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Abstract: High accuracy and a real-time system are priorities in the development of a prosthetic hand.
This study aimed to develop and evaluate a real-time embedded time-domain feature extraction
and machine learning on a system on chip (SoC) Raspberry platform using a multi-thread algorithm
to operate a prosthetic hand device. The contribution of this study is that the implementation of
the multi-thread in the pattern recognition improves the accuracy and decreases the computation
time in the SoC. In this study, ten healthy volunteers were involved. The EMG signal was collected
by using two dry electrodes placed on the wrist flexor and wrist extensor muscles. To reduce the
complexity, four time-domain features were applied to extract the EMG signal. Furthermore, these
features were used as the input of the machine learning. The machine learning evaluated in this
study were k-nearest neighbor (k-NN), Naive Bayes (NB), decision tree (DT), and support vector
machine (SVM). In the SoC implementation, the data acquisition, feature extraction, machine learning,
and motor control process were implemented using a multi-thread algorithm. After the evaluation,
the result showed that the pairing of the MAV feature and machine learning DT resulted in higher
accuracy among other combinations (98.41%) with a computation time of ~1 ms. The implementation
of the multi-thread algorithm in the pattern recognition system resulted in significant impact on the
time processing.

Keywords: multi-thread; embedded system; Raspberry Pi; EMG; machine learning; time-domain
feature; prosthetic hand

1. Introduction

Prosthetic hands are needed for people who have amputations on the hand (amputee)
due to work accidents, congenital defects, and certain diseases. The need for prosthetic
hands is still high, especially in developing countries and countries with war conflict [1,2].
More importantly, prosthetic hands are not only used cosmetically but also have a functional
role to help the amputee with daily life activities [3,4]. The development of prosthetic hands
has been carried out by previous studies both in the laboratory and at industrial levels.
In the laboratory stage, previous studies developed a prosthetic hand that had a greater
emphasis on control systems including the sensor system and pattern recognition. At the
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industrial level (i-Limb [5], Bebionic [6], and Vincent [7]), researchers emphasized research
on battery management systems as well as portability and functionality. Combining the
two demands remains a challenge for researchers, namely, how to develop a system that
can recognize hand movement patterns based on EMG signals by applying a machine
learning algorithm to the system on chip (SoC) so that functionality and portability can be
achieved on the prosthetic hand device.

Several previous studies have developed prosthetic hands using bioelectric signals
such as electroencephalography (EEG), electrooculography (EOG), electromyography
(EMG), and a vision system [8–11]. Two methods are commonly used to control prosthetic
hands, namely, threshold- [12,13] and pattern recognition-based [14,15]. The threshold-
based method cannot recognize the complexity of the EMG signal when it is used to identify
more than two movements. Therefore, the development of a controlled prosthetic hand
through the recognition of EMG signal patterns that include feature extraction and ma-
chine learning-based classifiers is a major concern for researchers [16,17]. Several previous
researchers have succeeded in developing prosthetic hands with good accuracy (>90%) but
most of these researchers used more than two electrodes [18–22]. Chen et al. developed
a prosthetic hand using the SVM as a classifier and obtained an accuracy of 90% [19].
However, Chen et al. still used personal computer equipment to implement the feature
extraction and classifier process. Another prosthetic hand development was carried out by
Lee at al. The researchers used an artificial neural network (ANN) classifier to detect six dif-
ferent hand movement patterns using eight EMG channels and obtained an accuracy value
of 93.20% [21]. In this study, the researchers also used a personal computer to implement
the feature extraction and classifier processes. Tavakoli et al. developed a prosthetic hand
using a single-channel EMG to recognize four movement patterns (open, close, change, and
lock). However, the average accuracy obtained was 90.1%. In addition, this research was de-
veloped using a feature extraction and classification process using a computer system [23].
A portable system is a demand in the development of prosthetic hands; therefore, several
researchers have developed embedded machine learning for the process of recognizing
EMG signal patterns on prosthetic hand devices. Benatti developed a prosthetic hand by
implementing the SVM classifier on the microcontroller unit (MCU) with an accuracy of
90% using eight channels of the EMG signal [20]. Additionally, Pancholi et al. developed a
prosthetic hand by applying the LDA classifier to the DSP MCU with an average accuracy
of 94.14%. Gaetani et. al. developed a prosthetic hand with open-source Adam by applying
the ANN classifier to the SoC of a Raspberry Pi 3B+ board [24]. However, this research
did not carry out a detailed investigation into the features and machine learning used
so there was no information obtained related to the performance of the system that was
developed. Another researcher developed a prosthetic arm with a SoC-based architecture
using the Xilinx ZYNQ FPGA platform. This study resulted in an average accuracy of 92%
for three movements (relaxing, clasping, and stretching) [25]. However, the use of FPGA as
SoCs for the development of embedded features and classifiers has limitations in terms of
programmable logic resources. Souza et al. developed a real-time system classifier using
eight myo-arm electrode channels and a multi-layer perceptron that was implemented on
a Raspberry Pi platform [26]. The average accuracy to discriminate 11 motion patterns
was 96.11%.

