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Abstract: The optimal groove design of a MEMS piezoresistive pressure sensor for ultra-low pres-

sure measurement is proposed in this work. Two designs of the local groove and one design of the 

annular groove are investigated. The sensitivity and linearity of the sensor are investigated due to 

the variations of two dimensionless geometric parameters of these grooves. The finite element 

method is used to determine the stress and deflection of the diaphragm in order to find the sensor 

performances. The sensor performances can be enhanced by creating the annular or local groove on 

the diaphragm with the optimal dimensionless groove depth and length. In contrast, the perfor-

mances are diminished when the local groove is created on the beam at the piezoresistor. The sen-

sitivity can be increased by increasing the dimensionless groove length and depth. However, to 

maintain low nonlinearity error, the annular and local grooves should be created on the top of the 

diaphragm. With the optimal designs of annular and local grooves, the net volume of the annular 

groove is four times greater than that of the local groove. Finally, the functional forms of the stress 

and deflection of the diaphragm are constructed for both annular and local groove cases. 

Keywords: MEMS piezoresistive pressure sensor; groove; sensitivity; linearity; FEM 

 

1. Introduction 

Microelectromechanical system (MEMS) pressure sensors occupy the largest market 

share in the world market of MEMS devices [1–3]. They have been widely used in various 

fields, such as the automotive industry [4,5], the aerospace industry [6,7], biomedical ap-

plications [8,9] and the household appliances [10,11]. From the market trends, the report 

of MEMS pressure sensors shows that from 2019 to 2026, the demands of MEMS pressure 

sensors in biomedical applications (invasive measurements) and the industrial market 

(factory automation, process control systems and smart meters) will be expanding by 

around 30% and 50%, respectively, which are the top two expansion rates of demand in 

the MEMS pressure sensor market, according to Damianos and Mouly (2021) [12]. The 

ultra-low pressure measurement is required in both biomedical applications (2–4 kPa) [13] 

and process control systems such as HVAC (heating, ventilation and air conditioning) 

controls (0.1–1 kPa) [11]. There are two main types of MEMS pressure sensors that are 

widely used for the ultra-low pressure measurement, i.e., the piezoresistive pressure sen-

sor and the capacitive one. To measure ultra-low pressure, high sensitivity, high linearity 

and stability are required in the MEMS pressure sensors [2,11]. The MEMS capacitive 

pressure sensor has the advantages of the simplicity of the technological route, high 
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sensitivity, low energy consumption and low temperature sensitivity, but low linearity, 

low stability and high vibration sensitivity are its main disadvantages [14,15]. Moreover, 

the external processing circuit or application-specific integrated circuit (ASIC) is also re-

quired for converting the capacitance to voltage. Although the MEMS capacitive pressure 

sensor for low pressure range was able to give a high sensitivity of about 260 aF/Pa with 

a fine resolution of about 0.025% in full-scale range, its nonlinearity error was found to be 

quite high, i.e., around −2% FSS [15]. Therefore, for ultra-low pressure measurements, 

when high accuracy is required, the MEMS piezoresistive pressure sensor is preferred. 

The MEMS piezoresistive pressure sensor has the advantages of high linearity and stabil-

ity [2], while its sensitivity can be improved by changing the diaphragm geometry, as 

reported in several previous works. Zhao et al. (2016) [16] proposed a bossed diaphragm 

with a peninsula-island structure, which was able to give sensitivity of 0.066 mV/V/kPa 

and nonlinearity error of 0.42% FSS. Guan et al. (2016) [17] obtained sensitivity of 4.72 

mV/V/kPa and nonlinearity error of 0.18% FSS by designing the shuriken-structure dia-

phragm. Xu et al. (2017) [18] proposed the diaphragm with groove and peninsula island, 

which provided sensitivity of 60 mV/V/kPa and nonlinearity error of 0.36% FSS. Tran et 

al. (2018a) [19] proposed a combination of the cross-beam membrane and the peninsula 

(CBMP), which gave sensitivity of 5.4 mV/V/kPa and nonlinearity error of 0.28% FSS. Tran 

et al. (2018b) [20] proposed the diaphragm with a combination of the petal edge, the nar-

row beam, the center boss and the groove, which provided sensitivity of 6.93 mV/V/kPa 

and nonlinearity error of 0.23% FSS. Li et al. (2020) [21] proposed the diaphragm with  

groove and rood beam, which provided sensitivity of 4.48 mV/V/kPa and nonlinearity 

error of 0.25% FSS. Zoheir et al. (2020) [22] proposed the diaphragm with a patterned 

groove, which was able to provide sensitivity of 2.1 mV/V/kPa. Basov and Prigodskiy 

(2020) [23] proposed the diaphragm with multirigid islands, which gave sensitivity of 34.5 

mV/V/kPa and nonlinearity error of 0.81% FSS. Basov (2021) [24] proposed the novel elec-

trical circuit, which was able to provide sensitivity of 44.9 mV/V/kPa and nonlinearity 

error of 1.2% FSS. The main challenge of the diaphragm design of the MEMS piezoresis-

tive pressure sensor is to achieve a tradeoff between sensitivity and linearity. There are 

several techniques for the diaphragm design to improve sensitivity with less of a negative 

effect on linearity, as will be described in Section 2.2 (design considerations). The groove 

design is one of the interesting techniques for the diaphragm design that is investigated 

in the present work in order to find the optimal groove design(s) for the MEMS piezore-

sistive pressure sensor for ultra-low pressure measurements. 

2. Background 

2.1. Working Principle of MEMS Piezoresistive Pressure Sensors 

The MEMS piezoresistive pressure sensor can detect pressure by realizing the effect 

of piezoresistance on the piezoresistors, where the relative change in resistance (∆𝑅 𝑅0⁄ ) 

can be expressed as [25] 

∆𝑅

𝑅0
= 𝜎𝑙𝜋𝑙 + 𝜎𝑡𝜋𝑡 (1) 

where 𝜎𝑙 and 𝜎𝑡 are the longitudinal and transverse stresses within the piezoresistor, re-

spectively, and 𝜋𝑙  and 𝜋𝑡  are the longitudinal and transverse piezoresistance coeffi-

cients, respectively. In the present work, four p-type piezoresistors are fabricated on the 

(100) oriented plane along the <110> direction. Therefore, ∆𝑅 𝑅0⁄  in Equation (1) can be 

expressed, according to [26], as 

∆𝑅

𝑅0
=

𝜋44(𝜎𝑙 − 𝜎𝑡)

2
=

𝜋44(∆𝜎)

2
 (2) 

where ∆𝜎 is the stress difference between the longitudinal and transverse stresses within 

the piezoresistor and 𝜋44 = 138.110−11 𝑃𝑎−1, according to Bao (2005) [27]. In the present 
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work, four silicon piezoresistors are arranged in the full Wheatstone bridge circuit, and 

the output voltage (𝑉𝑜𝑢𝑡) can be described as 

𝑉𝑜𝑢𝑡 = [
∆𝜎1 − ∆𝜎2

(4 𝜋44⁄ ) + ∆𝜎1 + ∆𝜎2

] 𝑉𝑖𝑛 (3) 

where 𝑉𝑖𝑛 is the supply voltage and subscripts 1 and 2 denote the variables of the resistor 

𝑅1 and 𝑅2, respectively. 

2.2. Design Considerations 

The MEMS piezoresistive pressure sensor for ultra-low pressure measurement in ap-

plications, such as biomedical devices and HVAC systems, requires high sensitivity (𝑆) 

and low nonlinearity error (𝑁𝐿). The sensitivity is defined as the ratio of the full-span scale 

output voltage (𝑉𝐹𝑆𝑆) to the pressure difference (∆𝑃) between the maximum applied pres-

sure (𝑃𝑚𝑎𝑥) and the reference pressure (𝑃0) divided by 𝑉𝑖𝑛, which can be expressed as 

𝑆 =  
𝑉𝑚𝑎𝑥 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡

(𝑃𝑚𝑎𝑥 − 𝑃0) ∙ 𝑉𝑖𝑛
=  

𝑉𝐹𝑆𝑆

∆𝑃 ∙ 𝑉𝑖𝑛
 (4) 

The nonlinearity error represents the accuracy of the sensor, whose definition is the 

percentage of the output voltage difference (∆𝑉) between the output voltage at the meas-

urement point (𝑉𝑜𝑢𝑡,𝑖) and the ideal output voltage (𝑉𝑖𝑑𝑒𝑎𝑙) normalized by 𝑉𝐹𝑆𝑆. The non-

linearity error can be written as 

𝑁𝐿 =  100% ×
[𝑉𝑜𝑢𝑡,𝑖 − 𝑉𝑖𝑑𝑒𝑎𝑙]

𝑉𝐹𝑆𝑆
= 100% ×

∆𝑉

𝑉𝐹𝑆𝑆
 (5) 

where 𝑉𝑖𝑑𝑒𝑎𝑙 = 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 + (𝑃𝑖 − 𝑃0) (
𝑉𝐹𝑆𝑆

∆𝑃
). The highest nonlinearity error of all measure-

ment points is used to represent the nonlinearity error of the sensor in this work. 

