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Abstract: The outflow rate of screen channel liquid acquisition devices (LADs) is a key indicator
of the liquid acquisition capacity, but would be decreased when a portion of its screen is blocked
by the vapor. So far, the quantitative research about the consequent loss of outflow rate seems not
enough, though it is important and inevitable. In this paper, a modified model by introducing an
“available rate” to describe the blocked degree is established to analyze and compare the cases with
and without vapor blockage. We found that the loss of outflow rate is mainly decided by the total
area of the blocked screen, while the distribution of blockage position barely has any effects. Besides,
a “characteristic curve” is proposed to describe the robustness of LAD against blockage (i.e., loss rate
of outflow velocity versus total area of the blocked screen). Higher driving pressure, coarser mesh of
screen, and higher ratio of length to height of the channel would bring about greater robustness.

Keywords: screen channel liquid acquisition device (LAD); cryogenic propellants; vapor blockage;
outflow rate; robustness

1. Introduction

In space flight missions, the pure liquid-phase propellant is necessary when the engines
restart or when the system transports propellant from one tank to another [1]. However,
in the microgravity environment, acquiring pure liquid from the liquid–vapor mixture in
the tank is not easy. The fluid motion at reduced gravity may be dominated by the surface
tension of the fluid and other forces, which make it nearly impossible to predict how liquid
and vapor distribute in the propellant tank, let alone to ensure enough pure liquid to
cover the tank outlet. To address this difficulty, researchers invented liquid acquisition
devices (LADs), which come in various forms and fall into two main categories: partial
retention device and total communication device [2]. The former retains a part of liquid
around the outlet for the engine to restart but is generally applicable for the systems that
only require thrust in one single direction. The latter aims to make a full communication
between the outlet and the liquid, and it can give supply continuous outflow under any
thrust directions.

Among the total communication devices, screen channel LADs are popular in-flight
missions that involve cryogenic propellants. This device is installed inside the tank (see
the schematic in Figure 1); one typical structure consists of four channels that run almost
the full length of the tank. Each channel is a rectangular cross-section pipe with four walls:
three solid metal walls and a porous screen wall (see Figure 2a). The porous screen is
woven by metal wires, and those woven by the method of Dutch Twill weave (DTW) [3]
proved to perform the best for cryogenic liquids. Because the surface tension of fluid leads
the liquid to distribute along the inner wall of the tank under microgravity conditions,
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channels generally turn their porous screen wall toward the inner wall of the tank to contact
more liquid.
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Figure 1. Schematic diagram of a typical screen channel LAD. 
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Figure 1. Schematic diagram of a typical screen channel LAD.
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Figure 2. Schematic diagram of a single channel. (a) 3-D diagram; (b) Diagram for basic outflow 

model; (c) Diagram for the extended model. 
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The liquid acquisition process is as follows: the liquid that contacts the porous screen
will be wicked [4–6] by the tortuous micro flow path formed between wires of the screen
so that the whole screen would be wet; when the system pressurizes the ullage of tank,
the surface tension of the liquid that has been filled within the screen pores will stop the
vapor from penetrating the screen, while the liquid will be driven into the channel through
the screen by the pressure difference effect; eventually, the liquid flow along the channel
and towards the outlet while the vapor is retained in the tank (see Figure 2a), and the pure
liquid-phase propellant is thus acquired.

During this process, two vital parameters of the screen are involved: bubble point
pressure (BBP) and flow-through-screen (FTS) pressure drop. The so-called BBP is a critical
pressure difference between two sides of a screen, if the pressure difference (i.e., pressure
of gas side minus that of liquid side) exceeds this critical value, gas will break through the
screen and cause device failure. BBP is determined by the surface tension of the working
fluid, the structure of the screen, and the contact angle between the liquid and the material
of the screen. The exact value of BBP for various screens and fluid should be measured
experimentally before being applied by LAD designers, although there has been an existing
simplified prediction model [7]:

∆PBP =
4σ cos θ

DP
, (1)

where σ denotes the surface tension of the fluid, θ represents the contact angle between
the fluid and the material of the screen wire, and Dp indicates the “effective diameter”
of the pore (the complex geometry of pore between screen wires is simplified into a
cylindrical hole).