Based on the literature described, it is clear that further development of prosthetic
hands based on pattern recognition using a machine classifier is recommended. The
development of embedded machine learning on the SoC provides added value, especially
in portability and effectiveness, when it is implemented on prosthetic hands. To the best
of our knowledge, several studies have developed a prosthetic hand based on a real-time
system classifier using an embedded system to control the motors connected to the finger.
However, the classifier system in the prosthetic hand that controls the finger and wrist
movements has not been widely studied. Additionally, high accuracy and the ability of the
system to process in real-time are very important. Therefore, this study aims to develop
and evaluate an embedded time-domain feature and machine learning on a system on
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chip (SoC) based on a Raspberry platform using a multi-thread algorithm to control the
prosthetic hand device to recognize four motions (grasp, relax (open), wrist flexion, and
wrist extension). Raspberry Pi is a SoC that has a Raspbian operating system with the
ability to run multiple tasks concurrently or in parallel. The process of running programs
in parallel can be implemented using the threading library in Python programming. In this
study, the data acquisition, feature extraction, classifier, and driving motor processes are
implemented using a multi-threading algorithm so that the system runs in real-time and
produces a good system performance.

2. Materials and Methods
2.1. Minimum System

In this study, embedded machine learning was applied to a SoC Raspberry Pi 3 B+
system (Figure 1). To collect the EMG signal, two dry electrodes (OYMotion SEN 0240,
Shanghai, China) were placed on the wrist flexor and wrist extensor muscles. The dry
electrode had a built-in instrumentation amplifier. These two muscles are the most involved
in hand grasp, relax (open), wrist flexion, and wrist extension movements [27]. A 50 Hz
notch filter was applied to the EMG signal to reduce the noise added by the line power.
The Raspberry Pi family does not have an analog to digital (AD) feature. Therefore, in this
data acquisition process, the EMG signal was recorded using an external AD (MCP 3008,
Microchip, Chandler, AZ, USA).

Figure 1. The block diagram system for a prosthetic hand.

In this research, a Broadcom BCM2835 system on chip (SoC) was used with an
ARM1176JZF-S processor, a 700 MHz clock, a VideoCore IV GPU, and 256 MB RAM.
The digital filter, feature extraction, and machine learning processes were carried out in a
Raspberry Pi system. Additionally, the digital data from the A/D MCP3008 (10 bit ADC)
were then filtered using a digital bandpass filter based on an infinite impulse response
(IIR) with a cut-off frequency of 20–500 Hz, order 6. In the investigation stage, several
time-domain features and machine learning methods were evaluated to find the best perfor-
mance. In this study, the time-domain features used were mean absolute value (MAV), root
mean square (RMS), simple square integral (SSI), and variance (VAR) [28]. The machine
learning methods that were evaluated in this research were k-nearest neighbor (k-NN),
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Naive Bayes (NB), decision tree (DT), and support vector machine (SVM). In this case, the
classifier built using machine learning recognized movement patterns through the EMG
feature. Furthermore, the classifier instructed several servo motors to perform movements
according to the movement pattern being trained. When the system detected an open
or grasp movement, five linear actuators (PQ12P, Actuonix, Victoria, BC, Canada) in the
palm were activated simultaneously so that it produced a grasp or open hand movement
mechanism. Additionally, when the system detect wrist flexion or an extension movement,
the servo motor (RDS RDS3115 MG, Robot Digital Servo, India) on the prosthetic arm re-
sponded according to the motion received (wrist flexion or wrist extension). The RDS3115
servo motor had a weight of 100 g and a torque of 15 kg so it was light and strong enough
to hold and perform the motion for a hand wrist flexion and extension.

