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Abstract: To ensure the consistency of laser engraving depth in chemical milling, the precise control
of 5-axis variable-angle laser engraving was the focus of research. Based on the energy conservation
principle, the depth model of 5-axis variable-angle laser engraving is established, and the relationships
among the laser engraving depth, laser power, scanning velocity, and beam axis angle are proposed.
A depth-constraint real-time adaptive control method of laser power is proposed considering the
variable scanning velocity and beam axis angles. The depth model parameters are identified by an
orthogonal experiment, and a variable-angle laser engraving experiment with adaptive control of
laser power is carried out. The coefficient of determination of the proposed depth model is 0.977,
which means that the engraving depth model established in this paper predicts the engraving depth
effectively and reliably. The depth-constraint adaptive control method of laser power obtains stable
and uniform machining results under abrupt changes in scanning velocity and beam axis angles.

Keywords: energy conservation principle; 5-axis variable-angle laser engraving; depth model;
adaptive control

1. Introduction

In order to meet the light weight requirements for aerospace structural parts, a large
number of thin-walled parts with complex features have been designed and widely applied,
which are usually processed by chemical milling for material removal after mechanical
milling [1,2]. As the pre-process for chemical milling, engraving processing is the process of
cutting the geometric pattern of the protective adhesive and peeling it off according to the area
which requires chemical milling without damaging the basis material [3]. Laser engraving
is the most common method; using the laser to ablate the protective adhesive and remove
the protective layer on the metal surface. In order to achieve maximum weight reduction, the
thin-wall parts often need to be engraved and chemical-milled twice, as shown in Figure 1.
The second laser engraving must be processed on the side wall of the cavity formed by the first
chemical milling. The laser beam axis is usually tilted towards the sidewall surface because
of the interference of the laser head. At the corner, the angles of the beam axis relative to the
sidewall surface change dramatically, and the laser scanning velocity significantly decreases
due to the dynamic constraints of the machining equipment. Using fixed laser parameters will
lead to inconsistency in the engraving depth at different positions and severe over burning at
the corner. Precise control of engraving depth under variable beam axis angle and scanning
velocity is a critical problem of the second laser engraving, which has essential engineering
significance for high-efficiency and high-quality processing [4].
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Scholars mainly study and select laser engraving parameters by experiment. Gnana-
muthu, D.S. [5] and Slysh, P. [6] applied different lasers to etch the protective adhesive layer
with a given thickness on planar parts, and verified the feasibility of the laser engraving
method. Griffin, B.M. [7] and Leone, C. [8] explored the influence of laser power and feed
rate parameters on engraving quality and engraving depth. Gao, X.J. et al. [9–12] studied
the influence of laser power, engraving velocity, laser frequency, and incident angle on the
engraving depth through a single-factor experiment and determined the trend through
the linear regression method. In order to realize the precise control of laser ablation for
complex geometric feature patterns, theoretical models of laser etching have been studied.
The existing methods of research into engraving depth models are mainly divided into
three categories, including the laser ablation mechanism method, the regression analysis
method, and the artificial intelligence method, which are shown in Table 1.

Table 1. The research status of engraving depth models.

Method Scholars Research Content

The engraving depth model based on the laser
ablation mechanism

Arnold, N et al. [13]

Established the relationship between laser ablation
depth and laser energy density of polymer

materials based on the photothermal melting zone
fracture theory.

Prakash, S. et al. [14],
Shahbazi et al. [15],
Zhao, K. et al. [16]

Studied the correlation among multi-pulse laser
ablation depth, laser energy, and feed-rate through

the superposition of multi-pulse laser ablation
depth based on the principle of energy balance.

Nakamura S et al. [17],
Arkadiusz A.J [18],

Pazokian H [19]

Established the ablation theoretical model of
tetrafluoroethylene, hexafluoropropylene, nylon,

and polymers, and studied the relationship
between laser beam intensity, pulse repetition rate,

and material scanning velocity.

The engraving depth model based on
regression analysis

Bovatsek J.M et al. [20],
Jia, Z et al. [21],

Xiaowei B. et al. [22]

Studied the relationship between depth, width,
processing quality, and machining parameters by

controlling variate methods and the linear
regression method.

Ai J et al. [23]

Systematically studied the influence of laser
incident angle on the size accuracy of laser

processing patterns and the influence of scanning
times on the defocused laser processing line width
by the orthogonal experimental method and linear

regression method.