On the basis of the basic design of the flat diaphragm, sensitivity is higher when the 

width to thickness ratio (𝑏 𝑗⁄ ) of the square diaphragm is increased but nonlinearity error 

is also increased as a consequence, where 𝑏 is the diaphragm width and 𝑗 is the dia-

phragm thickness. There are two main sources of nonlinearity error. The first source is the 

nonlinearity of stress when the balloon effect occurs [8]; it is well known that the stiffness 

at the diaphragm edge is higher than that in the middle of the diaphragm. Therefore, when 

the thin diaphragm is exerted by high pressure, the balloon effect can occur. The second 

source is the unbalanced stresses between 𝑅1 and 𝑅2 (|∆𝜎1| ≠ |∆𝜎2|). The difference in 

the mechanical stresses of the resistors can be caused by the inappropriate placement of 

the piezoresistors or technological errors, such as the method of diaphragm etching, the 

error in lithography in displacement of Wheatstone bridge branches, the quality of the 

orientation of the crystallographic plane and the direction in the original wafers as a ma-

terial, which leads to uneven etching, asymmetry in the stepped arrangement of the die-

lectric layers on chip surface, etc. According to Equation (3), if ∆𝜎1 + ∆𝜎2 is nonzero, 𝑉𝑜𝑢𝑡 

is not linearly proportional to the stress even though ∆𝜎1 and ∆𝜎2 change linearly with 

the pressure [28]. To alleviate the balloon effect, the local stiffness of the diaphragm is 

taken into account when the diaphragm is designed. The flexural stiffness (𝐷) of the di-

aphragm is a function of the diaphragm thickness (𝑗), which is described as [29] 

𝐷 =  
𝐸𝑗3

12(1 − 𝜈2)
 (6) 

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. Therefore, the diaphragm thick-

ness is a key geometric parameter for the diaphragm design. Sandmaier (1991) [30] in-

creased the local thickness in the middle of the diaphragm by additionally attaching the 

boss. The boss can help reduce deflection (𝛿), and as a result, the balloon effect and the 

nonlinearity error are reduced. To obtain higher sensitivity, the diaphragm width (𝑏) 

must be made larger. Therefore, the diaphragm width is one of the key factors in design 

of MEMS piezoresistive pressure sensors, especially in biomedical devices. Instead of 
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having the boss in the middle of the diaphragm, using the cross-beam on the diaphragm 

was proposed by Tian et al. (2010) [31]. For the diaphragm with the cross-beam, the dia-

phragm width becomes smaller without loss of sensitivity and linearity, compared with 

the diaphragm with boss. With the same diaphragm width as in Tian et al. (2010) [31], 

Huang and Zhang (2014) [28] proposed the peninsula structures that are located at four 

sides of the diaphragm edge. The diaphragm with the peninsula structures can achieve 

twice the sensitivity with slightly increased nonlinearity error, compared with the dia-

phragm with the cross-beam. To obtain higher sensitivity, the stress within SCR, where 

the piezoresistors are placed, must be increased. SCR is commonly created by an abrupt 

change in the geometry’s cross-sectional area, typically around a sharp corner, hole, notch 

or groove. When the size of SCR is reduced, the strain energy is generated within the 

smaller volume of SCR, and hence, higher strain-energy density occurs in SCR, leading to 

the increased stress [32]. Many research works reported that higher sensitivity could be 

achieved by creating a groove. Shimazoe and Matsuoka (1982) [33] reported that a combi-

nation of the circular diaphragm with center boss and annular groove significantly im-

proved both sensitivity and linearity compared with the conventional diaphragm. How-

ever, the chip size was large and the demand on higher sensitivity was still required. 

Zhang et al. (2014) [34] reported that the annular groove diaphragm with embedded sili-

con nanowires could boost sensitivity by 1.78 times compared with their previous work 

[35], but the effect of the annular groove on sensitivity and linearity was not presented. 

Xu et al. (2016) [36] proposed the high-sensitivity pressure sensor for the pressure range 

of 0–500 Pa. To obtain higher sensitivity, the annular groove depth was optimized by fac-

toring in the averaged stress difference and the frequency of the first resonance mode, but 

the effect of the groove depth on nonlinearity error was not presented. Li et al. (2017) [37] 

proposed the annular groove diaphragm with the rood beam, which could improve sen-

sitivity, but the effect of the groove dimensions on sensitivity and linearity was not clearly 

reported. Sahay et al. (2021) [38] proposed a combination of the annular groove dia-

phragm with center boss, which helped improve both sensitivity and linearity, but the 

information on how to obtain the proposed groove dimension was not presented. Zoheir 

and Sajjad (2018) [39] investigated the groove design for the MEMS cantilever-based en-

ergy harvester, in which the position and configuration of groove were the main factors 

that significantly affected the output voltage. Tran et al. (2018b) [20] increased the stress 

in SCR by changing the diaphragm edge to the petal shape and also added the local groove 

in order to increase sensitivity. It was found that the local groove at the longitudinal pie-

zoresistor was the best configuration to acquire the best sensor performance, but the effect 

of the groove dimension on sensitivity and linearity was not presented. Zoheir et al. (2020) 

[22] proposed a diaphragm with a patterned groove, which could significantly improve 

sensitivity, but the nonlinearity error of the sensor was not presented. According to pre-

vious works [20,22,33,34,36–39], it was found that the diaphragm with groove was able to 

achieve higher sensitivity. However, how the groove is to be properly designed was not 

yet clear in previous works. Therefore, three groove designs are investigated in the pre-

sent work. 

2.3. Groove Designs 

Because the MEMS piezoresistive pressure sensor for ultra-low pressure measure-

ments with optimized geometric parameters of boss, cross-beam, peninsular structures 

and petal edge was proposed by Thawornsathit et al. (2022) [40], as shown in Figure 1, 

each groove design in the present work is investigated on the framework of the MEMS 

piezoresistive pressure sensor of Thawornsathit et al. (2022) [40]. 
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Figure 1. MEMS piezoresistive pressure sensor for ultra-low pressure measurements with opti-

mized geometric parameters, proposed by Thawornsathit et al. (2022) [40]. 

To design the groove, there are three important geometric parameters, i.e., the groove 

width (𝑤𝑔), the groove depth (𝑑𝑔) and the groove length (𝑙𝑔), that should be considered 

for how they affect the stress (𝜎) in the piezoresistor and the maximum deflection of the 

diaphragm (𝛿𝑚𝑎𝑥). In order to determine the significant geometric parameters for the 

analysis and construction of the scaling law, the geometric parameters are expressed in 

dimensionless forms. The reasoning for constructing each dimensionless geometric pa-

rameter is explained as follows. The dimensionless groove width is expressed as 𝑤𝑔̅̅̅̅ =

𝑤𝑔/𝑙𝑏, where 𝑙𝑏 is the beam length. Because the purpose of making the groove is to in-

crease 𝜎 in SCR with effect on 𝛿𝑚𝑎𝑥 as less as possible, the groove area should be kept as 

small as possible. SCR is found on the beam where the piezoresistor is placed so that 𝑤𝑔 

should be bounded by 𝑙𝑏. In the present work, all groove designs are investigated in case 

of 𝑤𝑔̅̅̅̅  = 1 when 𝑙𝑏 = 100 μm, as shown in Figure 1. To construct the dimensionless groove 

depth (𝑑𝑔
̅̅ ̅), 𝑑𝑔  is nondimensionalized by the thickness of the layer upon which the 

groove is created so that 𝑑𝑔
̅̅ ̅ is varied between 0 and 1 for all case studies. The dimension-

less groove length (𝑙�̅� = 𝑙𝑔/𝑤𝑏) is constructed by nondimensionalizing 𝑙𝑔 with the beam 

width (𝑤𝑏)—in other words, the ratio of the groove length to the length of SCR. 𝜎 and 

𝛿𝑚𝑎𝑥 are also considered in dimensionless forms of �̅� and 𝛿̅, respectively, which are ex-

plained as follows. According to the Kirchoff–Love plate theory [41], the governing equa-

tion of the diaphragm deflections can be written in the Cartesian coordinates as 

(
∂4δ

∂x4
+ 2

∂4δ

∂x2 ∂y2
+

∂4δ

∂y4
) =

P

𝐷
 (7) 

where 𝛿 is governed by 𝐷 and 𝑃. Intuitively, 𝛿 is also dependent on 𝑏 because in prin-

ciple 𝑏 is used to nondimensionalize the coordinates (𝑥, 𝑦). According to this observa-

tion and the aid of the definition of 𝐷 in Equation (6), Clark and Wise (1979) [29] pro-

posed the dimensionless diaphragm deflection as 

𝛿̅ =
𝐸𝑗3𝛿

12(1 − 𝜈2)𝑃𝑏4
 (8) 

