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Abstract: This paper proposes a novel p-GaN HEMT (P-HEMT) by clamping channel potential
to improve breakdown voltage (BV) and threshold voltage (VTH) stability. The clamping channel
potential for P-HEMT is achieved by a partially-recessed p-GaN layer (PR p-GaN layer). At high
drain bias, the two-dimensional electron gas (2DEG) channel under the PR p-GaN layer is depleted
to withstand the drain bias. Therefore, the channel potential at the drain-side of the p-GaN layer is
clamped to improve BV and VTH stability. Compared with the conventional p-GaN HEMT (C-HEMT),
simulation results show that the BV is improved by 120%, and the VTH stability induced by high
drain bias is increased by 490% for the same on-resistance. In addition, the influence of the PR
p-GaN layers’ length, thickness, doping density on BV and VTH stability is analyzed. The proposed
device can be a good reference to improve breakdown voltage and threshold voltage stability for
short-channel power p-GaN HEMTs.

Keywords: breakdown voltage; partially recessed; p-GaN HEMT; short-channel

1. Introduction

GaN-based devices are promising for next-generation high-efficiency, high-frequency,
high-temperature, and high-power applications due to their superior material proper-
ties [1–8]. According to the application requirements, it is necessary to improve the electric
performance of GaN devices [9].

For power applications, low on-resistance Ron and high breakdown voltage (BV) for
GaN HEMTs are very desirable [7]. In order to realize low on-resistance, a short length
scheme is always chosen as channel resistance under the gate is the main part of the
total resistance for AlGaN/GaN HEMTs [10]. However, the short channel GaN HEMTs
often suffer from the adverse drain-induced barrier lowering (DIBL) effect [11], namely,
degradation of forward-blocking characteristics and negative threshold voltage (VTH) shift
at high drain bias [12,13]. In order to suppress the DIBL effect-induced BV degradation,
Pinchbeck et al. proposed a GaN HEMT with extended gate length to achieve reduced short
channel effect and improved BV [14]. In addition, Lu et al. proposed a dual gate AlGaN
HEMT to achieve high BV, low on-resistance, and high threshold voltage characteristics [15].
However, those methods are not suitable for short-channel p-GaN HEMTs to suppress the
BV degradation and VTH instability, which owns a p-GaN layer to achieve enhancement-
mode function.

In this work, we proposed a novel p-GaN HEMT to improve the BV and VTH stability,
which features a partially-recessed p-GaN layer. At high drain bias, the two-dimensional
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electron gas (2DEG) channel under the partially-recessed p-GaN layer can withstand the
high drain voltage to achieve higher BV and more stable VTH for the short-channel p-GaN
HEMTs. The paper is organized as follows: the device structure and operation mechanism
of the proposed p-GaN HEMT are presented in Section 2; the simulation results and
discussions are shown in Section 3; the conclusions are drawn in Section 4.

2. Device Structure and Mechanism

The schematic structure of the proposed p-GaN HEMT (P-HEMT) is shown in Figure 1b.
Compared with conventional p-GaN HEMT (C-HEMT), the P-HEMT features a partially
recessed layer (PR p-GaN layer). To illustrate the mechanism of improving BV and VTH
stability for the P-HEMT, we employ one equivalent model with two series HEMTs, which
are defined as high threshold voltage HEMT1 and low threshold voltage HEMT2, as shown
in Figure 2a. As the threshold voltage of HEMT1 (VTH1) is larger than the threshold voltage
of HEMT2 (VTH2), HEMT2 has been turned on when the gate to source voltage (VGS) is
larger than VTH1. Therefore, the threshold voltage VTH of P-HEMT is mainly determined by
VTH1, namely, VTH ≈ VTH1. The potential is defined as VC at the connection node, which
is also shown in Figure 1b. When 0 < VC < VGS—VTH2 (i.e., VGS—VC > VTH2), HEMT2 is
at on-state. Therefore, VC increases with VDS at low drain bias. When VC > VGS—VTH2
(i.e., VGS—VC < VTH2), HEMT2 is in an off-state and the 2DEG channel under the PR
p-GaN layer is depleted to withstand VDS voltage. Therefore, VC is clamped and does not
increase with VDS at high drain bias, as the blue dash line shown in Figure 2b. As a result,
the barrier height for electrons injecting from source to drain will be hardly influenced
by high drain bias, which makes VTH more stable. In addition, the stable barrier height
leads to decreased electrons flowing from source to drain compared with C-HEMT at high
drain bias, which induces delayed occurrence of avalanche breakdown, namely, improves
breakdown voltage.
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Figure 1. The schematic device structures of (a) conventional p-GaN HEMT (C-HEMT) and
(b) proposed p-GaN HEMT (P-HEMT) with partially-recessed p-GaN layer (PR p-GaN layer).
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Figure 2. (a) The equivalent model of the P-HEMT with a high threshold voltage HEMT1 and a low
threshold voltage HEMT2; (b) the potential VC versus VDS.

