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Abstract: Using the finite-difference time-domain (FDTD) method, we designed an ultra-thin
Ge/GaAs/P3HT:PCBM hybrid solar cell (HSC), which showed good effects of ultra-wideband
(300 nm–1200 nm), high absorption, and a short-circuit current density of 44.7 mA/cm2. By changing
the thickness of the active layer P3HT:PCBM, we analyzed the capture of electron-hole pairs. We
also studied the effect of Al2O3 on the absorption performance of the cell. Through adding metal Al
nanoparticles (Al-NPs) and then analyzing the figures of absorption and electric field intensity, we
found that surface plasma is the main cause of solar cell absorption enhancement, and we explain the
mechanism. The results show that the broadband absorption of the solar cell is high, and it plays a
great role in capturing sunlight, which will be of great significance in the field of solar cell research.

Keywords: hybrid solar cell; Ge/GaAs/P3HT:PCBM; localized surface plasmon; photon absorption;
FDTD

1. Introduction

With the increasing shortage of coal, oil, and natural gas and the strong support
of new energy, solar energy, as a clean and pollution-free renewable energy with rich
resources, has become a hot research topic among scholars [1–4]. Although silicon is the
most widely used commercial material for solar cells [5,6], GaAs has its own advantages.
GaAs bandgap is 1.42 eV, and Si bandgap is 1.12 eV. GaAs has a high electron mobility,
up to 8000 cm2/V·s; the electron mobility of silicon is 1350 cm2/V·s. Thus, GaAs has a
wider bandgap and higher absorption coefficient than Si. A photoactive layer of several
microns is enough to use the transmitted light, because of the direct band gap in GaAs as
compared to Si or other semiconductor materials. Moreover, GaAs is widely studied in
solar cells because of its high electron saturation rate and electron mobility [7]. Pham et al.
designed a positive ZnO electronic-selective contact single-junction GaAs cell with a current
density of 30.48 mA/cm2 [8]. In order to reduce the substrate cost, GaAs solar cells usually
have Ge as the substrate material [9–11]. Ge is commonly used in the wafer substrates of
high-efficiency multi-junction photovoltaic cells for space applications [12,13]. In addition,
Ge and GaAs have similar lattice constants; their lattice constants are 5.646 and 5.653, thus
avoiding excessive lattice imperfection from being introduced on the back surface [14].
There are Mars rovers and several satellites that use three-junction GaAs on Ge cells. Thus,
Ge substrate is utilized to manufacture GaAs solar cells [15]. A good passivation layer
is essential for solar cells. Al2O3, with excellent field-effect passivation properties and
good chemical passivation properties, has been widely studied as a possible gate oxide of
GaAs [16], which plays a certain role in improving the efficiency of solar cells. Polymer
material P3HT:PCBM has improved carrier mobility, so we combined polymer materials
and semiconductor materials to form a hybrid solar cell.

In addition to adding passivation layers, there are many ways to improve the effi-
ciency of solar cells, such as nanomaterials [17,18], anti-reflection films [19,20], surface
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texture [21,22], etc. Among them, metal nanostructures have been widely studied in the
field of solar cells due to their unique properties of enhancing electric fields and improving
light absorption [23–25]. They use the local electromagnetic field near the metal surface
to amplify and produce local surface plasmons (LSPs) at the interface between metal
nanoparticles and semiconductor materials [26–28]. The electromagnetic wave propagated
by LSPs along with the interface of the metal back contact and semiconductor absorption
layer can effectively capture and conduct incident light in the semiconductor layer [29].
Ding Dong et al. studied the light absorption of microcrystalline silicon thin film solar cells
enhanced by Al nanoparticles, and obtained different ratios of radii and periods, resulting
in different surface plasmon resonance effects [30]. Different sizes, shapes, and arrange-
ments of metal nanoparticles affect the excitation of these excitons and thus the absorption
of solar cells [31–33]. Gurjit Singh et al. discussed the absorption enhancement effect of
copper particles with sizes of 40–200 nm on GaAs solar cells. They also discussed the effect
of Al nanoparticles with different sizes on the front and back surfaces to enhance the surface
plasmon absorption of GaAs solar cells based on surface plasmon absorption [34,35]. For
this reason, we performed a detailed study and analysis of the metal nanoparticles of
the HSC.