This dimensionless diaphragm deflection is adopted in this work. The stress compo-

nents 𝜎𝑥 and 𝜎𝑦 in the x and y directions, respectively, and the shear stress 𝜏𝑥𝑦 on the 

diaphragm can be defined as 

𝜎𝑥 = −
𝐸𝑗

2(1 − 𝜈2)
(

𝜕2𝛿

𝜕𝑥2
+ 𝜈

𝜕2𝛿

𝜕𝑦2
) (9) 
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𝜎𝑦 = −
𝐸𝑗

2(1 − 𝜈2)
(𝜈

𝜕2𝛿

𝜕𝑥2
+

𝜕2𝛿

𝜕𝑦2
) (10) 

𝜏𝑥𝑦 = 𝐺𝑗 (
𝜕2𝛿

𝜕𝑥𝜕𝑦
) (11) 

where 𝐺 is the shear modulus. These stresses are dependent on 𝛿. Hence, these stresses 

are also dependent on 𝐷, 𝑃 and 𝑏. When the buckling diaphragm is considered, the 

stresses depend on the square of the ratio of the diaphragm thickness to its width (𝑗2 𝑏2⁄ ), 

according to Clark and Wise (1979) [29]. Therefore, �̅� can be nondimensionalized as 

�̅� =
𝜎𝑗2

𝑃𝑏2
 (12) 

Because 𝑤𝑔̅̅̅̅  is fixed as a constant in all case studies in the present work, the behaviors 

of 𝛿̅ and �̅� are investigated as the functions of only two dimensionless parameters, i.e., 

𝑑𝑔
̅̅ ̅ and 𝑙�̅�. Moreover, the effects of 𝑑𝑔

̅̅ ̅ and 𝑙�̅� on the sensitivity and nonlinearity of the 

MEMS piezoresistive pressure sensor are also investigated in each groove design. 

According to several previous works [20,22,33,34,36–39], two groove types were 

found in the MEMS piezoresistive pressure sensor: the local groove and the annular 

groove. Therefore, two designs of the local groove and one design of the annular groove 

are investigated in this work. The first design is the local groove 𝐿𝐺1, proposed by Tran 

et al. (2018b) [20], where grooves are created at the locations of the piezoresistors, as 

shown in Figure 2. 

  

(a) (b) 

 

(c) 

Figure 2. Local groove design 1: (a) grooves at longitudinal piezoresistors (𝐿𝐺1 − 𝐿0), (b) grooves 

at transverse piezoresistors (𝐿𝐺1 − 0𝑇) and (c) grooves at locations of both longitudinal and trans-

verse piezoresistors (𝐿𝐺1 − 𝐿𝑇). (Note: not to scale.) 

The second design is also the local groove 𝐿𝐺2, proposed in this work, where grooves 

are created on the diaphragm along both sides of the beams, as shown in Figure 3. To find 

the proper design of the local groove 𝐿𝐺2 that is comparable to the local groove 𝐿𝐺1 on 

the same basic, two criteria for the dimensions of local groove 𝐿𝐺2 are specified in the 

present work, as follows: (1) 𝑙�̅� = 0.175, which is specified when the dimensionless net 

groove volume of 𝐿𝐺2, i.e., for eight grooves (8 × 𝑙�̅� × 𝑑𝑔
̅̅ ̅ × 𝑤𝑔̅̅̅̅ ), is equal to that of 𝐿𝐺1, 

i.e., for four grooves (4 × 𝑙�̅� × 𝑑𝑔
̅̅ ̅ × 𝑤𝑔̅̅̅̅ ), and (2) 𝑙�̅� = 0.35, which is specified when the di-

mensionless groove volume of 𝐿𝐺2 (𝑙�̅� × 𝑑𝑔
̅̅ ̅ × 𝑤𝑔̅̅̅̅ ) is equal to that of 𝐿𝐺1 (𝑙�̅� × 𝑑𝑔

̅̅ ̅ × 𝑤𝑔̅̅̅̅ ).  
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(a) (b) 

   
 

(c) (d) 

 
 

(e) (f) 

Figure 3. Local groove design 2: (a) grooves on top of diaphragm at longitudinal piezoresistors 

(𝐿𝐺2 − 𝐿0 − 𝑇𝑜𝑝), (b) grooves at bottom of diaphragm at longitudinal piezoresistors (𝐿𝐺2 − 𝐿0 −

𝐵𝑜𝑡𝑡𝑜𝑚) , (c) grooves on top of diaphragm at transverse piezoresistors (𝐿𝐺2 − 0𝑇 − 𝑇𝑜𝑝) , (d) 

grooves at bottom of diaphragm at transverse piezoresistors (𝐿𝐺2 − 0𝑇 − 𝐵𝑜𝑡𝑡𝑜𝑚), (e) grooves on 

top of diaphragm at both longitudinal and transverse piezoresistors (𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 ) and (f) 

grooves at bottom of diaphragm at both longitudinal and transverse piezoresistors (𝐿𝐺2 − 𝐿𝑇 −

𝑏𝑜𝑡𝑡𝑜𝑚). (Note: not to scale.) 

The third design is the annular groove 𝐴𝐺, where grooves are created along the dia-

phragm edge, as shown in Figure 4. For 𝐿𝐺1 and 𝐿𝐺2, grooves are created at three loca-

tions, as follows: (1) grooves only at longitudinal piezoresistors (𝐿𝐺𝑋 − 𝐿0), (2) grooves 

only at transverse piezoresistor locations (𝐿𝐺𝑋 − 0𝑇) and (3) grooves created at both lon-

gitudinal and transverse piezoresistors (𝐿𝐺𝑋 − 𝐿𝑇). The comparison of sensor perfor-

mances of grooves on the top of the diaphragm with grooves at the bottom of the dia-

phragm are also investigated in this work, as shown in Figures 3 and 4. Therefore, there 

are 11 groove configurations investigated in this work, as listed in Table 1. 

  

(a) (b) 

Figure 4. Annular groove: (a) grooves on top of diaphragm (𝐴𝐺 − 𝑇𝑜𝑝) and (b) grooves at bottom 

of diaphragm (𝐴𝐺 − 𝐵𝑜𝑡𝑡𝑜𝑚). (Note: not to scale.) 
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Table 1. List of groove configurations investigated in the present work. 

Configuration 
Groove Depth 

(𝒅𝒈
̅̅̅̅ ) 

Groove Length 

(𝒍�̅�) 

𝐿𝐺1 − 𝐿0 0.2, 0.4, 0.6 and 0.8 0.35 

𝐿𝐺1 − 0𝑇 0.2, 0.4, 0.6 and 0.8 0.35 

𝐿𝐺1 − 𝐿𝑇 0.2, 0.4, 0.6 and 0.8 0.35 

𝐿𝐺2 − 𝐿0 − 𝑇𝑜𝑝 0.2, 0.4, 0.6 and 0.8 0.175 and 0.35 

𝐿𝐺2 − 0𝑇 − 𝑇𝑜𝑝 0.2, 0.4, 0.6 and 0.8 0.175 and 0.35 

𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 0.2, 0.4, 0.6 and 0.8 0.175 and 0.35 

𝐿𝐺2 − 𝐿0 − 𝐵𝑜𝑡𝑡𝑜𝑚 0.2, 0.4, 0.6 and 0.8 0.175 and 0.35 

𝐿𝐺2 − 0𝑇 − 𝐵𝑜𝑡𝑡𝑜𝑚 0.2, 0.4, 0.6 and 0.8 0.175 and 0.35 

𝐿𝐺2 − 𝐿𝑇 − 𝐵𝑜𝑡𝑡𝑜𝑚 0.2, 0.4, 0.6 and 0.8 0.175 and 0.35 

𝐴𝐺 − 𝑇𝑜𝑝 0.2, 0.4, 0.6 and 0.8 8.0 

𝐴𝐺 − 𝐵𝑜𝑡𝑡𝑜𝑚 0.2, 0.4, 0.6 and 0.8 8.0 

3. Finite Element Analysis 

To determine the stress and deflection of the diaphragm over a range of the applied 

pressures of 1–5 kPa, the finite element method is performed by using the commercial 

software ANSYS Mechanical version 18.1. Because of the symmetry in the middle of the 

sensor, only a quarter of the sensor is created for the finite element model, as shown in 

Figure 5a. The hexahedral cell type with a quadratic element order is used for all case 

studies, as shown in Figure 5b–f. The grids are set with the same type in all case studies 

where there are differences only in the thickness of the grid when the groove depth is 

changed. Because of the nonlinear mechanical behavior, the large deflection model is used 

to acquire an accurate result, following Thawornsathit et al. (2022) [40]. For the material 

properties of silicon used in the simulation for both diaphragm and beam layers, Young’s 

modulus and Poisson’s ratio are 160 GPa and 0.22, respectively [42,43]. 