The prosthetic hand was printed using a 3D printer machine (Creality CR-6, Creality,
Shenzhen, China). In this study, the prosthetic hand consisted of two parts; the first part
was the 3D printing for the upper arm, made of polylactic acid (PLA, 30% infill) and the
second part was the 3D printing for the hands and fingers, made of a flexible filament
material (TPU, 95% infill). To connect the upper arm and the hand, a servo motor was
permanently attached to the wrist upper arm and held the hand. Moreover, in the hand
part, there were five linear actuators placed in the hand palm, each of which moved a
prosthetic finger.

2.2. Proposed Method

The implementation of data acquisition, feature extraction, classification, and motor
control processes on the prosthetic hand control was carried out in parallel on the SoC
Raspberry Pi machine to ensure that the system could run in real-time. Several parallel
tasks can be implemented on a Raspberry Pi SoC by running several threads simultane-
ously, known as multi-threading. A Python programming application was supported
by a threading library so that it made the implementation easier (https://github.com/
triwiyanto/Prosthetic-Pi (accessed on 10 December 2021)).

The implementation of multi-threading on the prosthetic hands was implemented by
creating four threads, namely, thread data acquisition, feature extraction, machine learning,
and motor control. For each variable output from a thread to be recognized by other
threads, all related variables had to be declared globally in the Python programming. The
main program (Figure 2) was responsible for initializing and starting each thread. In this
implementation, the threading data acquisition was the first process. The threading data
acquisition worked continuously and recorded two channels of the EMG signal with a
sampling frequency of 1000 Hz. This sampling frequency rate was chosen according to the
Nyquist requirement [29]. Additionally, the EMG signal was segmented with a window
length of 100 ms [30,31]. Furthermore, in this thread, the EMG signal was filtered using an
IIR digital filter (order 6, bandpass filter 20–500 Hz). A digital filter using an IIR basis was
implemented using Equation (1) [32,33].

EMGCH
f [k] = b0EMG[k] + b1EMG[k− 1] + b2EMG[k− 2] + .. + bMEMG(k−M)

−a1EMG[k− 1]− a2EMG[k− 2]− ..− aN EMG[k− N]
(1)

where EMGCH
f [k] indicates the filtered EMG signal for channel CH and EMG[k] shows the

k EMG signal (raw data). Additionally, b0, b1, b2, . . . , bM and a1, a2, . . . , aN indicates the
bandpass filter coefficients.

https://github.com/triwiyanto/Prosthetic-Pi
https://github.com/triwiyanto/Prosthetic-Pi
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Figure 2. Embedded feature extraction and machine learning process on a SoC using a multi-
thread algorithm.

Threading feature extraction was also begun and carried out the feature extraction pro-
cess for two filtered EMG signals. In this thread, two EMG signal channels were extracted
using the RMS, VAR, MAV, and SSI features, which are described in Equations (2)–(5),
respectively [28,34–36]. The result of the feature extraction was then used by other threads
because it had been globally defined. This threading feature extraction ran continuously as
long as the system was not stopped.

RMS =

√√√√ 1
N

N

∑
i=1

EMGCH
f [k]2 (2)

VAR =
1

N − 1

N

∑
i=1

EMGCH
f [k]2 (3)

MAV =
1
N

N

∑
i=1

∣∣∣EMGCH
f [k]

∣∣∣ (4)

SSI =
N

∑
i=1

EMGCH
f [k]2 (5)

where EMGCH
f [k] indicates the k filtered EMG signal, CH is the EMG channel, f is feature,

and N is the number of collected data.
Threading machine learning was pre-started and ran continuously. When the thread

did not obtain the latest data, machine learning retrieved the data from the pre-defined or
the last updated data. At the training stage, all machine learning—including k-NN, NB,
SVM, and DT—were used and evaluated but in the implementation stage, only feature and
machine learning were selected based on the one that had the highest average accuracy.
In this study, k-NN was also applied as a classifier machine because it had a simple
algorithm and performed a classification process based on the similarity of the measure
distance. Generally, the Minkowski distance was used as the default distance in the Python
programming. It measured the distance between the classes, as shown in Equation (6) [36]:

d(x, y) = (
n

∑
i=1
|xi − yi|c)