Desai, C.K. et al. [24]

Established an etching depth model in
thermoplastic micro-milling by non-linear
regression method by considering material

properties, laser power, and cutting velocity.

The engraving depth prediction model based
on the artificial intelligence method

Nukman, Y. et al. [25],
Yin, Z. et al. [26],

Smokvina H.S. et al. [27]

Established the laser engraving depth models
through artificial neural networks and other

artificial intelligence methods.

Hossain, A. et al. [28],
Juez-Gil et al. [29]

Built-up an intelligent fuzzy expert system (FES)
model and multilayer-perceptron hybrid strategy

to predict the kerf width in CO2 laser cutting.
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In summary, the existing studies on engraving parameters, theoretical models, and
control methods mainly focus on selecting process parameters and the processing control
of simple geometric feature patterns. An advantage of the depth model based on the laser
ablation mechanism is that it has a complete theoretical basis, but a disadvantage is that it has
a large correlation with the material, so it needs a targeted overview of the relevant model
to identify the parameters of the model. The engraving depth model based on regression
analysis can accurately analyze the relationship between single laser process parameters
and engraving depth. Meanwhile, multiple data regression is limited by scholars’ model
selection and understanding, and different models may present different analysis results. The
engraving depth prediction model based on the artificial intelligence method can realize the
results of the fast prediction model but lose information about the physical processes and
cannot accurately predict the influence of various laser parameters on the marking depth.
Although the results can provide a reference for laser processing of complex geometric feature
patterns, it is challenging to meet the requirements of the second laser engraving process with
variable beam axis angles in terms of accuracy and effectiveness.

In this article, a depth model of 5-axis variable-angle laser engraving is established
based on the energy conservation principle and realizes real-time adaptive adjustment of
laser power with the change of scanning velocity and beam axis angle under the constraint
of target depth to obtain a stable engraving process and uniform depth results. The rest
of this article is organized as follows: Section 2 introduces the experimental platform, the
engraving orthogonal experiment, and laser power adjustment method. The engraving
depth model is elaborated in Section 3. Then, the experiment results and discussion are
detailed in Section 4. Finally, Section 5 concludes this article.

2. Materials and Methods
2.1. Experimental Equipment

The experimental equipment used in this work is a 6-axis 5-linkage laser engraving
platform with 3 linear axes and 3 rotary axes, as shown in Figure 2. The rotary table
C-axis installed on the XY cross slide performs circumferential indexing and positioning
of the work piece. The double swing head consisting of A and B axes is installed on the
Z-axis carriage. A CO2 quasi-continuous laser was selected as the laser source and fixed
to a marble on the Z-axis. A space-flexible optical transmission system was designed to
achieve the accurate spatial direction of the laser beam through a series of mirrors and a
pair of orthogonal hollow torque motors. Part of the laser parameters in the machining
area are shown in Table 2. The laser scanning movement of variable-angle laser engraving
is realized by the linkage motion of the X, Y, Z, A, and B axes through the RTCP (Rotated
Tool Center Point) function.

The CNC system consists of a decoder, interpolator, kinematics transformation, laser
power adjustment, and other modules. The NC command text is decoded by the decoder
and interpolated in real-time. The kinematics transformation obtains the position com-
mands in the machine tool coordinate system based on the motion chain structure. The
commands are sent to the servo drivers to control the movement of feed axes. The output
power and frequency of the CO2 laser are controlled by the input PWM signal, which is
converted in real-time following the laser parameter command using the pulse generator
module of Siemens SIMATIC S7-1200 PLC.

The relationship between the average output power of the laser and the PWM signal
duty cycle was detected by a laser power meter (Type: Ophir L50(150)A-BB-35), as shown
in Table 3.
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Figure 2. The architecture of the 6-axis 5-linkage laser engraving experimental platform.

Table 2. Parameters of the laser beam.

Parameter Value

Wavelength 10.6 µm
Output Power 0–30 W

Operating Frequency 0–20 KHz
Power Stability ±5%

Beam Quality M2 <1.2
Focus Diameter 150 µm

Focus Depth 583 µm

Table 3. Actual average power at different duty cycles.

Duty Cycle (%) 3 5 7 9 11 13 15

Average Power (W) 1.55 2.31 3.08 3.72 4.53 5.11 5.79
Standard Deviation (W) 0.12 0.12 0.11 0.11 0.13 0.17 0.11

Note: Each effective measurement time is 15s. The pulse repetition frequency of the PWM signal is set to 2000 Hz.