 

 

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 5. Computational domain for finite element analysis: (a) boundary conditions, (b) mesh dis-

tribution for LG1, (c) mesh distribution for LG2-Top, (d) mesh distribution for LG2-Bottom, (e) mesh 

distribution for AG-Top and (f) mesh distribution for AG-Bottom. 

3.1. Stress Distribution of the Sensor with the Local Groove LG1 

Figure 6 shows the comparison of the equivalent stress distributions at the applied 

pressure of 5 kPa between the sensor without groove and the sensor with the local groove 

𝐿𝐺1 − 𝐿𝑇. The equivalent stress distributions reveal that the stresses at the piezoresistors 

decrease when the local groove 𝐿𝐺1 − 𝐿𝑇 is created. The distributions of the stress differ-

ence (𝜎𝑙 − 𝜎𝑡) at the piezoresistors with and without groove are studied in detail in Fig-

ure 7. Because of the bending moment (M), the compression stress (𝜎𝑐) is generated 

above the neutral axis, whereas the tension stress (𝜎𝑡) is generated below the neutral axis. 

Figure 7 reveals that the stress difference is close to zero near the neutral axis. Therefore, 

the stress difference at the piezoresistor placed in the local groove 𝐿𝐺1 − 𝐿𝑇 decreases 

because the piezoresistor is located closer to the neutral axis so that the sensitivity of the 

sensor with the local groove 𝐿𝐺1 − 𝐿𝑇 is decreased, as can be seen in Figure 8a. Figure 8b 

shows that the nonlinearity error of the sensor with the local groove 𝐿𝐺1 drastically in-

creases when 𝑑𝑔
̅̅ ̅ is increased in the case when the local groove 𝐿𝐺1 is created at the lon-

gitudinal piezoresistors, i.e., 𝐿𝐺1 − 𝐿0 and 𝐿𝐺1 − 𝐿𝑇, whereas the effect of 𝑑𝑔
̅̅ ̅ on the 

nonlinearity error is negligible when the local groove 𝐿𝐺1 is created at the transverse pi-

ezoresistors, i.e., 𝐿𝐺1 − 0𝑇. Because sensitivity and nonlinearity error are required to be 

maximized and minimized, respectively, the maximum ratio of sensitivity to nonlinearity 

error (
𝑆

𝑁𝐿
)

𝑚𝑎𝑥
 is used as a criterion to determine the optimal design of the sensor with 

groove. Figure 9 reveals that 𝐿𝐺1 − 𝐿0 at 𝑑𝑔
̅̅ ̅ = 0.2 is the optimal design of the local 

groove 𝐿𝐺1. 

  
(a) (b) 

Figure 6. Equivalent stress distributions at the applied pressure of 5 kPa: (a) sensor without groove 

and (b) sensor with local groove 𝐿𝐺1 − 𝐿𝑇 (𝑑𝑔
̅̅ ̅ = 0.8). (Only one-fourth of the domain is displayed.) 
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Figure 7. Stress difference distributions at the longitudinal piezoresistor without groove and with 

local groove 𝐿𝐺1 − 𝐿𝑇 (𝑑𝑔
̅̅ ̅ = 0.8) at the applied pressure of 5 kPa. (Only one-half of the domain is 

displayed.) 

  
(a) (b) 

Figure 8. Variations of (a) sensitivity and (b) nonlinearity error with dimensionless groove depth of 

sensor with local grove 𝐿𝐺1. 

 

Figure 9. Variation of ratio of sensitivity to nonlinearity error (
𝑆

𝑁𝐿
) with dimensionless groove 

depth of sensor with local grove 𝐿𝐺1. 

3.2. Stress Distribution of the Sensor with the Local Groove LG2 

Figure 10 shows the distributions of 𝜎𝑙 − 𝜎𝑡 at the transverse and longitudinal pie-

zoresistors of the sensor with the local groove 𝐿𝐺2 − 𝐿𝑇 on the top of the diaphragm. The 

increment of 𝑑𝑔
̅̅ ̅ slightly affects the magnitude of 𝜎𝑙 − 𝜎𝑡, leading to the small change in 

sensitivity and nonlinearity error, as shown in Figure 11. When the local groove 𝐿𝐺2 is 

created at only the longitudinal piezoresistors (𝐿𝐺2 − 𝐿0 − 𝑇𝑜𝑝), the worst nonlinearity 

error is found. 
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(a) (b) 

Figure 10. Stress difference distributions at the applied pressure of 5 kPa: (a) transverse piezoresistor 

and (b) longitudinal piezoresistor for 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 (𝑑𝑔
̅̅ ̅ = 0.8). (Only one-half of the domain is 

displayed.) 

  

(a) (b) 

Figure 11. Variations of (a) sensitivity and (b) nonlinearity error with dimensionless groove depth 

of sensor with local grove 𝐿𝐺2 on the top of diaphragm at 𝑙�̅� = 0.175. 

The performances of the sensor with the local groove 𝐿𝐺2 at the bottom of dia-

phragm is also investigated, as shown in Figure 12. The sensor with the local groove 𝐿𝐺2 

at the bottom of diaphragm experiences the same effect of 𝑑𝑔
̅̅ ̅ on sensitivity as the sensor 

with the local groove 𝐿𝐺2 on the top of diaphragm; however, its nonlinearity error is 

worse in all case studies. Therefore, the effect of 𝑙�̅� on the sensor performances is worth 

investigating in the case of the sensor with the local groove 𝐿𝐺2 on the top of diaphragm 

only. 

  

(a) (b) 

Figure 12. Variations of (a) sensitivity and (b) nonlinearity error with dimensionless groove depth 

of sensor with local grove 𝐿𝐺2 at the bottom of diaphragm at 𝑙�̅� = 0.175. 
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Figure 13 shows the effect of 𝑙�̅� on the performances of the sensor with the local 

groove 𝐿𝐺2 on the top of the diaphragm. With the double increment of 𝑙�̅�, the sensitivity 

can be increased by 0.6% for the local groove 𝐿𝐺2 at the longitudinal or transverse piezo-

resistors, i.e., 𝐿𝐺2 − 𝐿0 − 𝑇𝑜𝑝  or 𝐿𝐺2 − 0𝑇 − 𝑇𝑜𝑝 , respectively, and 1% for the local 

groove 𝐿𝐺2 at both the longitudinal and transverse piezoresistors, i.e., 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝, 

and the nonlinearity error is lower in all case studies, especially when the local groove 

𝐿𝐺2 is created with 0.4 ≤ 𝑑𝑔
̅̅ ̅ ≤ 0.6.  

 

(a) 

 

(b) 

Figure 13. Effects of 𝑙�̅� on (a) sensitivity and (b) nonlinearity error of sensor with local groove 𝐿𝐺2 

on the top of diaphragm. 

Figure 14 shows the performance comparisons between the sensor with the local 

groove 𝐿𝐺2 and 𝑙�̅� = 0.35 on the top and the same at the bottom of the diaphragm. The 

sensitivity in case of 𝐿𝐺2 on the top of diaphragm is higher than that of 𝐿𝐺2 at the bot-

tom of diaphragm when 𝑑𝑔
̅̅ ̅ > 0.4, whereas the linearity in the case of 𝐿𝐺2 on the top of 

diaphragm is better than that of 𝐿𝐺2 at the bottom of diaphragm in all case studies. 

  
(a) (b) 
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Figure 14. Comparisons of (a) sensitivity and (b) nonlinearity error between sensors with local 

groove 𝐿𝐺2 and 𝑙�̅� = 0.35 on top and at bottom of diaphragm. 

Therefore, the sensor with the local groove 𝐿𝐺2 on the top of diaphragm and 𝑙�̅� = 

0.35 is investigated further to determine its optimal design by considering (
𝑆

𝑁𝐿
)

𝑚𝑎𝑥
. Figure 

15 reveals that 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 at 𝑑𝑔
̅̅ ̅ = 0.6 is the optimal design of the local groove 𝐿𝐺2. 

 

Figure 15. Variation of ratio of sensitivity to nonlinearity error (
𝑆

𝑁𝐿
) with dimensionless groove 

depth of sensor with local grove 𝐿𝐺2 at 𝑙�̅� = 0.35. 

3.3. Stress Distribution of the Sensor with the Annular Groove AG 

The stress difference distributions of the sensor with the annular groove 𝐴𝐺 on the 

top of the diaphragm (𝐴𝐺 − 𝑇𝑜𝑝) is investigated in Figure 16 where the distributions of 

𝜎𝑙 − 𝜎𝑡 at the transverse and longitudinal piezoresistors are displayed.  