3. Results and Discussions

In this section, the current-voltage and capacitance-voltage characteristics of P-HEMT
are investigated by Sentaurus TCAD simulation software [16], and the design consid-
erations are also discussed. In the simulation, the optimized device parameters are as
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listed in Table 1 unless otherwise specified, which is also based on our previous calibrated
work [17]. In particular, the structure parameters of C-HEMT are designed according
to the dissected cross-sectional scanning electron microscope (SEM) images. The x- and
y-coordinates and the epitaxial structures of the two devices are illustrated in Figure 1 [18].
For C-HEMT, an ionized acceptor concentration Np-GaN = 3.5 × 1017 cm−3 is induced in
the p-GaN layer with the tp-GaN = 50 nm, which contributes to VTH and on-state current
calibrations for the C-HEMT. In addition, the deep acceptor traps and self-compensating
donor traps [19] are also considered in the AlGaN buffer layer with an activation energy of
EV + 0.9 eV and EC—0.11 eV [20], and the trap density is 3 × 1016 cm−3 and 1.3 × 1015 cm−3

respectively [21]. Typically, the GL of the PR layer on the source side is only set to 0.1 µm
considering the deviation of the fabrication process, and it should be as small as possible
to reduce the negative influence on input capacitance in practical application. The GR of
the PR layer on the drain side is an adjustable parameter as it makes obvious significance
on the improvement of BV and VTH stability. In this paper, the gate length LG of C-HEMT
is the same as the length of the thicker p-GaN layer of P-HEMT for achieving the same
on-resistance, and the length of the partially-recessed p-GaN layer is not included in the
nominal gate length LG. Table 1 shows the calibrated results of the 100 V enhancement-
mode p-GaN HEMT [22], and it can be seen that the results are in good agreement with the
datasheet as shown in Figure 3. Typically, the BV characteristic considering the avalanche
model [23] coincides well with the testing result.

Table 1. Device parameters specification.

Symbols Definitions Typical Value

LS Source length 0.7 µm

LG Gate length 0.35 µm

LD Source-to-gate length 0.7 µm

LGS Source-to-gate length 0.4 µm

LDS-C C-HEMT Gate-to-drain length 1.95 µm

LDS-PR P-HEMT Gate-to-drain length 1.95 µm

LSFP-C C-HEMT Source-field-plate length 0.8 µm

LSF-PR P-HEMT Source-field-plate length (0.8—Gr) µm

LDFP Drain-field-plate length 0.25 µm

tSiN Thickness of SiN 80 nm

tSiO2 Thickness of SiO2 270 nm

GL The left PR p-GaN length 0.1 µm

GR The right PR p-GaN length 0.3 µm

Tp2 Thickness of PR p-GaN 30 nm

Tp1 Thickness of p-GaN 50 nm

tba Thickness of barrier 12.5 nm

tch Thickness of channel 20 nm

tbu Thickness of buffer 2 µm

tnu Thickness of nucleation 10 nm

tsub Thickness of substrate 550 µm

tgate Thickness of Schottky gate 100 nm

χba Al composition of barrier 25%

χbu Al composition of buffer 5%

WG Work-function of the gate 4.8 eV

NDT1 Nitride/AlGaN trap density 3 × 1013 cm−2 (EC − 0.4 eV) [24]

NDTC Channel UID concentration 1 × 1015 cm−3
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Table 1. Cont.

Symbols Definitions Typical Value

NAT1 Buffer acceptor trap density 3 × 1016 cm−3 (EV + 0.9 eV) [17]

NDT2 Buffer donor trap density 1.3 × 1015 cm−3 (EC − 0.11 eV)

NAT2 Silicon/AlN acceptor trap density 3 × 1013 cm−2 (EC − 1.7 eV)

Np-GaN Activated Mg Doping 3.5 × 1017 cm−3
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Figure 3. (a) Capacitance-Voltage characteristic; (b) output characteristic; (c) transfer characteristic;
(d) forward-blocking characteristic. The forward-blocking characteristic is based on the testing data
as there is no breakdown voltage result in the datasheet.