FTS pressure drop is the local pressure loss due to the flow resistance of the screen. A
commonly used prediction model is given by Armour and Canno [8],

∆PFTS = Clµv + Ctρv2, (2)

where Cl and Ct are viscous resistance coefficient and inertial resistance coefficient respec-
tively, which depend only on the structure of the screen. µ is the viscosity of the fluid,
ρ is the density of the fluid, and v denotes the local velocity perpendicular to the screen
(injection velocity). During the process of liquid acquisition, a different part of the screen
undergoes various local injection velocities and the FTS pressure drop changes along the
channel in consequence; once the FTS pressure drop exceeds BBP at one or more positions,
the device will be at the risk of bubble breaking through failure. Hence, the designers for
screen LAD should make sure the distribution of the FTS pressure drop is safe enough
under the demand outflow rate.

To achieve this goal, researchers have conducted a lot of work to study how injection
and FTS pressure drop are distributed during the liquid acquisition process. Many early
researches [9–11] and even some latter researches [12–14] have held the simple assump-
tion that the injection velocity is constant along the channel, and the results based on
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this assumption showed inevitable deviations from reality. This ideal assumption was
gradually given up in the work by Quintard [15] and Galowin et al. [16], where the effect
of viscous resistance (the first term of the right side in Equation (2)) was taken into account.
However, the modified model could only have a good precision at low injection velocity
conditions. Until the work by Hartwig et al. [17], the second term (inertial resistance term)
of Equation (2) was introduced and the model was then capable of predicting the case
with high injection velocity. However, this model is not so accurate because it applied an
unnecessary boundary condition (i.e., no-slip condition at the dead end of the channel). As
a result, Darr et al. [18] updated the model by abandoning this inappropriate boundary
condition and then got the experiment-validated prediction results. The work of [18]
demonstrated that both FTS pressure drop and injection velocity increased along the axis
direction of the channel. Besides, some CFD simulations [19–21] were conducted to obtain
the detailed information about the FTS pressure drop and injection velocity at specific
conditions, but a further theoretical explanation was not given.

Overall, previous researchers focus mainly on the cases where the screen is fully sub-
merged in liquid. However, when a part of the screen is blocked by vapor (see Figure 2a),
the outflow rate would deviate from the design value. So far, research into how blockage
affects the device performance seems to be inadequate. In view of this, this paper devel-
oped a mathematical model to analyze the impact of vapor blockage on the outflow rate
of the channel. We characterized the blockages by two factors (i.e., the position where
the blockages occur, and the area of blocked screen), and then investigated their impact
respectively. Finally, a “characteristic curve” was defined to reveal the robustness of the
device, and the three influential factors that affect the shape of the characteristic curve was
also analyzed.

2. Materials and Methods

Analysis about the vapor-blocked case should be based on a good understanding
of the normal case without blockage. Consequently, the basic outflow model would
be introduced.

2.1. Basic Model

Consider a rectangular channel with length L, width W, and height H; the coordinate
origin is located at the dead end of the channel (see Figure 2a). During the outflow
process, the liquid in the tank flows through the screen (with the injection velocity v, while
undergoing a FTS pressure drop ∆PFTS), into the channel, and then along the channel to
the outlet. The average transverse velocity of the channel cross-section (represented by u),
as well as v and ∆PFTS, varies along the x direction, so the subscripts, such as x, x + ∆x and
L, are used to mark the x coordinates of the variable.