1
c

(6)
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where d(x,y) show the distance, x and y are the features, and c is a constant. From the
equation, when c was equal to 1 then the formula was the same as the Manhattan dis-
tance. When c was equal to 2, the formula was the same as the Euclidean distance [37].
Furthermore, in the programming implementation of k-NN, the k was chosen from 5. Naive
Bayes (NB) machine learning was chosen because it has iterative parameters that are not
complex and can be applied to large data. Posterior probability using the Bayes theorem is
shown in Equation (6) where feature X is represented by Equations (7) and (8) [38]. In the
Python programming, we used the “prior = none” and exponential constant of 1 × 10−9

parameters to configure the NB classifier.

P(y|X) =
P(X|y)P(y)

P(X)
(7)

X = (x1, x2, x3, . . . . . . , xn). (8)

Thus, based on Equations (7) and (8), the probability was obtained based on the
number of features, as shown in Equation (9). Furthermore, the Gaussian Naïve Bayes used
Equation (10) to determine the prediction.

P(y|x1, x2, x3, . . . . . . , xn) =
P(x1|y)P(x2|y) . . . P(xn|y)P(y)

P(x1)P(x2) . . . P(xn)
(9)

y = argmaxyP(y)
n

∏
i=1

P(xi|y ). (10)

This research also implemented a support vector machine (SVM) to the Raspberry Pi
SoC. A SVM has a light computation time and is easy to implement on single-processor
machines as well as a small RAM capacity. The SVM ran the classification process by
finding the right hyperplane that could maximize the margin between the classes with
the optimization function shown in Equations (11) and (12) [39]. In the programming
implementation, the radial basis function was used as the SVM kernel. The gamma
parameter was set as “auto”.

max
n

∑
i=1

bi −
1
2

n

∑
i=1

n

∑
j=1

yibi(xi.xj)yjbj (11)

where
n

∑
i=1

biyi = 0 . . . and . . . 0 ≤ bi ≤
1

2ny
. (12)

Another machine learning method that is often used in a SoC is the decision tree (DT).
This classifier will break down the dataset into several subsets. The prediction on the DT
classifier used the entropy calculation as shown in Equation (13) [17]. The entropy was
used to measure the uncertainty of the dataset [40]. In the programming implementation,
the maximum depth of the tree was chosen from three (max_dept = 3). This maximum
depth served as a variable control for pre-pruning.

E(s) = −
c

∑
i=1

P(xi) log2 P(xi) (13)

where P(xi) shows the probability with the frequency that occurred frequently in class c.
The output of thread machine learning produced four codes that were then used

by the motor control thread to move the prosthetic hand. These codes represented hand
grasp, open, wrist flexion, and wrist extension movements. The threading driving servo
was also started at the beginning and fetched data from pre-defined data before receiving
updated data from thread machine learning. This thread ran continuously and controlled
the prosthetic hand according to the updated data.
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2.3. Data Collection

This study involved 10 volunteers who were in good health with an age range of 18
to 21 years old (20.45 ± 1.78 years) and a body weight of 55 to 65 kg (61.86 ± 3.67 kg).
Each volunteer was given instructions to repeat each movement 10 times. The movements
that had to be made were grasp, relax, wrist flexion, and wrist extension. Each transition
between movements was given a delay of about 2–3 s; this was to prevent the occurrence
of muscle fatigue. Two models of training testing machine learning were tested in this
study: scheme 1, where all datasets originating from the 10 volunteers were collected into
one and the data were separated by 80% for the training data and 20% for the testing data;
and scheme 2, where the dataset was collected based on volunteers with 8 volunteers as
the training data and 2 volunteers as the testing data. This research passed the ethical
committee with ethical clearance number No. EA/078/KEPK-Poltekkes_Sby/V/2019.

The EMG signal was extracted using four time-domain feature extractions of MAV,
RMS, SSI, and VAR. The output of the feature was used to train the machine learning.
The four features were combined to produce fifteen feature combinations to train the ma-
chine learning. These 15 features combinations were MAV, RMS, SSI, VAR, MAV + RMS,
MAV + SSI, MAV + VAR, RMS + SSI, RMS + VAR, SSI + VAR, MAV + RMS + SSI,
MAV + RMS + VAR, MAV + SSI + VAR, RMS + SSI + VAR, and MAV + RMS + SSI + VAR.
In addition to the feature evaluation, this study also evaluated four machine learning
methods (k-NN, NB, DT, and SVM).