3.1. Static and Transient Characteristics

Figure 4 shows the forward-blocking and output characteristics of the P-HEMT. As
shown in Figure 4a, it can be seen that the BV (IDS_off = 100 µA) for the P-HEMT is increased
by 120% compared with the 100 V C-HEMT, which mainly results from the delayed
occurrence of avalanche breakdown. As shown in Figure 4b, it can be observed that impact
ionization at the drain-side source field plate is decreased at the same 150 V drain bias,
which results from the decreased electrons flowing from source to drain. In addition, as
shown in Figure 4c, the conduction energy EC level at the drain-side of the p-GaN layer for
P-HEMT is clamped, which results from the clamped VC as stated in section II. As shown in
Figure 4d, for typical gate operation voltage VGS = 5 V, the output curves of C-HEMT and
P-HEMT are coincident well, which indicates that the PR p-GaN layer makes a negligible
impact on the on-state resistance. For VGS = 2 V, the IDS for C-HEMT is slightly higher
than P-HEMT, which results from the partial depletion of the 2DEG channel under the PR
p-GaN layer.

Figure 5 shows the transfer characteristics of the P-HEMT. At low drain bias (such
as VDS = 1 V), the transfer curves of C-HEMT and P-HEMT are coincident well and the
threshold voltage difference is less than 0.05 V. However, with the increasing of VDS, the
VTH of C-HEMT decreases obviously while VTH of P-HEMT slightly reduced. Typically, the
VTH decrease from VDS = 1 V to VDS = 50 V is 0.59 V for C-HEMT and 0.1 V for P-HEMT, as
shown in Figure 5b. The significantly decreased VTH for C-HEMT will lead to false turn-on
at high drain bias (typically, from off-state to on-state), which is not acceptable for practical
application. However, from the results, it can be deduced that the P-HEMT with more
stable VTH can be contributed to alleviating this problem very well.
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the channel at VDS = 150 V, (c) conduction energy level EC profile along the channel, and (d) output
characteristic between C-HEMT and P-HEMT.
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Figure 5. Comparison of (a) the transfer, (b) the threshold voltage VTH (at IDS = 10 mA) depending on
VDS between the C-HEMT and P-HEMT. For a fair comparison, the VTH is defined when IDS =10 mA.

To illustrate the impact of the PR p-GaN layer on transient behavior, the simulation
using a double pulse circuit is carried out, as shown in Figure 6. Compared with C-HEMT,
the calculated turn-on loss and turn-off loss of P-HEMT are increased by 0.09 µJ and 0.02 µJ
at 500 kHz respectively, and the total switching loss is increased by less than 7.8%. It
can be inferred the increased switching loss mainly results from the increase of the input
capacitance CISS. As shown in Figure 7, it can be seen that the off-state and on-state input
capacitance CISS is increased by 18.9% and 47.2%, respectively. In addition, as shown in
Figure 7a, the COSS at high-drain bias (VDS > 15 V) is the same as C-HEMT, and the output
capacitance COSS at a low-drain bias (VDS < 15 V) is decreased by 16.7%, which mainly
results from the depletion of 2DEG channel under the PR layer as stated in section II. The
decrease of COSS at VDS < 15 V is contributed to reducing the increment of switching loss.

3.2. Design Considerations of P-HEMT

This section mainly discusses the impact of PR p-GaN layers’ thickness, length, and
doping concentration on the BV and VTH stability.

Figure 8 shows the VTH and BV results for different thicknesses of the PR p-GaN layer.
As shown in Figure 8a, it can be seen that the DIBL value is increased with PR p-GaN layer
thickness. The DIBL parameter is defined as (VHigh