To simplify the model, three assumptions were applied:

1. Flow in the width direction (i.e., z-direction) can be neglected.
2. The gravity is negligible because the device works in microgravity conditions.
3. The pressure loss due to wall friction is negligible. The reasonability of this assumption

has been verified in [18] that the FTS pressure drop dominates over the frictional
pressure drop.

The pressure outside the channel, Pullage (i.e., the pressure of the ullage of the tank),
is constant along the length. Under steady-flow conditions, the pressure difference be-
tween the outlet and the ullage has been established, and this pressure difference (i.e.,
Pullage − Poutlet) is defined as the driving pressure (∆Pd) in this paper. Driven by ∆Pd, liquid
in the tank flows through the screen into the channel, undergoing different local ∆PFTS. The
consequent difference of pressure at every cross-section inside the channel (i.e., the Pullage
minus the local ∆PFTS) drives the liquid flowing along the length direction from the dead
end to the outlet.

Because of assumption (1), the flow is reduced to a 2-D process, as shown in Figure 2b.
Considering a volume element with the length of ∆x, liquid with the density of ρ enters
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from two directions (see Figure 2b): the portion entering from above, expressed as ρvx∆x,
is collected by the exact screen of this element; while the portion entering from the left,
expressed as ρux H, is acquired by the screen of the upper stream and is accumulated along
the channel. The confluence of these two portions flows out of the volume element toward
the lower stream, at the velocity of ux+∆x. According to the principle of conservation
of mass:

ρux H + ρvx∆x = ρux+∆x H. (3)

We apply the Taylor expansion to ux+∆x, with the second-order small qualities being
neglected, and then divide both sides of Equation (3) by ρ∆x:

vx = H
dux

dx
. (4)

The momentum conservation in the x-direction is expressed as:

∆tρux H(ux+∆x − ux) + ∆tρvx∆x(ux+∆x − 0) = (Px − Px+∆x)H∆t. (5)

which means that during a very short time of ∆t, the liquid that entered the volume element
got an increase in momentum (i.e., the left side of this equation) caused by the pressure
difference between the left and the right boundary of the element (i.e., the right side of this
equation). The pressure of the two boundaries are as follows:

Px = Pullage − ∆PFTS,x (6)

Px+∆x = Pullage − ∆PFTS,x+∆x (7)

According to Equation (2), the local FTS pressure drops of the left and right sides of
the volume are

∆PFTS,x = Clµvx + Ctρv2
x (8)

and
∆PFTS,x+∆x = Clµvx+∆x + Ctρv2

x+∆x, (9)

respectively.
Substitute Equations (4), (6)–(9) into Equation (5), and then apply Taylor expansion

to ux+∆x and vx+∆x, with the higher-order small qualities being neglected. After being
divided by ∆x∆t, it can be expressed as

2ρux
dux

dx
= HClµ

d2ux

dx2 + 2CtρH2 d2ux

dx2
dux

dx
. (10)

To solve this second-order nonlinear ordinary differential equation, two boundary
conditions are needed. The first one is given by the fact that u at the dead end (x = 0) equals
zero, while the other one should be chosen according to what kind of information is given:

(a) the channel’s total outflow mass rate
.
qm;

(b) the driving pressure, or ∆Pd.

About information (a), the average transverse velocity at the cross-section of the outlet
is

uL =

.
qm

WHρ
. (11)

Hence, one set of boundary conditions has the form as{
ux = 0, x = 0

ux =
.
qm

WHρ , x = L
(12)
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For information (b), since ∆Pd is equal to the FTS pressure drop at the outlet (i.e.,
∆PFTS,L), considering Equation (2), the injection velocity at the outlet of the channel is

vL =
−Clµ +

√
(Clµ)

2 + 4Ct∆Pd

2Ctρ
. (13)

taking Equation (4) into account, while x = L,

dux

dx
=
−Clµ +

√
(Clµ)

2 + 4Ct∆Pd

2HCtρ
. (14)

Consequently, the other set of boundary conditions (i.e., driving pressure boundary
condition) is  ux = 0, x = 0

dux
dx =

−Cl µ+
√
(Clµ)

2+4Ct∆Pd
2HCtρ

, x = L
(15)

The shooting method, as well as the variable-step fourth-fifth order Runge–Kutta
method and string section method, was applied to solve Equation (10). Boundary conditions
should be selected between Equations (12) and (15) for different given variables (

.
qm or ∆Pd).

