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Abstract: With the rapid development of microelectronics packaging and integration, the failure risk
of micro-solder joints in packaging structure caused by impact load has been increasingly concerning.
However, the failure mechanism and reliability performance of a Cu-pillar-based microbump joint
can use little of the existing research on board-level solder joints as reference, due to the downscaling
and joint structure evolution. In this study, to investigate the cracking behavior of microbump
joints targeted at chip-on-chip (CoC) stacked interconnections, the CoC test samples were subjected
to repeated drop tests to reveal the crack morphology. It was found that the crack causing the
microbump failure first initiated at the interface between the intermetallic compound (IMC) layer
and the solder, propagated along the interface for a certain length, and then deflected into the solder
matrix. To further explore the crack propagation mechanism, stress intensity factor (SIF) of the crack
tip at the interface between IMC and solder was calculated by contour integral method, and the
effects of solder thickness and crack length were also quantitatively analyzed and combined with
the crack deflection criterion. By combining the SIF with the fracture toughness of the solder–Ni
interface and the solder matrix, a criterion for crack deflecting from the original propagating path
was established, which can be used for prediction of critical crack length and deflection angle for the
initiation of crack deflection. Finally, the relationship between solder thickness and critical deflection
length and deflection angle of main crack was verified by a board level drop test, and the influence of
grain structure in solder matrix on actual failure lifetime was briefly discussed.

Keywords: crack propagation; microbump; deflection angle; stress intensity factor (SIF)

1. Introduction

Three-dimensional (3D) integration of silicon dies or wafers has received considerable
attention in the past decade, due to its advantages of higher I/O density, lower RC delay,
capability of heterogeneous integration, and footprint shrinking. Microbumps containing
solder alloys have been deployed for establishing electrical and mechanical connection
between vertically stacked chips [1,2]. Although similar in principle to the well-developed
flip-chip technology, the interconnections using microbumps are still subjected to process
adaptations. Therefore, solder joint reliability plays a vital role in the quality of electronic
products.

Among all reliability issues, drop impact reliability of a solder joint, in particular, is of
great importance and has attracted many researchers. For ball grid array (BGA) level solder
joints typically 200–500 µm in size, the main failure mode during drop impact loading is
manifested as cracking along the interface of solder bump and the intermetallic compounds
(IMCs) formed by soldering [3,4], and the joint at the outermost corner is found as the
most critical, which fails along the solder–pad interface [5,6]. F. X. Che et al. found that
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the constitutive model of solder used in the input-G simulation has a major impact on the
stress and strain in a solder joint and on the hardening effect of bulk solder under a high
strain rate during drop impact, which prevents the drop impact energy from dissipating
through the bulk solder and accounts for the interface cracking [7]. However, downsizing
of the interconnection joint size entails the reconsideration of a failure mechanism and
characteristics of the micro-interconnections, as the joints in a chip-on-chip stacking scenario
could use little of the previous studies at a larger scale as direct reference. Therefore, recent
research of drop reliability also focuses on the 3D die-stacking structure. This includes
the study by Chen et al. who determined that the critical position under the board-level
drop impact is the corner of bottom layer of copper via [8], and the reliability improvement
with a thinner IMC layer was revealed by Hsien-Chie Cheng et al. [9,10]. They also found
that the interconnects under the drop test would exhibit a cohesive fracture inside the
solder, which is different from the BGA cases studied by Suh [6,11]. M. O. Alam studied
the parameters of stress intensity factors (SIF, KI and KII) around predefined cracks in the
IMC layer of a solder butt joint by using linear elastic fracture mechanics (LEFM) and
found that the SIF values increase sharply when the placement of the crack approaches
near the interface. In summary, the reliability of microbumps for 3D integration under
drop impact draws increasing concerns in interfacial fracture mechanics, as the cracking is
strongly affected by the interfacial mechanical mismatch, and the propagation path will be
complexly determined by both the interface feature and the solder matrix. Some research
works have involved the path selection of the crack near the interface [12], but there is no
description of the dynamic process of crack propagation near the interface.