  
(a) (b) 

Figure 16. Stress difference distributions at the applied pressure of 5 kPa: (a) transverse piezoresistor 

and (b) longitudinal piezoresistor in case of AG- Top (𝑑𝑔
̅̅ ̅ = 0.8). (Only one-half of the domain dis-

played). 

It clearly shows that the increment of 𝑑𝑔
̅̅ ̅ causes the magnitude of 𝜎𝑙 − 𝜎𝑡 higher 

leading to the higher sensitivity of the sensor as shown in Figure 17. However, the incre-

ment of 𝑑𝑔
̅̅ ̅ also makes the nonlinearity error higher with the faster rate compared with 

the sensitivity, meaning that the tradeoff between sensitivity and linearity is acute with 

the annular groove AG. 
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(a) (b) 

Figure 17. Variations of (a) sensitivity and (b) nonlinearity error with dimensionless groove depth 

of sensors with annular grove 𝐴𝐺 created on the top (solid line) and at the bottom (dotted line) of 

diaphragm. 

The performances of the sensor with the annular groove 𝐴𝐺 at the bottom of the di-

aphragm are also investigated. The simulation results reveal that both sensitivity and non-

linearity error are worse compared with those on the top of the diaphragm as shown in 

Figure 17. Obviously, the optimal design of the annular groove AG is 𝐴𝐺 − 𝑇𝑜𝑝 at 𝑑𝑔
̅̅ ̅ = 

0.2 as indicated by the (
𝑆

𝑁𝐿
)

𝑚𝑎𝑥
 in Figure 18. 

 

Figure 18. Variations of ratios of sensitivity to nonlinearity error (
𝑆

𝑁𝐿
) with dimensionless groove 

depth of sensors with annular groove 𝐴𝐺. 

4. Groove Design Comparison 

The performances of the sensors with three optimal groove designs, i.e., 𝐿𝐺1 − 𝐿0 

with 𝑑𝑔
̅̅ ̅ = 0.2, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 with 𝑑𝑔

̅̅ ̅ = 0.6 and 𝑙�̅�  = 0.35 and 𝐴𝐺 − 𝑇𝑜𝑝 at 𝑑𝑔
̅̅ ̅ = 0.2, 

are compared in this section. According to Equation (3), the output voltage at each meas-

urement point (𝑉𝑜𝑢𝑡,𝑖) can be calculated by 

𝑉𝑜𝑢𝑡,𝑖 = [
∆𝜎1,𝑖 − ∆𝜎2,𝑖

(4 𝜋44⁄ ) + ∆𝜎1,𝑖 + ∆𝜎2,𝑖
] 𝑉𝑖𝑛 (13) 

where the subscript 𝑖 denotes the values of any parameter at each measurement point of 

the applied pressure (𝑃 = 1, 2, 3, 4 and 5 kPa), and the input voltage (𝑉𝑖𝑛) of 5 V is used in 

the present work. Therefore, the sensitivity can be calculated by substituting 𝑉𝑜𝑢𝑡,5 into 

𝑉𝑚𝑎𝑥 in Equation (4), i.e., 𝑆 =  
𝑉𝑚𝑎𝑥−𝑉𝑜𝑓𝑓𝑠𝑒𝑡

(𝑃𝑚𝑎𝑥−𝑃0)∙𝑉𝑖𝑛
, where the values of 𝑉𝑜𝑓𝑓𝑠𝑒𝑡, 𝑃𝑚𝑎𝑥 and 𝑃0 are  

0 V, 5 kPa and 0 kPa, respectively. 

Figure 19a shows the variation of the output voltage with the applied pressures of 1–

5 kPa of the sensors with and without groove. When the value of 𝑉𝑜𝑓𝑓𝑠𝑒𝑡  is zero, the 



Micromachines 2022, 13, 2247 15 of 25 
 

 

highest full-span scale output voltage (𝑉𝐹𝑆𝑆) is given by the sensor with 𝐴𝐺 − 𝑇𝑜𝑝 at 𝑉𝐹𝑆𝑆 

= 194 mV, where the sensor with 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝, the sensor without groove and the sen-

sor with 𝐿𝐺1 − 𝐿0 give 𝑉𝐹𝑆𝑆 = 189 mV, 170 mV and 168 mV, respectively. 

  

(a) (b) 

Figure 19. Variations of (a) output voltage and (b) nonlinearity error with the applied pressures of 

1–5 kPa of sensors with three optimal groove designs (𝐿𝐺1 − 𝐿0 with 𝑑𝑔
̅̅ ̅ = 0.2, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 

with 𝑑𝑔
̅̅ ̅ = 0.6 and 𝑙�̅� = 0.35 and 𝐴𝐺 − 𝑇𝑜𝑝 with 𝑑𝑔

̅̅ ̅ = 0.2) and without groove. 

The nonlinearity error at each measurement point (𝑁𝐿𝑖) in Figure 19b can be calcu-

lated by 

𝑁𝐿𝑖 =  100% ×
1

𝑉𝐹𝑆𝑆

[𝑉𝑜𝑢𝑡,𝑖 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡 − (𝑃𝑖 − 𝑃0) (
𝑉𝑚𝑎𝑥 − 𝑉𝑜𝑓𝑓𝑠𝑒𝑡

𝑃𝑚𝑎𝑥 − 𝑃0

)] (14) 

In Figure 19b, the sensor with 𝐴𝐺 − 𝑇𝑜𝑝 gives the lowest value of the maximum non-

linearity error of 0.071%, where the sensors with 𝐿𝐺1 − 𝐿0 and 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and the 

sensor without groove give the maximum nonlinearity error of 0.075% FSS, 0.099% FSS 

and 0.11% FSS, respectively. The sensitivity and nonlinearity error of the sensors with 

three optimal groove designs are compared with those of the sensor without groove in 

Table 2. The sensitivity values of the sensors with 𝐴𝐺 − 𝑇𝑜𝑝 (7.774 mV/V/kPa) and 𝐿𝐺2 −

𝐿𝑇 − 𝑇𝑜𝑝  (7.547 mV/V/kPa) are 14% and 11% higher than that of the sensor without 

groove, respectively, where the sensitivity of the sensor with 𝐿𝐺1 − 𝐿0 (6.707 mV/V/kPa) 

is 1.4% lower than that of the sensor without groove. According to the nonlinearity error 

comparison, the nonlinearity errors of these three sensors with 𝐴𝐺 − 𝑇𝑜𝑝, 𝐿𝐺1 − 𝐿0 and 

𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 are 35%, 32% and 10% lower than that of the sensor without groove, re-

spectively. 

Table 2. Comparisons between sensitivity and nonlinearity of the sensors with three optimal groove 

designs and those of the sensor without groove. 

Groove Design 
𝑺 

[mV/V/kPa] 
𝑵𝑳 𝒎𝒂𝒙 

[% FSS] 

𝐿𝐺1 − 𝐿0 
with 𝑑𝑔

̅̅ ̅ = 0.2 
6.707 0.075 

Decrease (−1.4%) Decrease (−32%) 

𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 

with 𝑑𝑔
̅̅ ̅ = 0.6 and 𝑙�̅� = 0.35 

7.547 0.099 

Increase (11%) Decrease (−10%) 

𝐴𝐺 − 𝑇𝑜𝑝 

with 𝑑𝑔
̅̅ ̅ = 0.2 

7.774 0.071 

Increase (14%) Decrease (−35%) 

Without a groove, according to Tha-

wornsathit et al., 2022 [41] 
6.8 0.11 
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Figure 20 shows the comparison of the 
𝑆

𝑁𝐿
 of the sensors with and without groove, 

where the annular groove 𝐴𝐺 − 𝑇𝑜𝑝 gives the highest 
𝑆

𝑁𝐿
 of 109.49, whereas the sensor 

with 𝐿𝐺1 − 𝐿0, the sensor with 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and the sensor without groove give those 

of 89.43, 76.23 and 61.82, respectively. The comparison of 
𝑆

𝑁𝐿
 indicates that all the sensors 

with three optimal groove designs in the present work provide higher performance than 

that of the sensor without groove. When 𝐿𝐺1 − 𝐿0 is created, the sensitivity is reduced 

because of the reduction of the averaged stress difference on the piezoresistors. Therefore, 

there are only two optimal groove designs, i.e., 𝐴𝐺 − 𝑇𝑜𝑝 with 𝑑𝑔
̅̅ ̅ = 0.2 and 𝐿𝐺2 − 𝐿𝑇 −

𝑇𝑜𝑝 with 𝑑𝑔
̅̅ ̅ = 0.6 and 𝑙�̅� = 0.35, that can improve both sensitivity and linearity over that 

of the sensor without a groove. 