After getting ux, vx and ∆PFTS,x could be solved out from Equations (4) and (8), respectively.

2.2. Model Validation

To validate the model, a set of experiment data from [18] is compared with the model
prediction about the distribution of FTS pressure drop. The experimenters selected room-
temperature distilled water as the working fluid and then conducted a horizontal outflow
test using a channel (equipped with the screen of DTW200 × 600) with L of 76.2 cm, H
of 2.54 cm, and W of 2.54 cm. Under the flow rate of 177 cm3/s, they measured the local
∆PFTS at eight points along the length direction. The model prediction and the experiment
data show good fitness, with an average error of 4.8%. (Figure 3).
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3. Results and Discussion
3.1. Influential Factors of the Outflow Rate for Cases without Blockage

According to Equation (11), the outflow rate
.
qm could be denoted by the transverse

velocity at the outlet uL. For a given working liquid, three factors, including the driving
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pressure ∆Pd the geometric parameters and the screen structure, would affect the total
outflow rate of the channel, according to Equation (10) and the driving pressure boundary
condition in Equation (15). The mechanism of these three influential factors would be
discussed respectively below. Without the loss of generality, saturated liquid hydrogen at
the pressure of 100 kPa is chosen as the working fluid, with a density of 70.9 kg/m3 and
viscosity of 13.54 × 10−6 Pa·s.

3.1.1. Influence of Geometric Parameters

For the 2-D flow process discussed here, only L and H exert influence. In order to
learn how L and H affect uL, we investigate 15 channels with different sizes under the same
conditions, the calculated uL are listed in Table 1. All of these channels are being driven by
the same ∆Pd of 519 Pa and are equipped with the same screen of DTW325 × 2300. The
values in every column of Table 1 are equivalent to each other, which indicates that uL is
a function of the ratio of L to H (i.e., L/H), rather than of L or H individually. Due to this
finding, the relationship between uL and L/H at different ∆Pd was further investigated,
with the results shown in Figure 4 (where all the channels are equipped with the screen of
DTW325 × 2300).

Table 1. (m/s) of channels with different sizes (screen: DTW325 × 2300; ∆Pd = 519 Pa).

Height

Length
L = 5H L = 10H L = 20H L = 50H L = 100H

H = 1 cm 1.130 1.861 2.429 2.664 2.696

H = 2 cm 1.130 1.861 2.429 2.664 2.696

H = 3 cm 1.130 1.861 2.429 2.664 2.696
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Figure 4 shows that when L/H is at a lower range, the outflow velocity uL increasing
nearly proportionally with the increasing L/H; but while L/H gets a range that is high
enough, uL gradually approaches its upper value of

√
∆Pd/ρ (which will be interpreted in

Section 3.1.2). In fact, a constant average injection velocity of the total screen would bring
about the situation that uL increases proportionally with L/H. Consequently, the declining
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growth trend of uL in Figure 4 means the decreasing average injection velocity of the total
screen with the increasing L/H (especially when it exceeds the value of 40).

In summary, as L/H increases, uL increases rapidly first and then levels off to approach
the upper limit value of

√
∆Pd/ρ, thus further elevating L/H could not bring about a

significant increase of uL.