In this study, we first observed the crack failure of a microbump joint in a chip-on-chip
(CoC) test vehicle under drop test conditions and found that the crack formed at the edge
of the soldering interface, propagated along the interface for a certain length, and deflected
into the solder layer, eventually causing failure of the joint. To elucidate this phenomenon, a
finite-element model was constructed to investigate the crack propagation behavior, based
on basic fracture mechanics theories. The stress intensity factor of the crack tip at the
interface between the IMC and solder is calculated by the contour integral method, and
the propagation path of the solder joint interface crack is studied by using the criterion
of energy release rate versus the fracture toughness in both the original and the deflected
propagation path. Experimental tests for the joints of different solder thicknesses were
carried out and compared with the numerical calculations to validate the model. Finally,
the experimental observations revealed how the grain structure of the solder layer may
affect the actual cracking path and drop lifetime.

2. Setup for Drop Experiment

Figure 1 shows the schematic diagram of the drop experiment. A Chip-on-chip test
vehicle was used, which consisted of a 6 × 6 × 0.5 mm top chip, and a 12 × 12 × 0.5 mm
bottom chip. Both the top chip and bottom chip had a microbump array fabricated on the
surface through a standard lithography–etching–electroplating bumping process. Each
microbump consisted of a Cu pillar, a Ni barrier layer, and a SnAg cap. The two chips were
bonded through a flip-chip thermo compression process by an Athlete CB-600 flip-chip
bonder with an alignment accuracy of ±1 µm. The temperatures of the bonding head and
bottom suction tool were set at 340 and 100 ◦C to obtain a peak temperature of 260 ◦C at the
soldering interface, and the bonding pressure was 0.06 N per bump. Target temperature
and pressure were applied for 30 s. The 5 µm Cu traces on both chips linked each bump to
form two daisy chains, each comprising 24 pair of bumps.

A JEDEC-compliant Salon Teknopajia drop tester executed the drop experiments. The
CoC module was firmly assembled on the center of test board where the impact-induced
distortion is highest. The dimension of the test board also complies with the JEDEC
standard, although only the 1-chip arrangement was used. A daisy chain in the module
was electrically connected to a high speed data acquisition circuit to allow for transient
resistance recording in real-time during drop test. The test board was then fastened onto the
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base plate by four screws. For each drop, the base plate was raised to the height specified
in JEDEC standard and dropped on the strike surface with the acceleration G measured
to follow the curve shown in Figure 2. For the observation of microstructure evolution,
CoC modules after certain numbers of drops were cross-sectioned and examined under
a field-emission scanning electron microscope (FE-SEM) working at the backscattered
electron imaging mode.

Figure 1. The schematic diagram of drop test and the cross-section images of the unit of the daisy
chain.

Figure 2. Impact acceleration of test results.

3. Set up for Simulation and Experiment

A finite-element (FE) code that employs transient dynamics was applied to investigate
the mechanical response of the bump joint structure in a mechanical simulation for the
drop test related above. The material properties in the model are all linear elastic models,
as shown in Table 1. Von Mises stress distribution in the whole model at the moment
of highest impact acceleration is shown in Figure 3a. According to the literature, in the
board-level drop test of BGA, the failure of solder balls was mainly due to peel stress [13].
Here, the reliability of the microbumps is likewise focused by simulating the stress built in
the joints between top and bottom chips. For the outer corner joints, which were subjected
to highest impact stress, the maximum peeling stress is shown in Figure 3b. In the top-side,
IMC was 75.8 MPa, while in the bottom, IMC of the same joints was 91.4 MPa. Therefore,
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the applied load was set from 10 to 90 MPa in the following FE model for the analysis of
interfacial cracking behavior.

Table 1. Material properties of the main parts modeled as linearly elastic [14].