3. Results

In this study, the prosthetic hand functioned by using an EMG signal. An EMG signal
has complex and random characteristics. Each different hand motion generated a different
EMG pattern. Figure 3 shows the EMG pattern when the volunteer performed four hand
motions (grasp, wrist flexion, wrist extension, and relax) sequentially. The EMG signal was
collected from the wrist flexor (CH1) and wrist extensor (CH2).

Figure 3. The recording of EMG signal from (a) wrist flexor and (b) wrist extensor. The EMG
signal was recorded using frequency sampling of 1000 Hz. The EMG signal was recorded whilst
the subject performed four hand motions. The sequences were grasp, wrist flexion, wrist extension,
and relaxation.

The implementation of machine learning on the Raspberry Pi SoC using a multi-
threading algorithm produced good accuracy (98.13%) and a fast computation time (~1 ms).
Further details related to the research results are described in the following section.



Micromachines 2022, 13, 191 8 of 16

3.1. Machine Learning Accuracy

Figure 4a shows the accuracy of the machine learning based on single and combination
features. These results used training data of 14,880 (80%) and 3731 (20%) of the total dataset
based on scheme 1. The evaluation results showed that the MAV feature produced an
average machine learning accuracy of 98.18%, which was higher than using other features
or a combination of features. Among the machine learning evaluated, the decision tree
produced the highest accuracy (98.42%) compared with the others. In the comparison
among the classifier boxplots, Figure 4b shows the distribution of accuracy based on all
features and their combination using a boxplot diagram. The cross sign indicates the mean
accuracy value. The boxplot diagram shows that the k-NN, NB, and DT classifiers had a
narrow box range (k-NN: 95.23–94.85%; NB: 94.16–95.55%; DT: 95.26–98.42%). On the other
hand, the SVM boxplot diagram had a wide box range (69.04–86.12%). DT had a higher
mean accuracy for all features and combinations than the other classifiers. Based on the
radar graph (Figure 4c), this showed that DT produced a better accuracy compared with
other classifiers. On the other hand, the accuracy of k-NN coincided with the accuracy of
NB in almost all the features used.

Figure 4. (a) Machine learning accuracy based on scheme 1 for different features and combinations,
(b) the distribution of classifier accuracy based on all features used in this study (the cross sign
indicates the mean value), and (c) the radar that shows the relation of the classifier accuracy and
features used.
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Figure 5 shows the accuracy of machine learning based on the features and their
combinations that were applied for scheme 2. Eight volunteers were used as a training
dataset (14,902 datasets) and two volunteers were used as a testing dataset (3715 datasets),
(scheme 2); they had never been trained before. The results of the machine learning and
features evaluation showed that the MAV features produced a higher accuracy than the
others with an average accuracy of 97.15% (Figure 5a). As shown in the boxplot diagram
(Figure 5b), k-NN, NB, and DT had a narrower width compared with SVM. Figure 5c shows
that the accuracy of the k-NN, NB, and DT classifiers was almost the same for all the features
used. However, the SVM classifier showed inconsistent accuracy in the features used.

Figure 5. (a) Machine learning accuracy based on scheme 2 for different features and combinations,
(b) the distribution of classifier accuracy based on all features used in this study (the cross sign
indicates the mean value), and (c) the radar that shows the relation of the classifier accuracy and
features used.

In this study, two groups of accuracy from two different training schemes (schemes 1
and 2) were tested statistically using a t-test. In this test, only the accuracy data were taken
from the DT classifier. The results showed that there was a significant difference in the
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accuracy produced by schemes 1 and 2 (p-value < 0.05). Furthermore, the best accuracy
was produced by DT using scheme 1 (80% training and 20% testing).