2.2. Orthogonal Test Design of Laser Engraving

The specification of the test piece with aluminum alloy 7075 as the substrate material
was 100 mm × 100 mm. The piece surface was covered with AC850 chemical milling
protective adhesive with a thickness of about 1mm. An orthogonal test of laser engraving
was designed to provide representative data for the parameter identification of the depth
model. Table 4 shows the test parameters. The tests were carried out on the experimental
platform, as shown in Figure 3.

The 3D (three-dimensional) profiles of the processing results were measured by an
ultra-depth microscope (Type: Olympus DSX1000) with an objective lens, DSX10-XLOB20X.
The measured field of view was 953 µm × 953 µm, and the magnification was 320 times.
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Table 4. Orthogonal test parameters for laser engraving (the laser pulse frequency is 2000 Hz).

Test No. Duty Cycle
(%)

Scanning
Velocity
(mm/s)

Incident
Angle
(deg.)

Scanning
Angle
(deg.)

Test No. Duty
Cycle (%)

Scanning
Velocity
(mm/s)

Incident
Angle
(deg.)

Scanning
Angle
(deg.)

1 3 10 0 90 12 6 30 32 45
2 6 15 8 90 13 9 40 0 45
3 9 20 16 90 14 6 40 24 30
4 12 30 24 90 15 12 15 0 30
5 15 40 32 90 16 15 20 8 30
6 9 30 8 60 17 3 30 16 30
7 12 40 16 60 18 12 20 32 0
8 3 15 32 60 19 15 30 0 0
9 6 20 0 60 20 3 40 8 0
10 15 15 16 45 21 6 10 16 0
11 3 20 24 45 22 9 15 24 0
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2.3. Laser Power Adjustment of the 5-Axis Variable-Angle Laser Engraving Process

In the process of 5-axis variable-angle laser engraving, the engraving trajectory and the
adhesive surface determine the laser incident angle and scanning angle. The CNC system
controls the laser power and scanning velocity. Therefore, the proposed depth model can
adjust laser output power in real time according to the target depth and current scanning
velocity during processing to achieve uniform engraving depth. A laser power adaptive
adjustment method is put forward to maintain the consistency of the engraving depth, and
the adjustment flow chart is shown in Figure 4.

During the engraving process, the real-time parameters such as scanning velocity
vector, surface normal, and laser beam attitude are obtained from the CNC system. The
current local engraving coordinate system frame can be constructed according to the
scanning velocity vector and surface normal. Then, the laser incident angle and scanning
angle of the beam axis relative to the local frame are calculated. Under the target depth,
the optimal laser power can be calculated based on the proposed engraving depth model.
Finally, the corresponding PWM signal is generated and sent to the CO2 laser in real time
to adjust the laser output power.

An variable-angle straight groove laser engraving experiment was designed to verify
the proposed method of laser power adjustment. The trajectory of the straight groove was
a straight plane line, and the laser incident angle and scanning angle changed with the
position of the straight line, as shown in Equation (1).

x = 40u
y = 0
θ = 30◦ × u
ϕ = 60◦ × u

, u ∈ [0, 1] (1)
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where x is the X position of the trajectory curve, y is the Y position, θ is the laser incident
angle, ϕ is the laser scanning angle, and u is the curve parameter.
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The preset scanning velocity curve was generated by the S-shape feed-rate plan
method according to the constraints of the velocity command of 20 mm/s, the maximum
acceleration of 1000 mm/s, and the maximum jerk of 5000 mm/s. In addition, the velocity
command was reduced from 20 mm/s to 12 mm/s at u = 0.7 to simulate a significant
decrease in the scanning velocity at the corner. The preset velocity curve and the beam
angle are shown in Figure 5. The experiment was carried out on the experimental platform
according to the preset scanning velocity curve, while the laser power command was
adaptively controlled based on different depth models to maintain the normal depth at the
target depth 310 µm.
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3. Depth Model of 5-Axis Variable-Angle Laser Engraving
3.1. Depth Model of 5-Axis Variable-Angle Laser Engraving Based on the Energy
Conservation Principle

Laser engraving is a laser beam machining application based on laser ablation. The
laser beam is irradiated on the part surface to remove the protective adhesive without
damaging the substrate material. The primary mechanism of laser engraving is that the
thermal effect generated by the laser beam removes the protective adhesive by evaporation,
plume, and explosion [12], as shown in Figure 6.
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According to the energy conservation principle, the laser energy absorbed by the adhesive
surface in a period, ∆EL, equals the heat consumed in the laser engraving process, ∆Qc.