Part Density (g/cm3) Elastic Modulus (MPa) Poisson Ratio

SAC305 0.00736 81,000 0.347
IMC 0.00855 114,000 0.318
Ni 0.0089 199,000 0.312

Figure 3. (a) Von Mises stress distribution of solder joint; (b) maximum peeling stress curves in a
microbump joint during the impact load.

Because the solder joint has a cylindrical symmetry, the model for the calculation of
the stress intensity factor at the crack tip is a two-dimensional model based on plane strain
(Figure 1), which has an Sn-3.0Ag-0.5Cu solder(SAC305)–IMC–Ni sandwich configuration
with dimensions of 100 × 20 µm, 100 × 1 µm, and 100 × 2 µm, respectively. A zero-
thickness crack is preset at the interface between the IMC and solder layers, and the crack
length is variable. The method of presetting the zero-thickness crack is the common point
method. The surface morphology of IMC is ignored, and the interface between IMC and
the solder is assumed to be flat. With an IMC thickness of only 1 µm, the possible void
formation around the IMC layer was ignored, and the Ni–IMC interface was considered
as ideal. The bottom of the copper pad is a fixed end, and a static-type tensile load is
uniformly applied on the upper surface of the solder.

The interaction integral method is used to solve the stress intensity factor at the crack
tip. Because the crack in the model is on the interface between the IMC and the solder,
the elasticity of the material on each side is different; thus, discontinuity appears on the
interface. To ensure the calculation accuracy, the integral path of the contour is processed in
sections. The mesh of the model adopts the region division method, and the smaller mesh
size is used at the crack tip to ensure the solution accuracy, as shown in Figure 4. Affected
by the thickness of the IMC, the mesh quality of the grid in the crack tip decreases sharply
from the first to the fourth layer. Therefore, the average stress intensity factor calculated by
taking the four integral contours at the innermost layer in the crack tip is utilized as the
stress intensity factor around the crack tip.

Figure 4. Model for calculating the stress intensity factor under different crack lengths.
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4. Results and Discussion
4.1. Failure Mode and Mechanism of Microbumps

In order to determine the failure characteristics of microbump interconnections under
drop impact, first, the recording of the transient resistance of the daisy chain was plotted
against the drop counts, as shown in Figure 5. The resistance change contains three distinct
stages. Stage I denotes the period in which resistance value R remained unchanged; this
stage typically lasts for the first 60 drops. Then, in several tens of following drops, denoted
as stage II, fluctuation of R is detected, with the peak value not exceeding 120% of the
original value. Later, R experiences a period of drastic fluctuation that it increases to far
more than the initial value, and the daisy chain becomes completely open in less than
80 drop counts. In order to further explore the crack propagation mechanism, the drop
samples were sliced and analyzed at different stages of circuit damage during continuous
drop test. Figure 6a is a cross-sectional SEM of the sample without a drop test, and it can
be seen from the figure that the IMC interface formed under the hot pressing bonding
conditions used in the experiment is of good quality. As shown in Figure 6b,c, after the first
50 drops, a micro-crack was visible at the end of the IMC–solder interface of the bottom
chip side. After the circuit was completely disconnected, a through crack could be observed.
It can be concluded that the solder joint accelerated failure after crack propagation and
deflection. Therefore, the resistance change pattern can be used to estimate the extent to
which the structural damage of a critical microbump has progressed. It can also be seen
that the joint degradation accelerated after the crack deflection since a significant spurt of
resistance corresponds to the rapid shrinking of the residual joint area in this stage.

Figure 5. Typical resistance curves of daisy chains under drop test.

Figure 6. Cross-sectional SEM of the microbumps at different stages of drop impact. (a) Cross-
sectional SEM of the sample without drop test; (b) after 50 drops; (c) after the circuit is completely
disconnected.