3.2. Accuracy for Each Motion

In the evaluation of machine learning based on the features used, the MAV produced
a higher accuracy than the other features and combinations. Therefore, in the subsequent
evaluation, the MAV feature was used as the classifier input. Figure 6 shows the accuracy
of machine learning (k-NN, NB, DT, and SVM) for every four motions (grasp, wrist flexion,
wrist extension, and relax). The rightmost bar graph of Figure 6 shows the average accuracy
value of all the machine learning methods for each motion. It appeared that motion
extension produced a higher accuracy (99.24%) than the other motions (grasp = 92.45%,
wrist flexion = 96.30%, and relax = 99.07%).

Figure 6. Machine learning accuracy based on type of motion.

Figure 7 shows a different perspective on the machine learning performance based on
hand motion. The bar graph shows the results of the accuracy of each movement against
the accuracy of machine learning. In the rightmost graph bar of Figure 7, it is shown that
the machine learning decision tree (DT) produced a higher average accuracy for all hand
motion types (97.41%) compared with the other machine learning methods (k-NN = 96.44,
NB = 96.44, and SVM = 96.77).

Figure 7. Accuracy for each motion based on machine learning applied.

The overall results of the embedded machine learning on the Raspberry Pi machine
can be seen in Figure 8. The test was carried out online by connecting the sensor to the
Raspberry Pi. The Raspberry Pi system could also be connected to a computer device to
detect movement activities.
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Figure 8. Implementation of embedded SoC on Raspberry Pi for hand motion classification: (a) grasp;
(b) wrist flexion; (c) wrist extension; and (d) relax.

3.3. Confusion Matrices

A confusion matrix was performed based on the accuracy values generated by the clas-
sifier using the MAV feature, as shown in the previous section where it was demonstrated
that the MAV feature resulted in the highest accuracy. The confusion matrix displayed the
accuracy of each motion pattern (grasp, flexion, extension, and relax) as shown in Figure 9.
Based on the three classifiers, the decision tree produced the highest average accuracy
(97.41 ± 1.86%) for all motion patterns. The relax motion produced the highest accuracy
for all classifiers (96.77–99.32%) followed by the extension, flexion, and grasp motion.

3.4. Computation Time

Time computation is important for a system to know to discover whether the system
can work in real-time or not. Testing was performed using the time library in Python. The
computation time is the time required by the machine learning to classify the motion. The
length of time was also tested with several combinations of existing features. Figure 10
shows that most of the average computational time required by k-NN, NB, and DT machine
learning was about ~1 ms. The average computation time for SVM was 1.7989 ms.

Figure 9. Confusion matrices for: (a) k-NN; (b) NB; (c) DT; and (d) SVM classifiers using the
MAV feature.
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Figure 10. Computation time of a SoC on a Raspberry Pi.

4. Discussion

Based on the features and machine learning evaluation, MAV and decision tree (DT)
produced a higher accuracy (98.41%) than the others. Therefore, these features and machine
learning were implemented into the Raspberry SoC for the online prosthetic hand testing
process. These results were also in line with the research conducted by Ma et al., who
obtained high accuracy results when classifying four different movements by producing a
maximum average accuracy value of 80% when using the MAV and RMS features [15].

Figure 11 shows that the accuracy of machine learning with the training and testing
processes using scheme 1 (80% of the total dataset for training and 20% of the total dataset
for testing) resulted in a higher accuracy than using scheme 2 (8 volunteers as training and
2 volunteers as testing). This showed that when the system was evaluated using scheme 2,
the overall accuracy value decreased. This was reasonable because each volunteer had
different EMG signal characteristics both in amplitude and frequency when the volunteer
performed different hand motions. The change in the EMG characteristics was caused by the
EMG signal that had stochastic and different characteristics for each person and time [41,42].
Thus, when the machine learning was tested using datasets from two volunteers who had
never been trained before, the accuracy of machine learning decreased. Furthermore,
machine learning accuracy with the MAV feature produced the smallest difference in
accuracy (0.98%).

Figure 11. A comparison of training and testing scheme accuracy for different features and combina-
tions. (Note: blue line = scheme 1 and red line = scheme 2).
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The overall performance of the proposed system was compared with the results
of the studies that were undertaken, as described in Table 1. In the prosthetic hand
implementation, several researchers used computers [19,21] and others used embedded
systems [18,20] with the training process being carried out online or offline. Additionally,
the testing process was all performed online. Previous studies used 4–8 EMG channels to
recognize 6–9 motion patterns. After a comparison with other studies, it was shown that
the proposed method produced accuracy that outperformed the other methods.