 

Figure 20. Ratios of sensitivity to nonlinearity error (
𝑆

𝑁𝐿
) of sensors with three optimal groove de-

signs (𝐿𝐺1 − 𝐿0 with 𝑑𝑔
̅̅ ̅ = 0.2, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 with 𝑑𝑔

̅̅ ̅ = 0.6 and 𝑙�̅�  = 0.35 and 𝐴𝐺 − 𝑇𝑜𝑝 with 

𝑑𝑔
̅̅ ̅ = 0.2) and without a groove. 

Table 3 summarizes the performances of MEMS piezoresistive pressure sensors in 

the present work and previous works. Compared with the MEMS piezoresistive pressure 

sensors with groove in the previous works, the MEMS piezoresistive pressure sensors 

with the optimal groove design of 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and 𝐴𝐺 − 𝑇𝑜𝑝 in the present work 

have higher sensitivity and linearity. 

Table 3. Comparison of performance parameters of different MEMS piezoresistive pressure sensors. 

MEMS Piezoresistive Pressure Sensor 

Pressure 

Range 

(kPa) 

Diaphragm 

Width 

S 

(mV/V/kPa) 

NL 

(% FSS) 
S/NL 

Tran et al. (2018b) [20] (Local groove) 0–5 2900 μm 6.93 0.23 30.15 

Li et al. (2020) [21] (Annular groove) 0–6.895 3600 μm 4.48 0.25 17.92 

Sahay et al. (2021) [38] (Annular groove) 0–5 3600 μm 4.061 0.15 27.07 

Present work, 𝐿𝐺1 − 𝐿0 (𝑙�̅� = 0.35 and 𝑑𝑔
̅̅ ̅ = 0.2) 1–5 2900 μm 6.707 0.075 89.43 

Present work, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 (𝑙�̅� = 0.35 and 𝑑𝑔
̅̅ ̅ =

0.6) 
1–5 2900 μm 7.547 0.099 76.23 

Present work, 𝐴𝐺 − 𝑇𝑜𝑝 (𝑙�̅� = 8 and 𝑑𝑔
̅̅ ̅ = 0.2) 1–5 2900 μm 7.774 0.071 109.49 

5. Functional Forms of Averaged Stress Difference and Maximum Deflection of  

Sensor with Groove 

The functional forms of the averaged stress difference of 𝑅1 and 𝑅2, i.e., ∆𝜎1 and 

∆𝜎2, and the maximum deflection (𝛿𝑚𝑎𝑥) are constructed for the sensors with two groove 

designs that obtain higher sensitivity and lower nonlinearity error than the sensor without  

groove, i.e., 𝐴𝐺 − 𝑇𝑜𝑝 with 𝑑𝑔
̅̅ ̅ = 0.2 and 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 with 𝑑𝑔

̅̅ ̅ = 0.6 and 𝑙�̅� = 0.35. 

According to Equations (9)–(11), the stresses are governed by the deflection. Therefore, 
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the functional form of the deflection of the sensor with groove in each design must be 

obtained first. For the sensor with the local groove 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 with 𝑑𝑔
̅̅ ̅ = 0.6 and 𝑙�̅� 

= 0.35, the dimensional analysis is used to determine the dimensionless form of 𝛿𝑚𝑎𝑥 . 

With groove, 𝛿𝑚𝑎𝑥 is a function of 𝑃 and 𝑑𝑔, but only these three variables are not able 

to form the dimensionless parameter. According to Equation (6), without groove, the flex-

ural stiffness (𝐷 =
𝐸𝑗3

12(1−𝜈2)
) and the diaphragm width (𝑏) are used to construct the dimen-

sionless deflection parameter. Therefore, these five variables, i.e., 𝛿𝑚𝑎𝑥, 𝑃, 𝑑𝑔, 𝐷 and 𝑏, 

can be used in the case of having groove to form three dimensionless parameters, as fol-

lows: 

𝛿𝑚𝑎𝑥

𝑑𝑔
= 𝑓 (

𝑏

𝑑𝑔
,
12𝑃(1 − 𝜈2)𝑑𝑔

3

𝐸𝑗3
) (15) 

Figure 21 (upper) shows that in the variation of 
𝛿𝑚𝑎𝑥

𝑑𝑔
 with 

𝑏

𝑑𝑔
, 

12𝑃(1−𝜈2)𝑑𝑔
3

𝐸𝑗3  changes 

linearly with 
𝛿𝑚𝑎𝑥

𝑑𝑔
 at each particular point of 

𝑏

𝑑𝑔
. Therefore, 

𝛿𝑚𝑎𝑥

𝑑𝑔
 can be divided by 

12𝑃(1−𝜈2)𝑑𝑔
3

𝐸𝑗3  to simply form a function involving only two dimensionless parameters, i.e., 

𝛿𝑚𝑎𝑥𝐸𝑗3

12𝑃(1−𝜈2)𝑑𝑔
4 and 

𝑏

𝑑𝑔
, and 

𝛿𝑚𝑎𝑥𝐸𝑗3

12𝑃(1−𝜈2)𝑑𝑔
4 will represent the dimensionless maximum deflection 

(𝛿𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ) hereafter. The curve is then constructed to fit through a set of data on these two 

dimensionless parameters by using the power law, as shown in Figure 21 (lower), where 

the exponent and the coefficient of 
𝑏

𝑑𝑔
 are 3.99 and 5.6  10−4, respectively. Therefore, the 

functional form of 𝛿𝑚𝑎𝑥 of the sensor with the local groove 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 with 𝑙�̅� = 

0.35 can be expressed as 

𝛿𝑚𝑎𝑥,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝 = 6.72 × 10−3 (
𝑏3.99𝑑𝑔

0.01𝑃(1−𝜈2)

𝐸𝑗3 ) (16) 

where the unit of length is μm and the units of the applied pressure and Young’s modulus 

are MPa. Equation (16) shows that the exponent of 𝑑𝑔 is very small because the effect of 

𝑑𝑔 on the maximum deflection is very low in this case study. However, 𝑑𝑔 cannot be ne-

glected because the groove is present and the effect of 𝑑𝑔 on 𝛿𝑚𝑎𝑥 is needed. 

 

Figure 21. Variations of three dimensionless parameters in the case of sensor with local groove 

𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 at 𝑙�̅� = 0.35. 

Similarly, the functional form of 𝛿𝑚𝑎𝑥 of the sensor with the annular groove 𝐴𝐺 −

𝑇𝑜𝑝 can be expressed, according to Figure 22, as 

𝛿𝑚𝑎𝑥,𝐴𝐺−𝑇𝑜𝑝 = 10.71 × 10−3 (
𝑏3.93𝑑𝑔

0.07𝑃(1−𝜈2)

𝐸𝑗3 ) (17) 



Micromachines 2022, 13, 2247 18 of 25 
 

 

 

Figure 22. Variations of three dimensionless parameters in the case of sensor with annular groove 

𝐴𝐺 − 𝑇𝑜𝑝. 

Before constructing the dimensionless forms of ∆𝜎1 and ∆𝜎2 with groove, the di-

mensionless form of the stress without groove, in Equation (12), should be considered 

first. Because 𝑃 and 𝑑𝑔 are the main input parameters when groove is involved, the ratio 

of the diaphragm thickness to the diaphragm width (𝑗 𝑏⁄ ) is replaced by 1 𝑑𝑔
̅̅ ̅⁄  or 𝑗 𝑑𝑔⁄  

because the magnitude of ∆𝜎 increases as 𝑑𝑔 is increased, according to Figures 23a and 

24a. Therefore, the dimensionless form of ∆𝜎 can be written as 

∆𝜎̅̅̅̅ =  
∆𝜎

𝑃
∙ (

𝑗

𝑑𝑔
)

2

 (18) 

 

  
(a) (b) 

Figure 23. (a) Variations of averaged stress differences of longitudinal piezoresistor (∆𝜎1) and 

transverse piezoresistor (∆𝜎2) with maximum deflection (𝛿𝑚𝑎𝑥) and (b) variations of dimensionless 

averaged stress differences of longitudinal piezoresistor (∆𝜎1
̅̅ ̅̅ ̅) and transverse piezoresistor (∆𝜎2

̅̅ ̅̅ ̅) 

with dimensionless maximum deflection (𝛿𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅) from two datasets (each with 20 points) in each 

averaged stress difference in the case of sensor with local groove 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 at 𝑙�̅� = 0.35. 