In this paper, we use FDTD Solutions to simulate the Ge-based GaAs-P3HT:PCBM
HSC based on Al-NPs. By introducing the spherical Al-NPs model based on FDTD, it is
found that LSP is the main reason for the enhancement of solar cell light absorption, and
its mechanism is analyzed. It is shown that this three-dimensional Al-NPs optical model is
very useful for understanding the light absorption behavior of Al-NPs in solar cells varying
with wavelength and shape parameters. We also studied the absorption characteristics
of the organic active layer of P3HT:PCBM deposited on the GaAs surface to analyze the
specific mechanism.

2. Structure Design and Numerical Model

The structure of the cell is shown in Figure 1. Ag is the backplate, and Ge is the
substrate to produce the plasma plasmon metal aluminum nanoparticles of the GaAs-
P3HT:PCBM hybrid solar cell. The Ag layer thickness is 200 nm, and the Ge layer thickness
is 450 nm. The thickness of the GaAs cylinder is 400 nm, with a radius of 120 nm. The
thickness of P3HT:PCBM of the cylinder is 60 nm to capture photons, and the thickness of
Al2O3 as the gate oxidant is 30 nm to protect it. Since the FDTD calculation can only be
carried out in a limited area, periodic boundary conditions are set on edges of x and y to
avoid the generation of reflected waves, and a high matching layer (PML) [36] is used at the
top and bottom of the z-axis. The plane-wave excitation source is placed directly above the
model to simulate the solar light source, and a reflective power monitor and transmission
power monitor are placed to calculate the reflectivity R and transmittance T, respectively.
According to A = 1-R-T, the absorption rate of the battery can be obtained [37]. The current
density value can be calculated by setting the analytical photon production rate.

FDTD Solutions was used to simulate the solar cell. The FDTD method, proposed by
Kane Yee [38,39], is a differential differentiation of Maxwell equations in time and space.
The electric field and magnetic field are calculated alternately in the space domain and
updated in the time domain to simulate the change of electromagnetic field, to achieve the
purpose of numerical calculation [40,41]. PML is used for special processing in the limited
space so that the internal field does not produce distortion. The carrier generation rate can
be calculated with FDTD, and its expression is [42,43]
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Pabs is the absorption space power density, and its expression is [42]

Pabs(λ) = −0.5ω|E(λ)|2 Im[ε(λ)] (2)
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where ω is the angular frequency, E is the electric field intensity, ε is the permittivity, and
h̄ω is the energy of a photon. The FDTD software then calculates the short-circuit current
density directly:

Jsc =
e
}c

∫ 1200 nm

300 nm
QE(λ)λIAM1.5(λ)dλ (3)

where h̄ is reduced Plank’s constant, c is the speed of light in the free space, QE is the
Quantum Efficiency of Solar Cell, and IAM1.5 is the AM1.5 solar spectrum [44].
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Figure 1. (a) HSC 3D diagram. (b) Plan of HSC in the x-y plane.

3. Simulation Results and Discussion

AM1.5 is the average illumination of sunlight incident on the earth’s surface, and
its total solar radiation is 100 mW/cm−2 [45]. The light absorption rate of the solar cell
designed after optimization is shown in Figure 2a. Within 300 nm–1200 nm, the light
absorption rate of the cell is above 90%, and most of the light absorption is above 95%,
which can be approximated to the high absorption of broadband. Figure 2b shows the
absorption spectrum of the cell under the standard spectrum AM1.5, and the absorption
spectrum of the cell is very close to the curve of AM1.5. Figure 2 shows that the solar cell
has a good absorption of sunlight and can capture photon energy well, thus improving the
conversion efficiency of the cell from the source [46,47].

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 11 
 

 

P3HT:PCBM is enhanced. A high electric field will speed up the transport between elec-
trons and holes and avoid electron-hole recombination [48]. We can see that there is obvi-
ous diffraction enhancement in the bottom layer, which is the result of surface plasma 
element interaction. Figure 3d–f reflects the cross-section at z = 200 nm and the electric 
field intensity on the x-y plane. As can be seen from the figure, Al-NPs interact with the 
medium to produce the plasma plasmon, which strengthens the electric field vibration 
[49]. 