Table 1. Comparison of accuracy between the proposed study and other related studies.

System
Parameter Ref. [19] Ref. [20] Ref. [21] Ref. [18] Proposed

Study

Implementation Computer Embedded Computer Embedded Embedded

Training stage Offline Offline Offline Online Offline

Testing stage Online Online Online Online Online

Machine
learning SVM SVM ANN LDA DT

Number of
motions 9 7 6 6 4

Number of
channels 4 8 8 8 2

Accuracy 90% 90% 93.20% 94.14% 98.13%

Figure 4 (scheme 1) and Figure 5 (scheme 2) show that a higher number of feature
combinations could not increase the machine learning accuracy. This was proven when
machine learning used a single MAV feature; the average accuracy of the four resulting
machine learning methods was higher (accuracy = 98.13 ± 0.299%). Furthermore, when
machine learning obtained an input from all feature combinations (MAV, RMS, SSI, and
VAR), the average accuracy of machine learning was 89.27± 11.78%. This showed that each
feature and its combination had a different suitability for the machine learning being used.
This was not in line with the study conducted by Phinyomark et al., which showed that
when the number of features was increased from 1 to 4, the accuracy increased slightly [35].
However, another study conducted by Phinyomark et al. showed that increasing the
number of features was not always followed by an increase in accuracy; this depended on
the classifier model used. In the study when an LDA classifier was applied there was a
slight increase in accuracy but when the quadratic discriminant analysis classifier was used,
the accuracy decreased after the number of features was increased from 2 to 3 and 4 [43].

Processing time is important when building a real-time system. Based on the results
of the online testing of the Raspberry Pi SoC system, the average execution time was ~1 ms
(for NB, k-NN, and DT); the average execution time required by machine learning SVM
was longer (1.7989 ms). This execution time was aligned with the requirements required
in building a real-time system, which is a maximum of 100 ms so that there is no delay
between the input and output.

In this study, the implementation of feature extraction and machine learning on the
Raspberry Pi SoC could run in real-time and online to control the prosthetic hand. How-
ever, a few limitations were not the attention of this study. In the data acquisition process,
this study did not take into account the incidence of muscle fatigue caused by repeated
measurement processes for each volunteer. As stated by previous researchers, the incidence
of muscle fatigue appears when the volunteer performs repetitive movements [44]. Further-
more, when muscle fatigue occurs, it increases the amplitude and reduces the frequency
of the EMG signal. Consequently, these EMG characteristic changes affect the resulting
features as well as the machine learning accuracy. Regarding volunteers, this research only
involved normal and healthy people; of course, this would be different if the system was
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used by amputees. This research was the evaluation phase of embedded machine learning
on a Raspberry Pi SoC system. A larger number of volunteers for the training phase would
certainly produce better results because machine learning recognizes various characteristics
or patterns of additional EMG signals. The use of Raspberry Pi as an SoC system allowed
wide opportunities.

In this study, the prosthetic hand used an open-source 3D printing design. (https:
//openbionicslabs.com/downloads, (accessed on 10 December 2021)). A linear actuator
(PQ-12) was used to move five prosthetic fingers with a maximum pulling capacity of
50 N for each. However, a linear actuator requires a large power supply (stall current:
550 mA × 5 linear actuators); therefore, it consumes a substantial amount of current. In
this study, the linear actuator only performed run and stop movements for two ranges
of maximum (20 mm) and minimum (0 mm) strokes. In further research, prosthetic
hand movements could be developed into movements that are proportional to the EMG
amplitude level. Therefore, the prosthetic hand could imitate the natural movements of
human hand.

5. Conclusions

This study developed and evaluated an embedded time-domain feature and machine
learning on a system on chip (SoC) based on a Raspberry platform using a multi-thread
algorithm to control a prosthetic hand device. Our findings showed that MAV and decision
tree (DT) resulted in a higher accuracy (98.41%) than other features and machine learning
methods. Overall, the training and testing process used in scheme 1 produced a higher ac-
curacy than scheme 2. The processing time required by the system from data acquisition to
classification was on average ~1 ms (for NB, k-NN, and DT) whereas the average execution
time required by machine learning SVM was longer (1.7989 ms). Further developments
from this research are to increase the number of machine learning methods and features
used to obtain better results.
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