4.2. Stress Intensity Factor Analysis of Solder–IMC Interface Crack under Quasi-Static Load
4.2.1. Relationship between Stress Intensity Factor at Interface Crack Tip and Crack Length

Figure 7 shows the von Mises equivalent stress distribution at the crack tip when the
load is 10 MPa and the crack length is 10 and 20 µm. It can be seen that the equivalent
stress of the crack tip increases as the crack length increases, and the high equivalent
stress appears both on the solder and IMC. However, it does not mean that failure or
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crack propagation will definitely occur in these locations. Under tensile load, the crack
between the upper layer and the substrate initiate from the free edge of the actual specimen,
especially where defects such as cracking or void brought by the bonding process existed.
The initial crack first expands along the interface to a certain depth and then propagates
along the interface or is deflected to the solder matrix, which depends on the energy release
rate of the two propagation paths. Therefore, the energy release rate will be used to judge
whether the crack is initiated and propagated, and the stress intensity factor will be used to
determine the crack tip propagation path.

Figure 7. The Von Mises equivalent stress distribution in the crack tip with the crack length of:
(a) 10 µm; (b) 20 µm.

The relationship between the stress intensity factor at the crack tip of the IMC–solder
interface calculated by the interaction integral and the crack depth is shown in Figure 8. It
can be seen that the stress intensity factors of KI and KII of the interfacial crack tip increase
with an increase in the crack length under the same load, and the KII will increase quickly
due to the elastic deformation of the solder, which leads to the increasing tendency of the
type II cracking mode and possibly the crack deflection as well.

Figure 8. The relationship between the stress intensity factor of the interface crack between the IMC
and the solder and crack depth.

Polynomial fitting is performed for the stress intensity factor at the crack tip with
different crack lengths in the figure, and the fitting expression is as follows:

K =


3.7 × 103a2 + 1.7 × 102a + 0.013 σ = 10MPa
18.6 × 103a2 + 8.5 × 102a + 0.65 σ = 50MPa
33.3 × 103a2 + 15.4 × 102a + 1.2 σ = 90MPa

(1)



Micromachines 2022, 13, 281 7 of 14

K =


5.44 × 103a2 − 1.27a − 0.054 σ = 10MPa
27.2 × 103a2 − 5.68a − 0.265 σ = 50MPa
48.9 × 103a2 − 9.77a − 0.48 σ = 90MPa

(2)

where σ is the peel stress loaded on the upper surface of the solder and a is the crack length.
Comparing the stress intensity factors of KI and KII under three loads, it can be seen that KI
and KII are proportional to the load, because the material model used in the simulation is a
linear elastic model. Therefore, the expressions of KI and KII can be rewritten as follows:

K = 3.7 × 102a2σ + 17aσ + 0.013σ
K = 5.44 × 102a2σ − 0.127aσ − 0.0054σ

(3)

4.2.2. Influence of Solder Thickness on Stress Intensity Factor of Interface Crack

In the existing research on solder joints of several hundred micrometers, due to the
much lower elastic modulus of solder versus the rest part of a joint, the solder volume
plays an important role in the mechanical properties of the microbumps. If the thickness of
the solder layer is too small, the mechanical properties of the microbumps will be adversely
affected. The solder thickness in a microbump-based die stacking 3D integration structure
is greatly reduced compared to the flip chip interconnection, which necessitates the research
on the dependence of SIF on the solder thickness quantitatively. Figure 9 compares the SIF
evolution with a progressing crack under different solder thicknesses from 15 to 30 µm.
It can be seen that both KI and KII increase with a decrease in solder thickness. This
phenomenon is plainly explained by the stress distribution around the crack tip, as shown
in Figure 10. The elastic mismatch between IMC and the solder causes stress concentration
around the crack tip, which is better alleviated with a thicker solder layer, as can be judged
from the more uniform distribution of stress across the cross section of analysis. Therefore,
switching from the spherical solder bumps to the Cu pillar-based microbump joints is
believed to pose additional failure risk under the drop impact condition.