 
Figure 2. (a) HSC absorption curve; (b) AM1.5 standard sunlight, and the HSC absorption spectra. 

 
Figure 3. The electric field distribution in the y-z plane at three wavelengths: (a) 400 nm, (b) 806 nm, 
(c) 1030 nm, with an absorption intensity greater than 97%. The electric field action of Al-NPs in the 
x-y plane at three wavelengths: (d) 400 nm, (e) 806 nm, (f) 1030 nm. 

Figure 4 shows the influence of the thickness of P3HT:PCBM on the absorption and 
current density of the solar cell. P3HT:PCBM has chemical stability and high crystallinity 
carrier mobility and absorption, and it is the most commonly used material applied to 

Figure 2. (a) HSC absorption curve; (b) AM1.5 standard sunlight, and the HSC absorption spectra.



Micromachines 2022, 13, 349 4 of 10

Figure 3 shows the electric field intensity at three values of the highest absorption rate:
λ1, λ2, and λ3. Figure 3a–c reflects the electric field intensity of the longitudinal section z
from 200 nm to 1190 nm, that is, the electric field intensity of the y-z plane. The electric
field intensity gradually increases from left to right. When λ1 = 400 nm, the electric field
intensity of the structure remains unchanged. In Figure 3b,c, the longer wave, because of
its stronger diffraction ability, after the part is absorbed by the material energy; the residual
electromagnetic energy had a deeper extrinsic absorption, producing the electric field
intensity distribution in the graph. The light spread resulted in the light carrier moving up,
making the electric field enhancement red. From Figure 3b, λ2 = 806 nm, and from Figure 3c,
λ3 = 1030 nm, showing that the electric field intensity between GaAs and P3HT:PCBM is
enhanced. A high electric field will speed up the transport between electrons and holes
and avoid electron-hole recombination [48]. We can see that there is obvious diffraction
enhancement in the bottom layer, which is the result of surface plasma element interaction.
Figure 3d–f reflects the cross-section at z = 200 nm and the electric field intensity on the
x-y plane. As can be seen from the figure, Al-NPs interact with the medium to produce the
plasma plasmon, which strengthens the electric field vibration [49].
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Figure 4 shows the influence of the thickness of P3HT:PCBM on the absorption and cur-
rent density of the solar cell. P3HT:PCBM has chemical stability and high crystallinity car-
rier mobility and absorption, and it is the most commonly used material applied to organic
photovoltaics (OPVs) [50]. Compared with the absence of P3HT:PCBM(hP3HT:PCBM = 0 nm),
the addition of P3HT:PCBM enhanced the cell absorption at 300 to 500 nm and 850 to
1050 nm. With the increase of hP3HT:PCBM, the photon absorption rate increases gradually.
When hP3HT:PCBM = 60 nm, the photon absorption rate is increased. However, when h in-
creases again, the absorption rate of photons decreases between 800 and 900 nm, indicating
that the excessively thick P3HT:PCBM hinders the transmission of photons and affects the
absorption rate of solar cells. The current density JSC increases first and then decreases with
the increase of hP3HT:PCBM, indicating that the thickness of P3HT:PCBM has an influence on
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the ability of electron and hole transport, and excessive thickness will hinder the transport
of electrons and holes. Therefore, we chose a P3HT:PCBM thickness hP3HT:PCBM of 60 nm
as the optimal parameter to increase the photon absorption effect for the cell.
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Figure 5 describes the influence of Al2O3 on the performance of the cell. As a reflection
reducing layer, Al2O3 is often placed on the surface of GaAs to reduce reflection and
increase absorption. Compared with the cells without Al2O3 (iAl2O3 = 0 nm), the cells with
the Al2O3 anti-reflection layer have absorption enhancement in the near-infrared band.
It reduces the reflection of photons and allows more of the photon energy to be injected
into the cell, thus increasing absorption. With the increase of iAl2O3, the absorption of
the near-infrared band gradually increases, but at the same time, the absorption of the
visible band gradually decreases. The results show that the anti-reflection effect of Al2O3
gradually moves to the infrared band with the increase of its thickness, and it can increase
the absorption of long wavelengths. With the increase of the thickness of Al2O3, the field
passivation effect is significant and the collecting efficiency of the carrier is improved;
thus, the short-circuit current is increased. When the thickness of Al2O3 is too high, the
