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Abstract: An analytical model to predict the surface roughness for the plasma-enhanced chemical
vapor deposition (PECVD) process over a large range of temperature values is still nonexistent.
By using an existing prediction model, the surface roughness can directly be calculated instead of
repeating the experimental processes, which can largely save time and resources. This research work
focuses on the investigation and analytical modeling of surface roughness of SiO2 deposition using
the PECVD process for almost the whole range of operating temperatures, i.e., 80 to 450 ◦C. The
proposed model is based on experimental data of surface roughness against different temperature
conditions in the PECVD process measured using atomic force microscopy (AFM). The quality of
these SiO2 layers was studied against an isolation layer in a microelectromechanical system (MEMS)
for light steering applications. The analytical model employs different mathematical approaches
such as linear and cubic regressions over the measured values to develop a prediction model for
the whole operating temperature range of the PECVD process. The proposed prediction model
is validated by calculating the percent match of the analytical model with experimental data for
different temperature ranges, counting the correlations and error bars.

Keywords: surface roughness; PECVD process; SiO2 thin-films; analytical prediction; MEMS;
micro-mirrors

1. Introduction

Microelectromechanical systems (MEMSs) are the combination of the electrical and
mechanical systems at the micro level to form tiny integrated devices. Recently, MEMSs
have been utilized in a number of sensing applications, i.e., pressure sensing [1], gas
sensing [2], temperature sensing [3], chemical sensing [4] and magnetic sensing [5], due
to their small size and high mechanical efficiency. Correspondingly, MEMSs are used for
flow control in numerous systems such as micropumps, airfoils and optical switches [6].
MEMSs are also useful in micromirror arrays, implemented in window glasses for guiding
the daylight to the desired area inside the buildings, as shown in Figure 1.
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Figure 1. Schematic diagram of a micromirror implemented on a float glass substrate with bottom
electrode shown in yellow layer, isolation layer in blue and aluminum-based actuating electrode in
green color [6].

The light can be steered by changing the angle of the metallic foils inside the array
by electrical actuation. The fabrication steps during the process of the MEMS-based
micromirrors are reflected in Figure 2.

Figure 2. Steps involved in the fabrication process of the MEMS-based micromirrors [7].

Aluminum (Al) is generally used in micromirrors as a reflectance layer due to its
properties such as good electrical conductivity, high reflectivity, corrosion resistance [8,9]
and low wear resistance [10–12]. To realize electrical actuation, the MEMS micromirror
system consists of two electrodes separated by an isolation layer. The isolation layer
mostly comprises silicon dioxide (SiO2), which is the first choice due to its benefits such
as providing good insulation between two conducting layers, easy availability, low cost,
transparency and high mechanical flexibility [13–17]. The actual fabricated structure of the
MEMS-based micromirrors is shown in Figure 3.
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Figure 3. SEM photos of the fabricated structures of the MEMS-based micromirrors: (a) array;
(b) single.

To ensure good insulation properties and high transparency, the quality of the de-
posited SiO2 layer becomes very crucial. Hence, during the deposition process of the SiO2
for MEMS-based devices, the surface roughness is precisely taken into account as it greatly
affects the performance, reliability and isolation of the system [18]. Moreover, it heavily
depends upon the deposition rate, temperature and thickness of the layers, as in the case
of the solar cells, acting as the main component of photovoltaics [19–22]. The thin-film
deposition techniques used for SiO2 deposition include sputter deposition method, thermal
evaporation, chemical vapor deposition (CVD), ion beam deposition (IBD) [23], physical va-
por deposition (PVD) and PECVD. Among the above-mentioned technologies, the PECVD
process is the most widely used deposition technique since it offers a variety of advantages
such as low operating temperatures and cost-effectiveness. PECVD processes offer a wide
operating temperature range from 60 to 300 ◦C with control of the thickness and surface
roughness of the layers [24–26]. Additionally, the PECVD process allows deposition of the
industrial-scale high-quality layers with homogeneity and adherence [27]. It is known from
the research [28–30] that the surface roughness of the deposited layers is greatly affected
by the temperature inside the chamber during the process. A detailed investigation on
variation in the deposition temperature of the PECVD process for the SiO2 layers to emulate
the changes in the surface roughness is presented in [6].