To determine the variation of ∆𝜎1
̅̅ ̅̅ ̅ with 𝛿𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ , Figure 23a shows a dataset of twenty 

points of ∆𝜎1 versus 𝛿𝑚𝑎𝑥 in the case of the sensor with the local groove 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 

at 𝑙�̅� = 0.35, where the data can collapse into four points when ∆𝜎1
̅̅ ̅̅ ̅ =

∆𝜎1

𝑃
∙

𝑗2

𝑑𝑔
2 is plotted 

against 𝛿𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ =

𝛿𝑚𝑎𝑥𝐸𝑗3

12𝑃(1−𝜈2)𝑑𝑔
4 in Figure 23b. The power law is used to construct the curve to 

fit through the data in order to find the coefficient and the exponent of 𝛿𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ , as shown in 

Figure 23b, where ∆𝜎1
̅̅ ̅̅ ̅ can be expressed as a function of 𝛿𝑚𝑎𝑥

̅̅ ̅̅ ̅̅  as 
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∆𝜎1
̅̅ ̅̅ ̅

,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
= 16.8 × (𝛿𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ )
0.49

 (19) 

which can be rewritten as 

(
∆𝜎1

𝑃
∙

𝑗2

𝑑𝑔
2

)
𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝

= 16.8 × (
𝛿𝑚𝑎𝑥𝐸𝑗3

12𝑃(1 − 𝜈2)𝑑𝑔
4

)

0.49

 (20) 

According to Equation (16), after substituting 𝛿𝑚𝑎𝑥,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝 into 𝛿𝑚𝑎𝑥 in Equation 

(20), the functional form of ∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 is expressed as 

∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
= 0.43 × 𝑃 [

𝑑𝑔
0.045𝑏1.955

𝑗2
] (21) 

According to Figure 23b, 
∆𝜎2̅̅ ̅̅ ̅

∆𝜎1̅̅ ̅̅ ̅
 = −1.01 so that ∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝

 can be determined as a 

function of ∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 as 

∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
=  −1.01 × ∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝

  (22) 

The functional forms of the stress differences of the sensor with the annular groove 

𝐴𝐺 − 𝑇𝑜𝑝, i.e., ∆𝜎1,𝐴𝐺−𝑇𝑜𝑝
 and ∆𝜎2,𝐴𝐺−𝑇𝑜𝑝

, can also be found in the same way as those of 

∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 and ∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝

. The datasets of ∆𝜎1 and ∆𝜎2 versus 𝛿𝑚𝑎𝑥  in Figure 

24a are used to construct ∆𝜎1
̅̅ ̅̅ ̅

,𝐴𝐺−𝑇𝑜𝑝
 and ∆𝜎2

̅̅ ̅̅ ̅
,𝐴𝐺−𝑇𝑜𝑝

 versus 𝛿𝑚𝑎𝑥
̅̅ ̅̅ ̅̅  in Figure 24b. 

  
(a) (b) 

Figure 24. (a) Variations of averaged stress differences of longitudinal piezoresistor (∆𝜎1) and 

transverse piezoresistor (∆𝜎2) with maximum deflection (𝛿𝑚𝑎𝑥) and (b) variations of dimensionless 

averaged stress differences of longitudinal piezoresistor (∆𝜎1
̅̅ ̅̅ ̅) and transverse piezoresistor (∆𝜎2

̅̅ ̅̅ ̅) 

with dimensionless maximum deflection (𝛿𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅) from two datasets (each with 20 points) in each 

averaged stress difference in the case of sensor with annular groove 𝐴𝐺 − 𝑇𝑜𝑝. 

According to Figure 24(b), the functional forms of ∆𝜎1
̅̅ ̅̅ ̅

,𝐴𝐺−𝑇𝑜𝑝
= 25.9 × (𝛿𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ )
0.49

and 

∆𝜎2
̅̅ ̅̅ ̅

,𝐴𝐺−𝑇𝑜𝑝
= −26.4 × (𝛿𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ )
0.49

 are obtained. Therefore, ∆𝜎1,𝐴𝐺−𝑇𝑜𝑝
 can be expressed as 

∆𝜎1,𝐴𝐺−𝑇𝑜𝑝
= 0.956 × 𝑃 [

𝑑𝑔
0.15𝑏1.85

𝑗2
] (23) 

whereas ∆𝜎2,𝐴𝐺−𝑇𝑜𝑝
 can be expressed as 

∆𝜎2,𝐴𝐺−𝑇𝑜𝑝
=  −1.02 × ∆𝜎1,𝐴𝐺−𝑇𝑜𝑝

  (24) 

To validate the functional forms of 𝛿𝑚𝑎𝑥 , ∆𝜎1 and ∆𝜎2, the comparisons between 

those functional forms and the corresponding simulation results are shown in Figures 25 

and 26 for the sensors with the local groove 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and with the annular groove 
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𝐴𝐺 − 𝑇𝑜𝑝 , respectively. Figures 25a,b show that 𝛿𝑚𝑎𝑥,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝 , ∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 and 

∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 , calculated by Equations (16), (21) and (22) respectively, are in good agree-

ment with the simulation results, where the maximum error of 𝛿𝑚𝑎𝑥,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝, around 

2%, is found at 𝑑𝑔
̅̅ ̅ = 0.2 at the applied pressure of 1 kPa, and the maximum errors of 

∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 and ∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝

, around 1.8%, are found at 𝑑𝑔
̅̅ ̅ = 0.2 at the applied pres-

sure of 3 kPa. Figures 26a,b show that 𝛿𝑚𝑎𝑥,𝐴𝐺−𝑇𝑜𝑝, ∆𝜎1𝐴𝐺−𝑇𝑜𝑝
 and ∆𝜎2𝐴𝐺−𝑇𝑜𝑝

, calculated 

by Equations (17), (23) and (24) respectively, are also in good agreement with the simula-

tion results, where the maximum error of 𝛿𝑚𝑎𝑥,𝐴𝐺−𝑇𝑜𝑝, around 1.8%, is found at 𝑑𝑔
̅̅ ̅ = 0.6 

at the applied pressure of 3 kPa, and the maximum errors of ∆𝜎1,𝐴𝐺−𝑇𝑜𝑝
 and ∆𝜎2,𝐴𝐺−𝑇𝑜𝑝

, 

around 1%, are found at 𝑑𝑔
̅̅ ̅ = 0.6 at the applied pressure of 5 kPa. 

  

(a) (b) 

Figure 25. Comparisons of simulation results with (a) functional form of maximum deflection 

𝛿𝑚𝑎𝑥,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝  and (b) functional forms of averaged stress differences ∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
 and 

∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝. 

  

(a) (b) 

Figure 26. Comparisons of simulation results with (a) functional form of maximum deflection 

𝛿𝑚𝑎𝑥,𝐴𝐺2−𝑇𝑜𝑝 and (b) functional forms of averaged stress differences ∆𝜎1,𝐴𝐺−𝑇𝑜𝑝 and ∆𝜎2,𝐴𝐺−𝑇𝑜𝑝. 

The functional forms of the averaged stress differences in terms of 𝑑𝑔 in Equations 

(21)–(24), i.e., ∆𝜎1,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝
, ∆𝜎2,𝐿𝐺2−𝐿𝑇−𝑇𝑜𝑝

, ∆𝜎1,𝐴𝐺−𝑇𝑜𝑝
 and ∆𝜎2,𝐴𝐺−𝑇𝑜𝑝

, respectively, can 

be used to calculate 𝑉𝑜𝑢𝑡,𝑖 by substituting ∆𝜎1 and ∆𝜎2 in the case study of interest into 

Equation (13). Therefore, sensitivity can be calculated by substituting 𝑉𝑜𝑢𝑡,𝑚𝑎𝑥 into Equa-

tion (4) while nonlinearity error can be calculated by substituting 𝑉𝑜𝑢𝑡,𝑖 and 𝑉𝑜𝑢𝑡,𝑚𝑎𝑥 into 

Equation (14). 
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6. Discussion 

Three selected groove designs, i.e., 𝐿𝐺1 − 𝐿0 with 𝑑𝑔
̅̅ ̅ = 0.2, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 with 

𝑑𝑔
̅̅ ̅ = 0.6 and 𝑙�̅� = 0.35 and 𝐴𝐺 − 𝑇𝑜𝑝 at 𝑑𝑔

̅̅ ̅ = 0.2, are investigated here. For the sensor 

with the local groove 𝐿𝐺1, creating groove at the piezoresistor reduces sensitivity because 

the piezoresistor is moved closer to the neutral axis. Moreover, there are some concerns 

about fabrication techniques, such as (1) the metallization process has a high chance of 

failure due to the vertical deposition with high step size and (2) the geometric error due 

to the etching process that deteriorates the performance of the sensor. Therefore, the local 

groove 𝐿𝐺1 in the present work is not preferred for use in the MEMS piezoresistive pres-

sure sensor. However, the remaining area of the beam, where the local groove 𝐿𝐺1 is not 

created, gains higher stress, as shown in Figure 7. Therefore, moving the piezoresistor to 

that area is preferable in order to increase the sensitivity of the sensor, but the alignment 

errors between the piezoresistor and the beam layer due to the fabrication process should 

be carefully treated, as reported by Huang and Zhang (2014) [28]. For the sensor with the 

local groove 𝐿𝐺2, the stress at the piezoresistor can be made higher by creating a groove 

along the diaphragm edge, according to the simulation result of the annular groove 𝐴𝐺. 