3.1.2. Influence of Driving Pressure

The driving pressure ∆Pd would decide the upper limit of outflow velocity (i.e.,√
∆Pd/ρ) for given liquid, as shown in Figure 4. To interpret, the momentum theorem at

the length direction is applied to the whole channel:

WH
(

Pullage − ∆PFTS,0

)
−WH

(
Pullage − ∆PFTS,L

)
= WHρuL(uL − 0), (16)

where the left side represents the driving force, and the right side indicates the change
of momentum per unit time. Then taking into account the fact that ∆PFTS,0 > 0 and
∆Pd = ∆PFTS,L, the relation of

uL <
√

∆Pd/ρ (17)

could be obtained, which interprets the upper value.
Besides, during the outflow process, the FTS pressure drop increases along the x-

direction and gets its maximum at the outlet (see Figure 3). Since the FTS pressure drop
at any location must not exceed the bubble point pressure ∆PBP, it should be assured
that ∆PFTS,L ≤ ∆PBP (i.e., ∆Pd ≤ ∆PBP). Therefore, the outlet is always the riskiest zone
where bubble breaking may occur, and a channel could get its maximum allowable outflow
velocity (critical uL) only when the ∆Pd is equal to ∆PBP. Thus, for given liquid and screen
type, the critical uL should be

√
∆PBP/ρ.

3.1.3. Influence of Screen Mesh

The screen exert influence on the outflow rate by two factors: bubble pressure ∆PBP,
and the resistance coefficients (i.e., Cl and Ct). The ∆PBP decides the upper limit of driving
pressure and consequently the maximum allowable outflow velocity, while Cl and Ct signifi-
cantly affects the pressure drop. The higher ∆PBP and lower Cl and Ct are always preferred.

When selecting the screen, the weave type and fineness of mesh are to be considered.
Since the popularity of the DTW screen among LADs, the choice should be made merely
between finer mesh or coarser mesh. Finer mesh screen often possesses higher ∆PBP but
higher resistance coefficients, while coarser mesh screen is the opposite. Therefore, a
comprehensive comparison should be made.

DTW200× 600 and DTW325× 2300 are chosen as the representative of coarse and fine
mesh screens, respectively. Channels equipped with the two screens are investigated under
a wide range of L/H, respectively. Since the comparison is conducted with the critical uL as
the evaluation criterion, at each L/H, the channel is driven by its own ∆PBP (i.e., 172.6 Pa
for DTW200 × 600 and 574.3 Pa for DTW325 × 2300) [22]. We can see from Figure 5 that
the coarse mesh screen enables the channel to get higher critical uL when L/H is lower than
6.2, but things are opposite when L/H is higher in this case. To interpret, higher outflow
velocity can be brought about by both higher driving pressure and lower resistance; in the
dominant range for DTW200 × 600, the lower resistance contributes more to the higher
outflow velocity, while in the dominant range for DTW325 × 2300, the higher driving
pressure (allowed by the higher ∆PBP) contributes more.
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In short, the advantages of fine mesh screen (i.e., higher ∆PBP) and coarse mesh screen
(i.e., lower resistance) should be traded off, with coarser mesh being suitable for the channel
with lower L/H while finer mesh is the opposite.

3.2. Analysis of the Case with Vapor Blockage

The blockage is characterized by two factors: the location where the blockage occurs,
the total area of the blocked zone. To enable the description of the vapor blockage case, the
model needs to be extended.

3.2.1. Extended Model for the Case with Vapor Blockage

The rectangular channel in Figure 2 dashed as the research object, and the variables
to be solved are still average transverse velocity of channel cross-section (ux), injection
velocity (vx), and FTS pressure drop (∆PFTS,x), which change along the x direction.