Figure 9. The relationship between the stress intensity factor KI of the interfacial crack tip and solder
thickness under different solder thicknesses.
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Figure 10. The von Mises equivalent stress distribution in the crack tip with different solder thick-
nesses: (a) 20 µm; (b) 30 µm.

4.3. Investigation on Crack Growth Behavior

The analyses above have revealed the increase in the stress intensity factors KI and
KII with increasing crack length. Further investigation of the crack propagation behavior,
especially the propagation path, needs the quantitative analyses on the crack tip energy
release rates J1 and J2. Hu [15] found the propagation behavior of a semi-infinite plane
crack at the interface of a two-phase material in 1989 and revealed that theoretically the
crack deviated from the original main crack propagation path by a minimum length. They
further deduced the relationship between the stress intensity factor after crack deflection
and along the original path. The maximum energy release rate can be used to determine the
crack deflection angle. The criterion of deflection of quasi-static interface crack propagation
behavior is as follows:

GS
G

>
Γ
Γi

(4)

Among them: Gs = J =
√

J2
1 + J2

2 , G = K2

E∗ , Γ is the fracture toughness of the solder,
and Γi is the fracture toughness of Ni3Sn4 IMC. In this paper, the maximum fracture
toughness of solder SAC305 is set to be 295 N/m, which is measured by Loo [16]. To be
able to directly compare the fracture toughness values of the Ni-Sn–IMC interface from
the various existing research, the fracture toughness is converted into a critical stress
intensity factor. For the Ni3Sn4 layer, a critical stress intensity factor of 4.22 ± 0.45 MPa
m1/2 measured by Ghosh [14] was adopted, which equals 165.5 N/m; thus, we obtain
Γ
Γi

= 1.78. It can be seen from the expression of the crack tip energy release rate that

when the material is of linear elastic property, the ratio GS
G is irrelevant to load. For the

convenience of calculation, the ERR is calculated with the uniaxial load of 50 MPa, and the
IMC and solder thicknesses are set as 1 and 20 µm, respectively. The energy release rate at
the interface crack tip under different crack lengths is calculated as follows:

For the homogeneous two-material interface:

J1 =
KK

E∗ cosh2(πε)
(5)

J2 = −Re[Kriε]Im[Kriε]

πε cosh2(πε)
× [

1 − ν1

4µ1
(1 − e−2πε) +

1 − ν2

4µ2
(e2πε − 1)] (6)

where ε is the oscillatory index

ε =
1

2π
ln(

1 − β

1 + β
) (7)

β is the second Dundurs’ constant

β =
µ1(κ2 − 1)− µ2(κ1 − 1)
µ1(κ2 + 1) + µ2(κ1 + 1)

(8)
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and κ is Kolosov’s constant

κ =

{
3−νp
1+νp

plane stress
3 − 4νp plane strain

(9)

where
1

E∗ = [
1 − ν1

4µ1
+

1 − ν2

4µ2
] (10)

The results of the relevant parameters of the dual-material SAC305–IMC interface in
the above formula are shown in Table 2. The trend of GS

G with crack length is calculated, as
shown in Figure 11.

Table 2. Parameters of two-material SAC305–IMC interface.

Parameters E* ε β µ1 ν1 µ2 ν2

Values 6.06 × 1010 −0.028 0.088 3.59 × 1010 0.314 1.388 × 1010 0.347

Figure 11. The variation trend of GS
G with crack length.