For the sensor with the annular groove 𝐴𝐺, the tradeoff between sensitivity and nonline-

arity error is the challenge that should be achieved. The main source of the nonlinearity 

error of each groove design can be investigated in Figure 27. The ratio of the compression 

stress to the tension stress (
|𝜎𝑙,𝑐|

𝜎𝑙,𝑡
) in the longitudinal stress direction, which occur in SCR 

on the top of the beam and at the bottom of the diaphragm, respectively, can represent the 

stretching effect on the piezoresistor, which is the main cause of linearity reduction. In the 

case of the sensors with the local grooves 𝐿𝐺1 − 𝐿0 and 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝, the stretching 

effect on the piezoresistor is the main source of linearity reduction when the ratio of the 

maximum deflection to the diaphragm thickness (𝛿𝑚𝑎𝑥/𝑗) is lower than 0.21, which can 

be observed from the correlation between the nonlinearity error and 
|𝜎𝑙,𝑐|

𝜎𝑙,𝑡
 in Figure 27a,b. 

When 𝛿𝑚𝑎𝑥/𝑗 > 0.21, the nonlinearity error is dominated by the balloon effect, which can 

be observed from the correlation between the nonlinearity error and 𝛿𝑚𝑎𝑥/𝑗  in Figure 27f 

in the case of the sensor with the annular groove 𝐴𝐺 − 𝑇𝑜𝑝. Therefore, the further im-

provement of linearity for the sensor with the annular groove 𝐴𝐺 − 𝑇𝑜𝑝 can be achieved 

by using the local stiffness concept to reduce 𝛿𝑚𝑎𝑥 at the center of the diaphragm to avoid 

the balloon effect. In the future work, dielectric layers and thermal stress will also be in-

vestigated as major concerns about high residual mechanical stresses that arise when the 

complex diaphragm geometry is created. 

  
(a) (d) 
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(b) (e) 

  

(c) (f) 

Figure 27. Variations of nonlinearity error with the ratio of the compression stress to the tension 

stress (
|𝜎𝑙,𝑐|

𝜎𝑙,𝑡
) versus 𝑑𝑔

̅̅ ̅ in the longitudinal stress direction in the case of (a) 𝐿𝐺1 − 𝐿0, (b) 𝐿𝐺2 −

𝐿𝑇 − 𝑇𝑜𝑝 at 𝑙�̅� = 0.35 and (c) 𝐴𝐺 − 𝑇𝑜𝑝. Variations of nonlinearity error and the ratio of maximum 

deflection to diaphragm thickness (𝛿𝑚𝑎𝑥 𝑗⁄ ) versus 𝑑𝑔
̅̅ ̅ in the case of (d) 𝐿𝐺1 − 𝐿0, (e) 𝐿𝐺2 − 𝐿𝑇 −

𝑇𝑜𝑝 at 𝑙�̅� = 0.35, and (f) 𝐴𝐺 − 𝑇𝑜𝑝. 

7. Conclusions 

Three groove designs for the MEMS piezoresistive pressure sensor were investigated 

in the present work. There were two designs for the local groove type (𝐿𝐺1 and 𝐿𝐺2) and 

one design for the annular groove type (𝐴𝐺). Three configurations of the groove location 

were investigated in 𝐿𝐺1 and 𝐿𝐺2, i.e., 𝐿0, 0𝑇 and 𝐿𝑇. The effects of the groove location 

on the top and at the bottom of the diaphragm were investigated in 𝐿𝐺2 and 𝐴𝐺. The 

effects of the dimensionless groove depth variation, i.e., 𝑑𝑔
̅̅ ̅ = 0.2, 0.4, 0.6 and 0.8, on sen-

sitivity and nonlinearity error were investigated in all groove designs. Because of the lim-

itation of 𝐿𝐺1 and 𝐴𝐺, the effects of the dimensionless groove length variation, i.e., 𝑙�̅� = 

0.175 and 0.35, on sensitivity and nonlinearity error were investigated in 𝐿𝐺2 only, while 

the values of 𝑙�̅� of 𝐿𝐺1 and 𝐴𝐺 were fixed as 0.35 and 8.0, respectively. In this study, the 

effect of the groove width was not included, so that the dimensionless groove width (𝑤𝑔̅̅̅̅ ) 

was fixed as 1.0 in all case studies. The finite element method was used to determine the 

stress and deflection of the sensor with groove, which were later used for calculating sen-

sitivity and nonlinearity error. The simulation results revealed that the best configurations 

of the groove locations for 𝐿𝐺1 and 𝐿𝐺2 were L0 and LT, respectively, because their 
𝑆

𝑁𝐿
 

values were higher than those of other groove locations in the same configuration. To 

obtain higher sensitivity and lower nonlinearity error, the groove must be created at the 

top of the diaphragm, which was the compression side, in this work. The increment of 𝑑𝑔
̅̅ ̅ 

can improve sensitivity in the case of 𝐿𝐺2 and 𝐴𝐺 because of the higher stress difference 

at the piezoresistor, while sensitivity decreased in case of 𝐿𝐺1 because the piezoresistor 

was moved closer to the neutral axis, leading to a lower stress difference at the piezore-

sistor. For the effect of 𝑑𝑔
̅̅ ̅ on nonlinearity error, the lowest nonlinearity error of the sensor 

with each groove design was found at the particular value of 𝑑𝑔
̅̅ ̅, i.e., 𝑑𝑔

̅̅ ̅ = 0.2, 0.6 and 0.2 

for 𝐿𝐺1, 𝐿𝐺2 and 𝐴𝐺, respectively. For the effect of 𝑙�̅� on 𝐿𝐺2, the double increment of 
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𝑙�̅� (from 0.175 to 0.35) slightly improved both sensitivity and linearity. Therefore, the three 

optimal groove designs in the present work were 𝐿𝐺1 − 𝐿0, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and 𝐴𝐺 −

𝑇𝑜𝑝 with (𝑑𝑔
̅̅ ̅, 𝑙�̅�) = (0.2, 0.35), (0.6, 0.35) and (0.2, 8.0), respectively. In the case of the opti-

mal groove design, the sensitivity values of the sensors with 𝐿𝐺1 − 𝐿0, 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 

and 𝐴𝐺 − 𝑇𝑜𝑝 were 6.707 mV/V/kPa, 7.547 mV/V/kPa and 7.774 mV/V/kPa, respectively, 

while the nonlinearity errors of those sensors were 0.075% FSS, 0.099% FSS and 0.071% 

FSS, respectively. From the comparisons of the sensitivity and nonlinearity error of the 

sensors with and without groove, there were only two optimal groove designs that helped 

to improve both sensitivity and linearity, i.e., 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and 𝐴𝐺 − 𝑇𝑜𝑝. The sensi-

tivity of the sensors with 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and 𝐴𝐺 − 𝑇𝑜𝑝 were 11% and 14% higher than 

that of the sensor without groove, respectively, while the nonlinearity errors of those sen-

sors were 10% and 35% lower than that of the sensor without groove, respectively. Alt-

hough the sensor performances of 𝐴𝐺 − 𝑇𝑜𝑝 were slightly better than those of 𝐿𝐺2 −

𝐿𝑇 − 𝑇𝑜𝑝, the net groove volume of 𝐴𝐺 − 𝑇𝑜𝑝 (𝑑𝑔
̅̅ ̅ ∙ 𝑙�̅� ∙ 𝑤𝑔̅̅̅̅  × 4 = 6.4) was around four 

times greater than that of 𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 (𝑑𝑔
̅̅ ̅ ∙ 𝑙�̅� ∙ 𝑤𝑔̅̅̅̅  × 8 = 1.68), and hence, more effort 

in fabrication was required. Finally, the functional forms of the averaged stress differences 

of the longitudinal (∆𝜎1) and transverse (∆𝜎2) piezoresistors and the maximum deflection 

of the diaphragm (𝛿𝑚𝑎𝑥) of the sensors with the optimal groove designs of 𝐿𝐺2 − 𝐿𝑇 −

𝑇𝑜𝑝  and 𝐴𝐺 − 𝑇𝑜𝑝  were constructed. By accounting for the exponent values of the 

groove depth (𝑑𝑔 ) in the functional forms of ∆𝜎1  and 𝛿𝑚𝑎𝑥 , it was found that 𝑑𝑔  in-

creased the averaged stress difference at the faster rate than 𝛿𝑚𝑎𝑥 in both sensors with 

𝐿𝐺2 − 𝐿𝑇 − 𝑇𝑜𝑝 and 𝐴𝐺 − 𝑇𝑜𝑝. 
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