In order to flexibly describe the variable situation of vapor blockage along the channel,
we introduce a correction factor fx named “available rate”. It means the percentage of the
screen that is not blocked by vapor in the neighborhood of x (see Figure 6). The value of fx
is between 0 and 1 to reflect the blocked degree between non and complete blocking. The
blockage position can be expressed by adjusting the location of fx along the x-axis while the
total percentage of the blocked area can be represented by the value of 1− 1

L
∫ L

0 fxdx. It
should be noted that fx does not include the information about how the vapor distributes
along the width direction; thus it is only a function of x.
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Selecting a control volume element from the channel (see Figures 2c and 6), the
conservation of mass could be expressed as

ρux H + fxρvx∆x = ρux+∆x H, (18)

which means the equality between the liquid that flows into (from the upstream of the chan-
nel or through the screen) and out of the element. Doing Taylor expansion of Equation (18),
while omitting the higher-order small quality, mass conservation then can be expressed as

fxvx = H
dux

dx
, (19)

While applying the momentum theorem to this control volume element, pressure drop
due to the friction between liquid and the inner wall of the channel could be neglected,
according to assumption 3. Thus, for the control element, the change of theorem in the
x-direction is driven only by the pressure difference:

ρux H(ux+∆x − ux) + fxρvx∆x(ux+∆x − 0) = H(Px − Px+∆x), (20)

Taking into account the definition of FTS pressure drop, Equation (20) then evolves to
the following form, after Equations (6)–(9) are substituted into it.

2ρux
dux

dx
= HClµ

dvx

dx
+ 2CtρH2vx

dvx

dx
(21)

Equation (19), Equation (21), and the expression of fx form the equation group that
governs the outflow process. To solve the set of equations, two boundary conditions are
also needed and the first one can still be obtained by the fact that u(x=0) = 0. As for the
second boundary condition, the driving pressure boundary condition below is determined
jointly by Equations (13) and (19):

dux

dx

∣∣∣∣
x=L

=
−Clµ +

√
(Clµ)

2 + 4Ct∆Pd

2HCtρ
fx|x=L. (22)

Thus, the boundary conditions are ux = 0, x = 0

dux
dx =

−Cl µ+
√
(Cl µ)

2+4Ct∆Pd
2HCtρ

fx, x = L
(23)

Since the distribution of fx along the x-direction is a known input parameter, the
process of solving the governing equations should be as follows: (1) get the second-order
nonlinear differential equation about ux by substituting Equation (19) and the expression of
fx into Equation (21); (2) solve ux from this equation using shooting method while applying
the boundary conditions of Equation (23); (3) solve vx and ∆PFTS,x from Equation (19) and
Equation (8), respectively.

3.2.2. Impact of Blockage Position

To research the impact of blockage position on outflow velocity uL, the other influential
factor should be fixed. This is equivalent to exploring how the distribution of fx affects uL

under fixed 1− 1
L
∫ L

0 fxdx.

Without loss of generality, we fix the value of 1− 1
L
∫ L

0 fxdx as 0.5, and then inves-
tigate a channel (30 cm long, 1 cm high, and 1 cm wide) equipped with the screen of
DTW325 × 2300. Saturated liquid hydrogen at the temperature of 20 K is still chosen as the
working fluid. The device keeps the constant driving pressure of 574 Pa while adjusting
the available rate fx in different ways.
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First, we start from the simplest cases: all the blockages are concentrated on a section
of the screen (like a “large bubble”). To simulate this distribution mode of the blockage
area, we let a segment of fx be 0 while the rest of this segment to be 1 (see case1~case4 in
Figure 7, in which the blocked area is marked by the white part while the available part
of the screen is denoted by the blue part). When this blocked area moves from upstream
to downstream of the channel, the injection velocity vx and transverse velocity ux will
show correspondingly various distribution patterns (see Figure 7). In the blocked zone,
vx and ux remain unchanged, while in the available area, both vx and ux increase with x
coordinate. Interestingly, all ux in the four cases get the same value of 2.37 m/s at the outlet
of the channel, which hints that the blockage position of a single bubble does not affect the
outflow rate.
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Figure 7. Comparison of cases with a single bubble at four different locations. 
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Figure 7. Comparison of cases with a single bubble at four different locations.