Moreover, among analytical modeling techniques [31,32], machine learning is one
of the leading fields in this modern era, finding application in a variety of areas such as
automation of machines, robotics, nanophononics [33] and embedded systems [34]. In
nanotechnology, machine learning algorithms can be used to predict the response of a
particular process or structural parameters using the estimation from the available data
as in the prediction of the surface roughness [35–37]. Henceforth, in this research, two
machine learning algorithms, i.e., linear [38] and cubic regressions [39], are taken to predict
the surface roughness against the change in the temperature during the PECVD deposition
technique to provide an initial idea about the surface roughness without consuming the
resources and time of researchers. By using this model, one can easily predict the value of
surface roughness for the PECVD process at a certain temperature.

1.1. Linear Regression

Linear regression has been widely used in the field of machine learning to estimate the
response of the system for the missing data from the available information. It comprises
independent and non-independent variables and uses a combination of the input variables
(x) to predict the output variable (y) and is imitated by Equation (1):

y = a + b · x (1)

where ‘a’ is the bias coefficient and ‘b’ is the coefficient of the input variable ‘x’ (slope).

1.2. Cubic Regression

Cubic regression is the third-degree equation used to predict the response of a system.
It is also a widely used machine learning technique nowadays to predict the behavior of a
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system or trend in the data values to estimate the missing data. Equation (2) represents the
general expression for cubic regression:

y = ax3 + bx2 + cx + d (2)

where a, b, and c are the coefficients and d is the y-intercept.

2. Experiment

In the first step of substrate preparation, the surface of the specimen was treated with
isopropyl alcohol and pure nitrogen flow as rinsing and drying agents, respectively. In
the second step, a 150 nm thick layer of SiO2 was deposited on the specimen, which is
considered to be optimum for various devices. The deposition of the SiO2 isolation layer
was carried out using the PECVD process in accordance with deposition parameters given
in Table 1. The specimen was allowed into the heated chamber along with the silane gas and
oxygen in presence of high energy plasma with values in standard cubic centimeters per
minute (sccm) as mentioned in Table 1. The process is carried out in presence of nitrogen
gas and a typical vacuum pressure of 1 torr. Typically, two temperature values, i.e., 120 and
300 ◦C, are used for the deposition procedures. However, the chamber temperature was
varied from 80 to 300 ◦C in this research work to investigate the effects of temperature on
surface roughness of the deposited layers using high frequency (HF) and low frequency
(LF) sources.

Table 1. Parameters of the PECVD process for the SiO2 deposition.

Parameters Values

SiH4N2 (sccm) 430

NH3 (sccm) 710

N2O (sccm) 0

HF power (watt) 20

LF power (watt) 20

Pressure (torr) 1

After the deposition of the SiO2 layers, the surface roughness was investigated using
atomic force microscopy (AFM), and Gwyddion software was used for the images. The
AFM technology comprises three different surface profiling modes, i.e., contact mode,
noncontact mode and tapping mode [40]. To avoid adhesion and shear forces problems
arising in the contact mode [41,42], tapping mode was used for surface profiling. The
average value of surface roughness [43] was used to determine the surface roughness of
the layers against the given temperatures, defined by Equation (3) as

Ra =
1
L

∫ L

0
| Y(x)|dx (3)

where Ra represents surface roughness, Y is the total area and L is the total number of
points used for the calculation of the surface roughness.

3. Results and Discussion

The PECVD system allows the temperature of the substrate holder to be changed
during the process, providing the opportunity to examine the behavior of the surface
roughness against different applied temperatures. The experimental values for variation in
the PECVD process temperature ranged from 80 to 300 ◦C in steps of 10, 20, 30 and 40 ◦C,
and resulting surface roughness (nm) is shown in Table 2.
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Table 2. The change in surface roughness against the variation in the temperature using the PECVD
process for the SiO2 layer deposition.

Temp vs. Surface Roughness of SiO2 Layers Using PECVD Process

Sr. No. Temperature (◦C) Surface Roughness (nm)

1 80.00 4.20
2 110.00 4.39
3 120.00 4.60
4 130.00 4.79
5 140.00 4.80
6 160.00 4.81
7 200.00 4.80
8 240.00 4.83
9 270.00 4.85
10 280.00 4.85
11 290.00 4.95
12 300.00 5.00

To graphically observe the variation in surface roughness as a function of PECVD
process temperature, the experimental readings shown in Table 2 are plotted in Figure 4.

Figure 4. Graph representing surface roughness against the variation in the temperature using the
PECVD process.

