 are based on the two comparative
results, i.e., with and without the convective boundary, setting the radiation factor and
chemical reaction factor equal to zero. The convective boundary has a significant variation
in the values of the Nusselt number as compared to a simple boundary. In both cases,
the trend of the Nusselt number is the same, but the rates are different at the same values
of Pr and M for both cases of different boundary conditions.
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Figure 2. Deborah number and its impact on the velocity profile.
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Figure 3. Porosity number and its impact on the velocity profile.
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Figure 4. Deborah number and its impact on the temperature profile.
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Figure 5. Porosity number and its impact on the velocity profile.



Micromachines 2022, 13, 368 11 of 21

Rd = 0.0, 0.3, 0.6, 0.9

M = 0.2,

Λ = 0.2,

Γ = 0.2,

Fr = 0.2,

Pr = 1.0,

Nb = 0.2,

Nt = 0.1,

Le = 1.0,

Fr = 1.0,

K = 0.1,

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

Η

Θ
HΗ
L

Figure 6. Thermal radiation and its impact on the temperature profile.
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Figure 7. Brownian diffusion and its impact on the temperature profile.
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Figure 8. Prandtl number and its impact on the temperature profile.
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Figure 9. Deborah number and its impact on the concentration profile.
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Figure 10. Porosity number and its impact on the concentration profile.
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Figure 11. Thermal radiation and its impact on the concentration profile.
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Figure 12. Lewis number and its impact on the concentration profile.
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Figure 13. Brownian diffusion and its impact on the concentration profile.
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Figure 14. Prandtl number and its impact on the concentration profile.
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Figure 15. Chemical reaction and its impact on the concentration profile.
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Table 1. Numerical results of the skin friction (wall drag) and Nusselt number (heat flux). The default
values are: λ = 2/10, M = 2/10, Fr = 1, γ = 2/10, K = 2/10, Le = 1, Nb = 2/10, Nt = 1/10,
Pr = 1, Rd = 2/10.

λ Fr γ K Le M Nb Nt Pr Rd −Re1/2
x C f x −Re−1/2

x Nux −Re−1/2
x Shx

0.0 1.1199 0.4129 0.5306
0.3 1.2456 0.3962 0.5175
0.6 1.3601 0.3822 0.5067

0.0 1.1786 0.5115 0.4085
0.3 1.3065 0.4027 0.3957
0.6 1.4242 0.3981 0.3933

0.0 1.3514 0.4172 0.5341
0.3 1.4492 0.3941 0.5159
0.6 1.5233 0.3744 0.5007

0.0 1.4235 0.4050 0.4003
0.3 1.4235 0.3969 0.7075
0.6 1.4235 0.3931 0.9137

0.4 −− 0.4097 0.3353
0.8 −− 0.4040 0.4581
1.2 −− 0.3991 0.5846

0.0 1.4089 0.4039 0.5236
0.3 1.4429 0.3984 0.5193
0.6 1.5983 0.3838 0.5079

0.4 −− 0.3650 0.5840
0.8 −− 0.2999 0.6142
1.2 −− 0.2445 0.6236

0.0 −− 0.4123 0.6312
0.3 −− 0.3807 0.3263
0.6 −− 0.3520 0.0868

0.6 −− 0.3071 0.4292
1.2 −− 0.4445 0.5693
2.0 −− 0.5784 0.7616

0.0 −− 0.4649 0.4990
0.5 −− 0.3369 0.5445
1.0 −− 0.1025 0.8359
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Figure 16. Nusselt number at Rd = 0 = K corresponding to Pr = 0.5, 1.0, 1.5.

Figure 17. Nusselt number at Rd = 0 = K corresponding to M = 0.0, 0.5, 0.8.
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5. Conclusions

We considered the Darcy–Forchheimer medium and thermal radiation in the MHD
Maxwell nanofluid flow subject to a stretching surface. The significant features appearing
from Buongiorno’s model, i.e., thermophoresis and Brownian diffusion, were retained.
The governing equations after conversion into ODEs were solved for convergent series
solutions using the HAM. Graphs were plotted for the three profiles of the flow model
against various physical parameters such as thermal radiation, the chemical reaction,
the porosity factor, the Forchheimer number, the Deborah number, the Prandtl number,
thermophoresis, and Brownian diffusion. The following salient features were the critical
points in this investigation:

• The involvement of the Maxwell model in nanofluid flow provided more relaxation
time for the diffusion and dilution of nanoparticles in the base fluid;

• The presence of the porosity factor was a significant source of increment in the drag
force and the reduction in fluid flow along the horizontal axis;

• The impact of thermal radiation was prominent in the case of the temperature profile;
however, it impacted the other two profiles as well;

• The Deborah number coming from the relaxation time provided in the Maxwell model
enhanced the concentration and temperature profiles and decelerated the fluid;

• Brownian diffusion enhanced the temperature profile and reduced the concentration
profile;

• The chemical reaction appeared to be a reducing factor for the concentration of nanopar-
ticles in the base fluid;

• The trio of the porosity, the Forchheimer number, and the Deborah number increased
the drag force;

• The heat flux reduced for the thermal radiation factor; however, the same parameter
enhanced the mass flux rate;

• A rise was noted in the mass flux rate for augmented values of the Lewis number;
• Despite a difference in the numerical data of the Nusselt number for the convective

and non-convective boundary, the trend of the increase and decrease of the flux rate
was identical for both types of boundary conditions.
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Nomenclature

The following nomenclature is used in this manuscript:
x, y Cartesian coordinates/m
u(x, y), v(x, y) Coordinates of the velocity vector (m · s−1)
ν Nanofluid viscosity (kinematic) (m2 · s−1)
µ Nanofluid viscosity (dynamic) (Kg ·m−1 · s−1)
Cb Inertial coefficient (m)
σ Electric conductivity ((Ω ·m)−1)
B0 Magnetic impact (A ·m−1)
K1 Permeability (m2)
ρ Density of the nanofluid (Kg ·m−3)
σSB Stefan–Boltzmann constant (W · K−4 ·m−2)
α Thermal diffusivity (m2 · s−1)
kABS Mean absorption factor (m−1)
T Temperature (K)
C Concentration (mol ·m−3)
Tw Temperature at the wall (K)
Cw Concentration of nanoparticles at the wall (mol ·m−3)
(ρc) Nanofluid’s productive heat capacity
T∞ Temperature far away from the surface (boundary condition)
C∞ Concentration of nanoparticles far away from the surface

(boundary condition)
Cr Chemical reaction (s−1)
(ρc)p Nanoparticles’ productive heat capacity (J ·m−3 · K−1)
DT Thermophoretic effect (m2 · s−1)
DB Brownian diffusion factor (m2 · s−1)
Fr Local inertia
M Magnetic parameter
e Positive constant number (s−1)
Le Lewis factor
Nb Brownian diffusion parameter
Pr Prandtl factor
Nt Thermophoretic parameter
Nux Local Nusselt number (heat flux)
Shx Local Sherwood number (mass flux)
f ′ Dimensionless velocity
η Dimensionless variable
φ Dimensionless concentration of the nanoparticles
θ Dimensionless temperature field
λ1 Relaxation time involvement
qr Radiative heat flux (W ·m−2)
γ Deborah number
λ Porosity parameter
Rd Radiation factor
K First-order chemical reaction
τ Dimensionless thermal coefficient
δC Corrective concentration coefficient
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