TH − VLow
TH )/(VHigh

DS − VLow
DS ) to represent

the VTH stability, and the smaller value symbolizes the more stable VTH. As shown in
Figure 8b, it can be seen that the VTH for different thickness PR layers from VDS = 1 V
to VDS = 50 V decreases, but the difference is all less than 0.1 V, which indicates the high
stable VTH for P-HEMT. The log-scale transfer characteristics are as shown in Figure 8c–e.
For the same drain bias, the VTH slightly increases (≤0.05 V) with the thickness of the PR
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p-GaN layer, which mainly results from the 2DEG depletion under the PR p-GaN layer. In
addition, it can be observed that the BV is all larger than 320 V, which indicates the impact
of the PR p-GaN layer’s thickness on BV is negligible. However, for a smaller thickness
PR p-GaN layer, the gate-to-source breakdown voltage can be reduced. Figure 9a shows
the IGS—VGS characteristics for 20/30/40 nm PR p-GaN layer, and it can be seen that the
IGS for Tp2 = 20 nm abruptly increases when VGS is larger than 5.1 V. To explore the origin
of the abrupt IGS, the current distribution of the three thickness PR p-GaN layer devices
are plotted, as shown in Figure 9b–d. For the device with Tp2 = 20 nm, the current density
from the PR p-GaN layer to the 2DEG channel is larger than the normal thickness p-GaN
layer. This indicates the high gate current mainly results from the breakdown of the PR
p-GaN layer. As a comparison, the gate current density for Tp2 = 30/40 nm is very small.
Based on the above analysis, it can be deduced that the PR p-GaN layer thickness should
be taken into careful consideration in the design to avoid gate breakdown.
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Figure 6. The switching transient comparison between C-HEMT and P-HEMT by double-pulse
simulation. (a) VDS voltage waveforms; (b) IDS current waveforms; (c) turn on transient at ~10 A IDS

current; (d) turn off transient at ~10 A IDS current.
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Figure 7. Comparison of (a) capacitance-VDS, and (b) CISS-VGS characteristics between C-HEMT and P-HEMT.

Figure 10 shows the impact of PR p-GaN layer length on the BV and VTH characteristics.
It can be seen that DIBL decreases with Gr, which indicates the VTH stability is increased.
However, the DIBL tends to be stable and the BV decreases when Gr is larger than 0.5 µm.
The decrease of the BV mainly results from the high electric field at the drain-side of the PR
p-GaN layer, as shown in Figure 11. Therefore, it can be deduced that the PR p-GaN layer
length should be in a reasonable range to get a good trade-off for VTH stability and high
BV. For the 100 V p-GaN HEMT discussed in this paper, the 0.3~0.5 µm PR p-GaN layer
is recommended.
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Figure 8. (a) Breakdown voltage (BV) and DIBL versus PR thickness; (b) the threshold voltage VTH

(at IDS = 10 mA) depending on VDS; the transfer characteristics of P-HEMT with Tp2 = (c) 20 nm;
(d) 30 nm; (e) 40 nm.
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Figure 9. (a) The IGS-VGS characteristics of P-HEMT with different Tp2; the current distribution at
the gate part for Tp2 = (b) 20 nm, (c) 30 nm, (d) 40 nm.
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Figure 10. (a) BV and DIBL, (b) VTH (at IDS = 10 mA) depending on VDS for different Gr length.

Figure 12 shows the impact of p-GaN doping density on the VTH and BV. It can be
observed that the p-GaN doping density mainly determines the magnitude of VTH, and it
makes a negligible effect on BV and DIBL. Figure 13 shows the VTH and BV characteristics
of P-HEMT with different gate lengths Lg. It can be seen that longer gate length induces
higher VTH, lower DIBL, which means longer gate length is contributed to making VTH
more stable. In addition, longer gate length induces higher BV, which mainly results from
the electric field modulation. However, longer gate length will induce higher on-resistance.
Therefore, the gate length should be taken into careful consideration to get a better trade-off
for VTH stability, BV, and RON.
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Figure 12. (a) BV and DIBL, (b) VTH (at IDS = 10 mA) depending on VDS for different p-GaN doping
density.
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4. Conclusions

This paper proposes a novel p-GaN HEMT with a PR p-GaN layer to improve BV
and VTH stability. The device features a PR p-GaN layer compared with conventional
p-GaN HEMT. At high drain bias, the two-dimensional electron gas channel under the PR
p-GaN layer is depleted to withstand VDS, thereby contributing to improving the BV and
VTH stability. Compared with the C-HEMT, simulation results show that the breakdown
voltage is improved by 120%, and the VTH stability changing with VDS is increased by 490%
(the decrease of VTH at 50 V for P-HEMT and C-HEMT are 0.1 V and 0.59 V respectively).
The static transfer and output characteristics are the same as the C-HEMT, and the total
switching loss at 500 kHz is increased less than 7.8%. In addition, we investigated the
impact of the PR layers’ length, thickness, doping density on the performance.
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