In Figure 4, it can be seen that the value of the surface roughness changes abruptly
with the change in the temperature from 80 to 130 ◦C, representing maximum change. From
130 to 160 ◦C, the change in the value of the surface roughness is minimum, reflecting slow
variation. Likewise, from 200 to 270 ◦C, the surface roughness increases consistently with
the increase in the temperature. Consequently, from 270 to 280 ◦C, the value of the surface
roughness remains constant. Onwards, with the increase in the temperature from 280 to
300 ◦C, the value of the surface roughness tends to increase congruently.

During the PECVD process, the silane gas and oxygen are ionized in presence of
the HF plasma inside the chamber to form SiO2 molecules and fall down to the substrate
surface. These deposited molecules are loosely attached to the surface of the substrate
and eventually fix to the surface in presence of high temperatures. Consequently, this
movement of clusters increases the surface diffusion length l, which in turn increases
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surface roughness, and the process is known as surface migration. Moreover, the surface
diffusion length is given by Equation (4):

L =
√

Dτ (4)

where D is the material-dependent diffusion constant having values in direct proportion to
the values of the temperature and τ is equivalent to the deposition time of one layer.

Similarly, an added reason for the increase in the value of the surface roughness is
the initial cluster size, formed at the start of the deposition process. Apart from this, the
other reason for the increase in the surface roughness is the collision of two clusters having
motion proportional to the substrate temperature forming one larger cluster.

To predict the surface roughness values for operating temperature beyond experimen-
tal values, i.e., 300 ◦C, the data were processed using different machine learning approaches
based on mathematical techniques, i.e., linear regression and cubic regression. The data
analysis based on these mathematical techniques is presented in the following sections.

3.1. Linear Regression-Based Prediction Model

The parameters of linear regression calculated from the experimental data are men-
tioned in Table 3.

Table 3. Calculations needed to produce the predictability equation for the linear regression.

Temperature
(T)

Surface
Roughness

(Ra)
(T−T) (Ra−Ra) (T−T)

(Ra −Ra)
(T−T)2 (Ra−Ra)2

80 4.20 −113.33 −0.539 61.087 12,844.369 0.291

110 4.39 −83.333 −0.349 29.083 6944.389 0.122

120 4.60 −73.333 −0.139 10.193 5377.729 0.019

130 4.79 −63.333 0.051 −3.238 4011.069 0.003

140 4.80 −53.333 0.061 −3.253 2844.409 0.004

160 4.81 −33.333 0.071 2.367 1111.089 0.005

200 4.80 6.667 0.061 0.407 44.449 0.004

240 4.83 46.667 0.091 4.247 2177.809 0.008

270 4.85 76.667 0.111 8.510 5877.829 0.012

280 4.85 86.667 0.111 9.620 7511.169 0.012

290 4.95 96.667 0.211 20.397 9344.509 0.045

300 5.00 106.66 0.261 27.840 11,377.849 0.068

T=193.333 Ra= 4.739 - - ∑ = 167.26 ∑ = 69021.66 ∑ = 0.593

The variables needed to produce the equation for the linear regression are represented
as T for the temperature and Ra for the surface roughness, along with T and Ra for the
mean values, respectively.

Here, ‘b’ represents the slope of the linear regression and is given by Equation (5):

b = r
Sy

Sx
(5)

where ‘r’ is called the Pearson’s correlation coefficient and is reflected by Equation (6):

r =
∑
(
(T − T)(Ra − Ra)

)√
∑ (T − T)2

∑ (Ra − Ra)
2
= 0.82 (6)
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while Sx and Sy are the standard deviations of the x and y and are given by
Equations (7) and (8):

Sx =

√
∑
(
T − T

)2

n− 1
= 79.04 (7)

Sy =

√
∑
(

Ra − Ra
)2

n− 1
= 0.23 (8)

where ‘n’ represents the number of the inputs.
Solving for ‘b’ from Equation (5) produces Equation (9):

b = r
Sy

Sx
= 0.0023 (9)

Correspondingly, ‘a’, the bias coefficient and the y-intercept of the linear regression, is
given by Equation (10):

a = Ra − bT = 4.3 (10)

where T and Ra are the mean values of the input variable (T) and output variable (Ra).
Putting these values in the general Equation (1) of the linear regression in the form of

the surface roughness and temperature reflects Equation (11):

Ra = 0.0023 · T + 4.3 (11)

Henceforth, these coefficient values, i.e., a and b, are estimated, on the basis of which
the response of the system is predicted for the missing data.