Furthermore, in order to verify this conclusion, we come to a different situation: the
blocked area is divided into two parts (i.e., a large bubble and a small bubble) with their
total blocked area is still fixed. In order to simulate this situation, we make the fx distribute
as a staircase function, as shown in Figure 8, the “large bubble” blocks 2/3 of the upstream
while the “small bubble” blocks 1/3 of the downstream in case 1, with case 2 being the
opposite; thus, the value of (1− 1

L
∫ L

0 fxdx) is still kept at 0.5. From the comparison of
ux between the two cases in Figure 8, we can see that although these two curves diverge
throughout; they intersect at the outlet of the channel, which means that they also get the
same uL of 2.37 m/s, although there is a different sorting of the two bubbles. Consequently,
it is further verified that the distribution mode of the blockage position at a fixed total
percentage of the blocked screen does not affect the outflow rate.
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Finally, we come to a more complex situation: the screen is blocked by a series
of bubbles of different sizes. As Figure 9 shows, case 1 arranges the bubbles in order
from largest to smallest, while case 2 does so in the reverse order. In other words, case
1 undergoes more serious blockage at the upstream, while case 2 is the opposite. The
corresponding distribution mode of fx is still kept 1− 1

L
∫ L

0 fxdx as 0.5, with fx changing
continuously with x direction. Although this difference, the same outflow velocity of
2.37 m/s is still achieved (the curves of transverse velocity merge at the outlet shown in
Figure 9).

Overall, the following conclusion can be drawn from the three situations above: as
long as the total percentage of the blocked area (i.e., 1− 1

L
∫ L

0 fxdx) is fixed, the outflow
velocity uL is then fixed, no matter how fx is distributed (being a staircase function or
changing continuously). In other words, the blockage position distribution does not affect
the outflow rate of a given channel. However, it should be noted that this conclusion is
obtained based on assumption 3, that the pressure loss due to wall friction is negligible.
In fact, the outflow rate may slightly change at different blockage distributions due to
the friction pressure loss (which is proportional to u2

x), but this deviation could not be
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significant since the influence of friction resistance has been proved to be slight. Therefore,
this conclusion is of great meaning that the design of this kind of LADs could be more
flexible without strict requirement of the vapor distribution at any special position. For
example, the unimportance of blockage position could give more options for the location
of the inlet for pressurizing gas.
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Figure 9. Comparison of cases with a series of bubbles at different positions. 
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3.2.3. Impact of Total Blockage Area

In order to describe how the blockage area affects the outflow rate, we define a
“characteristic curve”, letting the blockage rate of the screen (i.e., 1− 1

L
∫ L

0 fxdx) be the

independent variable and loss rate of outflow velocity (i.e., 1− (uL)blocked
(uL)ideal

) be the dependent
variable, where (uL)ideal is the outflow velocity in the case without vapor blockage, and
(uL)blocked is the outflow velocity in the vapor-blocked case under the same driving pressure.
In fact, the shape of the characteristic curve denotes the robustness of the device against
the vapor blockage, which will be discussed in detail below.
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The shape of the curve is still influenced by these three factors: driving pressure, the
geometric parameters of the channel, and the selection of screens. They will be discussed
respectively below.

1. Characteristic curve under different driving pressure

To research the influence of driving pressure on the characteristic curve, three cases
driven by different pressure are investigated, while the other conditions are kept the same
(i.e., L = 30 cm, H = 1 cm, with the screen of DTW325 × 2300 is selected). The calculation
results are shown in Figure 10, where a curve that bends more downward (along the arrow)
represents a more robust performance of a device, because it reflects the device and sustains
less loss of outflow rate at the same blockage area. For this reason, higher driving pressure
brings about greater robustness (see Figure 10).
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Figure 10. Characteristic curves influenced by driving pressure.

Interestingly, all the cases represented by three curves show greater robustness than
that by the dashed line (in which the outflow velocity decreases proportionally with
the blockage area). To interpret this, when a part of the screen is blocked, other un-
blocked parts would get higher local injection velocity to compensate for this loss of liquid
acquisition rate.