Hu found that the interface cracks start from the free edge of the sample, propagate
at one to two times the thickness of the film along the interface, and then deflect into the
matrix, expanding to a depth of four to five times the thickness of the film and finally
parallel to the interface. From Figure 11, it can be seen that the ratio of the crack tip ERR
after deflection to that propagating along the interface increases with the increase in the
main crack length. When the main crack expands to a length of about 16 µm, the ratio
will be greater than the ratio of the fracture toughness of the solder matrix to the fracture
toughness of the interface. At this time, the crack will deviate from the original interface
path and deflect into the matrix. The deflection angle is calculated by ω = arctan

∣∣∣ J2
J1

∣∣∣,
and we can find w = 42◦. It can also be seen from the above figure that if the ratio of the
fracture toughness of the solder matrix to the interface fracture toughness is greater than
the ratio between two paths, then the crack will always expand along the interface without
deflecting to the solder matrix.

Figure 12 compares the influence of solder thickness on the interfacial crack growth
behavior. It can be seen from the figure that when the solder thickness decreases, the critical
main crack length for crack deflection will decrease. When the solder thickness is 15, 20, 25
and 30 um, the critical crack deflection length is 16, 23, 27 and 29 um, respectively, due to
the reason related in Section 4.2.2, i.e., the decrease in solder cushioning causes an increase
in stress concentration in the solder matrix, thus increasing the advantage of deflected
cracking path.
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Figure 12. The influence of different solder thicknesses on interfacial crack growth behavior.

Figure 13 shows the variation of arctan |J2/J1|, or in other words, the virtual crack
deflection angle, whether or not deflection actually takes place. With the main crack length
under different solder thickness conditions, the angle increases rapidly at first, and then
closes to a constant value. The crack deflection angle trend is consistent with the research of
HH YU et al. on the interfacial cracking behavior of chromium films on silica substrates [12].
The asymptotic value of the crack deflection angle is about 42◦.

Figure 13. Relationship between the crack deflection angle and the main crack length under different
solder thicknesses.

5. Experimental Validation and Discussion

The cross section of the solder joint in the case of drop failure with different solder
thickness is shown in Figure 14. According to the SEM analysis, when the solder thickness
is 20 µm, the crack length of 8 µm deflects, and the deflection angle is 32.8◦. When the
solder thickness is 30 µm, the crack length of 28 µm deflects, and the deflection angle
is 37◦. When the solder height is 37 µm, the crack length of 32 µm deflects, and the
deflection angle is 30.4◦. The measured deflection angle of the interfacial crack is 30◦ to 40◦,
which is larger than the asymptotic value of deflection angle at the moment of deflection
initiation, calculated by numerical simulation. This is owed to the microbump not only
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being subjected to normal stress, but it is also subjected to a shear force parallel to the
interface during the drop experiment, while the load used in the numerical calculation
is only the normal stress. In practice, when the crack propagates to a certain length, the
portion of type II cracking produced by the shear stress cannot be negligible. The change of
initial deflection angle versus the solder thickness is in good agreement with the numerical
calculation based on ERR and fracture toughness. Therefore, in general, the numerical
methods adopted in this paper can be used as an effective way to predict the cracking
behavior in an actual microbump joint.

Figure 14. Cross section of the solder joint with different solder thicknesses, listed as: (a) 20 µm; (b)
30 µm; (c) 37 µm.

The actual crack propagation behavior is affected by many factors, such as interfacial
defects or inhomogeneity of microstructure. There is a clear competition between interfacial
propagation and solder matrix propagation; for example, it was found in the test vehicles
of inferior interfacial strength, e.g., the bonding was carried out at lower than optimal
temperatures, and the crack would not deflect due to the increased value. In addition, the
competition of the crack path in a well-bonded test vehicle is often observed as minute
crack branching, as shown in Figure 15. These small-scale branched cracks often terminated
within 1 µm. As the fracture progresses, the deflected path gradually gains favor.

Figure 15. Crack branching during the initial stage of the drop test: (a) The minute crack branching
increase as the fracture progresses; (b) The first crack branching.