3.2. Cubic Regression-Based Prediction Model

Cubic regression can be performed by a number of software platforms and simulating
tools, i.e., MATLAB, Desmos, SegRegA and many more, as manual calculation can be hectic.
In this investigation, MATLAB and Desmos were used for this purpose. The values for the
regression are reflected as

a = 3.2632 · 10−7, b = −0.000207556, c = 0.043397, d = 1.84264

forming the cubic regression Equation (12) in the form of surface roughness and tempera-
ture as

Ra = 3.2632 · 10−7 · T3 − 0.000207556 · T2 + 0.043397 · T + 1.84264 (12)

Using the values of these coefficients, i.e., a, b, c and d, the behavior of the system can
be predicted for the unknown data.

3.3. The Proposed Analytical Model

The graphical representation of the two prediction models, i.e., linear and cubic
regression, for the experimental data up to T = 300 ◦C is shown in Figure 5. Analyzing
the trends in graphs, it can be seen that the change in surface roughness due to change in
the temperature up to 300 ◦C can be predicted by both forms of the regressions, having a
similarity index of 67%− 93%.
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Figure 5. Graphical representation of the experimental data (dotted red) and analytical prediction
model application of models based on linear regression (orange) and cubic regression (green).

Figure 6 depicts the surface roughness prediction up to a value of T = 450 ◦C using
the proposed analytical models based on linear and cubic regressions. Analyzing the trends
in the graph, the linear regression model shows a partial agreement with the experimental
data; however, it deviates completely from the given values above and below the data
range. Moreover, when comparing trends of the cubic regression model, it shows a good
agreement with the experimental values in the range of 80 to 300 ◦C. After 300 ◦C, it shows
an upward trend in the curve, predicting an increase in the surface roughness. Similarly, a
typical AFM image of the surface roughness is presented in Figure 7.

Figure 6. The prediction of surface roughness against rise in temperature in PECVD process by linear
(orange) and cubic regression (green) for a higher temperature value, i.e., 450 ◦C.



Micromachines 2022, 13, 314 9 of 12

Figure 7. A typical AFM image of the surface roughness of a SiO2 layer deposited by PECVD process.

3.4. Error Bars and Correlation

The error bars of the investigated data are considered with those of the predicted data
by the machine learning algorithms, i.e., linear and cubic regressions. Moreover, the error
bars are produced by calculating the standard deviation from the investigated data and
reflecting them into bars with the predicted data as produced in Figure 8.

Figure 8. The error bars of the investigated data with the predicted data by the linear (orange) and
cubic (green) regressions.

The correlations of the linear and cubic regressions between the two quantities, i.e.,
change in the temperature and surface roughness, are summarized in Table 4, in order to
account for the similarity between the investigated data and predicted data. Moreover,
they reflect the prediction of the results for the missing data up to 450 ◦C.

Table 4. The calculated correlations of the linear and cubic regressions.

Linear Correlation (r2) Cubic Correlation (r2)

0.64008 0.9321

Moderate correlation Strong correlation

4. Conclusions

In this research work, a machine learning-based mathematical model was developed
for the prediction of the surface roughness against change in the temperature in the PECVD
thin-film deposition process. This prediction model will help scientists and researchers to
readily find out the surface roughness values at a given temperature of the PECVD process
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without consuming time and costly resources. The prediction is based on experimental
data for SiO2 deposition with a substrate temperature varied in the range of 80–300 ◦C. The
experimental results for surface roughness against the varied temperatures were measured
using AFM surface profiling. Based on the experimental data, two different prediction
models were generated using linear regression and cubic regression. The analytical pre-
dictions showed a good agreement with the given data, and they were found useful in
predicting the missing data values between the given data and above and below them.
However, the behavior of the prediction models was found different from the data values
above and below the experimental data ranges, which indicates an abrupt behavior of
surface roughness for extreme temperature values. That is, the surface roughness might
abruptly increase or fall at the temperature ranges outside the operating temperature
range (80 to 450 ◦C) of PECVD equipment. The prediction models are compared and
validated by applying correlation and calculating data error bars. Thus, it was found that
the surface roughness and the change in the temperature in this investigation were not
linearly attached, and their trends did deviate from each other with a moderate similarity
index of 67%. Correspondingly, using the cubic regression, the spectrums did match and
produced a well-performing response with the investigated data having a similarity index
of about 93%.
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