2. Characteristic curve under various L/H

As discussed in Section 3.1.1, the ratio of length to height, L/H is the main geometric
parameter that affects the outflow velocity. In order to detect how L/H influences the
shape of the characteristic curve under the vapor-blocked condition, we compare the cases
involving three values of L/H (see Figure 11), while insisting on selecting the screen of
DTW325 × 2300 and driving the device by the pressure of 500 Pa.
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Obviously, a greater robustness can be seen under higher L/H. In fact, this phenomenon
can also be interpreted by Figure 4.: when L/H is so high that uL has already approached its
upper limit, the decrease of L/H will not cause significant loss of uL; but when L/H is not
high enough, uL is sensitive to the change of L/H.

3. Characteristic curve under diverse types of screen

As mentioned in Section 3.1.3, the difference between diverse screens mainly lies
in the resistance coefficient and bubble point pressure. A coarse mesh screen usually
possesses lower resistance coefficients and a lower bubble point pressure. When it comes
to robustness, only resistance coefficients (Cl and Ct) are involved. We chose three types
of screen for comparison: DTW200 × 600 (Cl = 5.96 × 106, Ct = 15.1), DTW325 × 2300
(Cl = 7.27 × 107, Ct = 65), and DTW450× 2750(Cl = 1.07× 108, Ct = 70) [23]. Three identical
channels (with the same geometric parameters: L = 30 cm, H = 1 cm) were equipped
with these screens, respectively. The driven pressure was still set at 500 Pa. The resulting
characteristic curves are shown in Figure 12, from which higher robustness can be found in
coarser mesh screen obviously. In fact, the low resistance of coarser mesh screens makes
the channel closer to the upper limit of outflow velocity corresponding to the same driving
pressure (i.e., 500 Pa), which brings about greater robustness.

In summary, higher driving pressure, as well as larger L/H and coarser screen mesh,
would bring about a greater robustness of outflow rate. However, changing these three
influential factors to obtain greater robustness is with both advantages and disadvantages.
First, driving pressure is strictly up-limited by the value of bubble point pressure minus a
safe margin, which means that increasing driving pressure is equal to quitting a part of the
safe margin; thus, a tradeoff should be conducted between robustness and safety. Secondly,
elevating the length of channel to increase L/H would cause the undesired mass gain of the
device; hence, designers should keep a balance between robustness and device mass. As
for the selection of the screen, the first to be considered for designers is to ensure enough
outflow rate without bubble breakthrough failure. Only based on this can robustness
can be sought. Since screen mesh can greatly influence the outflow rate (as discussed in
Section 3.1.3), designers should be cautious when they decide to adjust the screen type.
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4. Conclusions

To investigate the effects of vapor-blocked screen on the performance of screen channel
LADs during the outflow process, a modified model was established by inserting an
“available rate” fx to analyze the outflow characteristics. The following conclusions can be
drawn from this work:

(1) For the cases without vapor blockage, the outflow velocity of the channel is decided
by three factors: the geometric parameter of the channel (mainly the ratio of length to
height), the driving pressure, and the fineness of screen mesh.

(2) For a given device and under the same driving pressure, as long as the total area of
the blocked screen is given, the loss rate of outflow velocity will not change with the
changing blockage position. In other words, only the total area of the blocked screen
affects the loss rate of outflow velocity.

(3) A “characteristic curve” is proposed to describe the robustness of LAD against screen
blockage, letting the blockage percentage of the screen be the independent variable,
while the loss rate of outflow velocity is the dependent variable. The device that
sustains less loss of outflow rate at the same blockage area performs better robustness.

(4) The three factors could bring about greater robustness: larger ratio of length to height
for the channel, higher driving pressure, and coarser mesh of the screen. However,
other factors (such as device mass, safe margin, and enough outflow rate) should be
also considered comprehensively when adjusting these three influential factors in the
search for greater robustness.
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