The explanation for the crack branching is that the grain boundary is the low strength
region and alternative crack propagation path. Here, a test vehicle with Cu–SnAg–Cu
microbump structure was used to enhance the interfacial reaction, and the joint was ion-
milled cross-sectionally before SEM observation to exhibit grain contrast, as shown in
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Figure 16. The second phase was identified as Cu6Sn5 IMC. IMC particles can be seen
clearly in the junction of Sn grains, which is formed by Cu atoms diffusing along the grain
boundary and precipitating in the junction in the form of Cu6Sn5 during the solidification
process. These Cu6Sn5 particles play a significant role in the arresting and deflection
of cracks. As can be seen in Figure 16a,b, crack tips meet the second phase and stop
propagating. A higher driving force is required to either propagate around the second
phase by deflection, or to continue through the second phase, the latter being less probable
from an energetic point of view. Therefore, once arrested by the boundary junction, cracks
would further proceed along the boundary of the IMC particle and Sn grain, while the
preferred direction of all possible ones is related to the deflection angle, finally forming
fracture patterns that differ from one sample to another in shape. The Ag3Sn IMC grains
were believed to not have a significant impact on the crack propagation path since they were
present in the form of a primary eutectic component located inside each Sn grain [17,18]. It
has been previously reported that under thermal cycling or coupled thermomechanical–
electrical load, the fatigue crack preferred an intergranular propagation path [19,20], in
which case, the reconstructed grain structure and recrystallization might contribute to the
weakening of grain boundary strength. This inclination seems to apply well to the highly
dynamic and purely mechanical drop impact scenario. We can also reasonably suspect
that if the interfacial IMC grows to a certain thickness that leaves visible voids due to the
volume shrinkage effect, the bonding interface will be much weakened in that the crack
will only propagate along the voided interface.

Figure 16. Influence of second-phase particles on crack propagation path: (a) crack tips meet the
second phase and stop propagating; (b) The crack propagate around the second phase by deflection;
(c) EDX analysis diagram.
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Combining the results in Figure 5, it can also be further deduced that the stage III
of resistance change plays a significant role in determining the joint lifetime under drop
impact, and one possible way to enhance the durability is to eliminate the grain boundaries;
thus, the deflected path would cost higher energy than in a joint of the multi-grain solder
layer. The research of controlling the grain number of the solder layer in a microbump joint
is currently ongoing among various researchers [21,22].

6. Conclusions

In this paper, we report for the first time the cracking failure characteristics in mi-
crobump joints for chip-on-chip stacked interconnections. Experimental tests were carried
out using a JEDEC standard test board to reveal the joint resistance change and the crack
morphology. To elucidate the crack deflection during the joint degradation process, a local
finite-element model was established to calculate the stress intensity factor at the crack tip,
and the numerical results were further incorporated into a fracture mechanics model to
obtain the crack deflection criteria. The main conclusions are summarized below:

(1) The main failure mode of microbump interconnections for 3D CoC packaging is that
cracks were first initiated at the edge of the IMC–solder interface. After propagating along
the interface for a distance, they deflected into the solder matrix, eventually penetrating
the entire joint. The electrical resistance change is closely linked to the cracking progress.

(2) Stress intensity factor of a zero-thickness crack tip at the interface of the solder and
IMC is calculated under quasi-static load by the method of interaction integral method.
Both KI and KII increase with the increase in the crack length under the same load, and
reducing the solder thickness causes higher SIF due to less alleviated mechanical mismatch.

(3) The crack propagation path is studied using a criterion based on energy release
rate and fracture toughness. The calculation results show that the cracks on the interface
between the solder and IMC will deflect into the solder matrix after extending to a certain
depth along the interface. The deflection angle for crack initiation converges to 40◦ with the
increase in crack length. The critical length of the main crack for crack deflection increases
with the increase in solder thickness, which is experimentally confirmed by an actual drop
test on samples with different solder heights.

(4) The crack propagation path in actual drop test samples was influenced by factors,
including the actual strength of the bonding interface and the grain structure of the solder
layer. Grain boundaries are the favored path for the deflected cracks.
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