minority carrier life is not enough to support the carrier transmission, and the current
density decreases [51]. Therefore, the iAl2O3 = 30 nm anti-reflection layer was selected to
improve the overall performance of the HSC.
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In Figure 6a, in the visible band, the thickness of GaAs has little influence on light ab-
sorption. The absorption properties of GaAs in the near-infrared band are different with the
change of thickness. In Figure 6b, the current density is the highest when MGaAs = 400 nm.
As MGaAs continues to increase, the electron and hole transport distance in GaAs is longer,
and the current density decreases. Therefore, 400 nm thick GaAs was selected as the
optimal parameter. Figure 6c plots the absorption of the GaAs radius to the solar cell.
The larger the radius, the stronger the absorption capacity, especially in the 700–1200 nm
band. JSC shows an upward trend with the increase of RGaAs, as shown in Figure 6d. The
larger radius can make the carrier transport capacity in the semiconductor stronger and
avoid the recombination of electron hole pairs in the small region, and thus can improve
the short-circuit current density. Therefore, when the radius of GaAs of the cylinder is
RGaAs = 120 nm and the thickness is MGaAs = 400 nm, the absorption effect and current
density are the best.
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Because the interface between the metal and the medium will produce plasma plas-
mons, the action of electromagnetic wave and electromagnetic field will be changed, so we
explored the influence of the size and spacing of Al-NPs on the solar cell (see Figure 7). In
Figure 7a, with the increase of radius rAl-NPs, the light absorption rate of the cell gradually
increases in the near-infrared band. The results show that the absorption of Al nanoparti-
cles increases obviously in the long wavelength band. Figure 7b shows that JSC increases
first and then decreases with the increase of rAl-NPs, and its maximum value is around
rAl-NPs = 25 nm. Because the particle size of Al nanoparticles has a great influence on the
spectral absorption rate of the cell surface in the near infrared band, the lower the ab-
sorption rate is, the fewer the photons that are captured and the fewer the electrons that
are transmitted, resulting in a lower current density [52,53]. Figure 7c shows the effect
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of pAl-NPs differences in the centroid spacing between two Al-NPs. In general, spacing
p has little influence on the light absorption rate of the cell, but a great influence on the
current density. As can be seen from Figure 7d, when the two spheres are close to each
other (pAl-NPs = 50 nm), the effect is the strongest and the current density is the largest.
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Figure 8 shows the electric field diagram of the spherical spacing between two alu-
minum particles at λ = 1030 nm. Figure 8a–e is the electric field diagram on the y-z plane
of the longitudinal section. When pAl-NPs = 50 nm, the effect between adjacent aluminum
spheres intensifies the electric field vibration, and the electric field intensity is the highest,
which is the highest consistent with the absorption rate in Figure 7c. Figure 8f–j is the
electric field diagram of the cross-section x-y plane at the center of the Al-NPs. It shows
the excitation of LSP near the Al as a function of the spacing between the Al-NPs. In
Figure 8f, the adjacent Al spheres generate a strong electric field and propagating waves,
which spread around to enhance light absorption and thus increase the photocurrent. In
Figure 8g–f, the Al spheres are not adjacent and only produce plasmons locally, with a very
small acting region. In Figure 8j, due to the distance, the electric field oscillation effect is
not strong, resulting in a weak electric field.
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4. Conclusions

In this paper, the GaAs thickness and size of the solar cell, active layer thickness
P3HT:PCBM, metal nanoparticles, and other structural parameters were studied. The
mechanism of photon capture by P3HT:PCBM and the influence of surface plasmon on the
solar cell were analyzed. Based on the above numerical simulation, we designed an optimal
ultra-thin GaAs/P3HT:PCBM hybrid solar cell based on germanium substrate plasma
plasmon. The broadband high absorption of this solar cell will allow further breakthroughs
in this field. With the deepening of research and the continuous progress of technology, this
type of solar cell will make greater progress and be widely used in the field of solar cells.
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