∆EL = ∆Qc (2)

At the same time, the laser energy absorbed by the adhesive surface can be expressed as:

∆EL = APL∆t (3)

where A is the absorption rate of the adhesive layer material to the laser beam, PL is the
average output power of the laser beam, and ∆t is the processing time.
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The heat consumed in the laser engraving process is the sum of the heat absorbed by
the material sublimation process and the heat lost by the heat conduction of the surrounding
materials [30]:

∆Qc = ρ∆V
[
cp(TV − T∞) + Hm + HV

]
+ ∆QHL (4)

where ∆V is the removed volume of the protective adhesive material in time ∆t, ρ is the
density of adhesive, cp is the specific heat enthalpy, TV is the evaporation temperature, T∞ is
the ambient temperature, Hm is the specific melting enthalpy, HV is the specific evaporation
enthalpy, and ∆QHL is the heat lost by the heat conduction of the surrounding materials.

The relationship between laser output power and the removed volume of the adhesive
material in laser engraving can be obtained by combining Equations (2)–(4) and taking the
limit of the equation divided by time ∆t.

APL =
dV
dt

ρ
[
cp(TV − T∞) + Hm + HV

]
+

dQHL
dt

(5)

The adhesive material is removed as the laser beam scans along the trajectory; there-
fore, the removed volume, V, can be calculated by integrating the normal cross-sectional
area along the scanning trajectory:

V =
∫

Svcdt (6)

where S the normal section area of the engraved line and vc is the scanning velocity of the
laser focus relative to the surface.

According to the Newton–Leibniz formula, the relationship in Equation (5) can be
expressed as:

APL = Svcρ
[
cp(TV − T∞) + Hm + HV

]
+

dQHL
dt

(7)

Assuming the laser beam is the intensity distribution of the Laguerre–Gaussian mode,
TEM0

0, and the polarization state is circular polarization, the light intensity distribution of
the focus spot is as follows:

I(r) = Ime−
r2

2σ2 (8)

where I(r) is the light intensity at the position with distance r from the beam axis, Im is
the maximum light intensity, and σ is the standard deviation of the light intensity under
Gaussian distribution.

The spot radius r f is generally estimated according to the distance to the beam axis
when the light intensity is reduced to 1

e2 of Im. It can be obtained as:

r f = 2σ (9)

The laser engraving trajectories of the chemically milled parts with complex structural
characteristics are usually complex curves, and the angle of the laser beam axis changes
continuously during the laser processing. The local coordinate frame OXYZ is constructed
using the scanning velocity direction vector and the surface normal vector, as shown in
Figure 7. The laser incident angle is the angle between the laser beam axis and the Z axis,
denoted by θ. The laser scanning angle is the angle between the laser incidence plane and
the scanning velocity direction vector, denoted by ϕ.
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The energy of the laser accumulated in the scanning section during the scanning process
follows the same Gaussian distribution as when the laser beam scans in the normal direction.
Then, the depth of the scribed section also follows the same Gaussian distribution according
to the principle of energy conservation, as shown in Figure 8a. Set the maximum depth of the
section as hm, the area of the engraved line normal section can be calculated as follows:

S =
∫ +∞

−∞
h(x)dx =

√
2πσhm =

√
π

2
r f hm (10)
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to the surface; (b) laser scanning obliquely to the surface.

The spot shape of the laser beam irradiated on the adhesive surface is an ellipse during
the 5-axis variable-angle laser engraving when both the incident angle and the scanning
angle are not zero, as shown in Figure 8b. Here, assume that the profile shape axis of the
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normal section is inclined to the surface normal. The area of the normal section, in this case,
can be approximately calculated by:

S =

√
π

2
rshn (11)

where rs = r f

√
cos2 ϕ + sec2 θ sin2 ϕ is the half-width of the track formed by the elliptical

spot scanning, which can be calculated according to the geometric relationship of the conic
section. hn is the maximum depth of the engraved line in the normal direction of the
surface, which is a critical parameter to evaluate the laser engraving result. The normal
cross-sectional area of the 5-axis variable-angle laser engraving can be expressed as:

S =

√
π

2
r f hn

√
cos2 ϕ + sec2 θ sin2 ϕ (12)

Combining Equations (7) and (12), the energy balance equation in the process of 5-axis
variable-angle laser engraving can be written as:

APL =

√
π

2
ρ
[
cp(TV − T∞) + Hm + HV

]
r f hnvc

√
cos2 ϕ + sec2 θ sin2 ϕ +

dQHL
dt

(13)

The material characteristic parameters such as ρ, cp, TV , T∞, Hm, HV , and the laser
beam parameter, r f , are constant during the laser engraving process under the same
processing conditions of the material and the environment. The above parameters can
be replaced by a constant. The heat conduction loss, QHL, is dependent on the cutting
parameters [31]. Setting the exponent of the scanning velocity in the energy balance
equation to a variable parameter, α, Equation (13) can be simplified to:

APL = ηhnvc
α
√

cos2 ϕ + sec2 θ sin2 ϕ + Pres (14)

where η is a constant and Pres is the residual rate of thermal conduction loss after
model simplification.

The laser absorptivity of the material usually changes with the laser incident angle,
which can be approximated by a quadratic polynomial of the incident angle, θ. Dividing
both sides of Equation (14) by parameter η, the 5-axis variable-angle laser engraving depth
model can be obtained as:(

ξ0 + ξ1θ + ξ2θ2
)

PL = hnvc
α
√

cos2 ϕ + sec2 θ sin2 ϕ + Cres (15)

where ξ0, ξ1, ξ2, and Cres are the coefficients of the depth model, which are determined by
the material characteristics, processing conditions, and laser beam parameters. The depth
model parameters can be identified by the experimental data of laser engraving.

3.2. Identification of the Depth Model Parameters

When the laser incident angle is 0, the depth model in Equation (15) can be written
as follows.

ξ0PL − Cres = hnvα
c (16)

Taking the logarithm of both sides of Equation (16):

ln
(

PL −
Cres

ξ0

)
− ln hn = α ln vc − ln ξ0 (17)
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The optimal solution of the parameters α and − ln ξ0 can be estimated as follows by
the least square method: [

α
− ln ξ0

]
=
(

XT
α Xα

)−1
XT

α yα (18)

where Xα is the coefficient matrix and yα is the value vector. Both are obtained by the test
data when the laser incident angle is 0 as follows:

Xα =


ln vc,1 1
ln vc,i 1

...
...

ln vc,m 1

, yα =


ln(PL,1 − Cres/ξ0)− ln hn,1
ln(PL,i − Cres/ξ0)− ln hn,i

...
ln(PL,m − Cres/ξ0)− ln hn,m

 (19)

In the same way, the parameters (ξ0, ξ1, ξ2, Cres) of the proposed depth model can be
estimated after determining the parameter α.

[
ξ0 ξ1 ξ2 Cres

]T
=
(

XTX
)−1

XTy (20)

where X is the coefficient matrix and y is the value vector. Both are obtained by the test
data as follows.

X =


PL,1 θ1PL,1 θ2

1 PL,1 −1
PL,i θiPL,i θ2

i PL,i −1
...

...
...

...
PL,n θnPL,n θ2

nPL,n −1

, y =


hn,1vα

c,1

√
cos2 ϕ1 + sec2 θ1 sin2 ϕ1

hn,ivα
c,i

√
cos2 ϕi + sec2 θi sin2 ϕi

...

hn,nvα
c,n

√
cos2 ϕn + sec2 θn sin2 ϕn

 (21)

Cres is set to 0 when estimating parameter α by Equation (18) for the first time. After
obtaining the parameters (ξ0, ξ1, ξ2, Cres) by Equation (20), Cres and ξ0 must be substituted
into Equation (18) to re-estimate parameter α to reduce the identification error. The above
process is iterated until the difference between the identified values of the parameter α
meets the following condition.

|αk − αk−1| < δα (22)

4. Results and Discussions
4.1. Results of the Orthogonal Test

The normal depths of the engraved lines of the orthogonal test were calculated by the
statistical method and are listed in Table 5.

Table 5. Depth results of the orthogonal test.

Test Number 1 2 3 4 5 6 7 8
Depth (W) 297 280 332 231 196 234 219 191

StandardDeviation (W) 10.1 15.1 11.4 9.69 10.6 13.2 9.73 11.8

Test Number 9 10 11 12 13 14 15 16
Depth (W) 270 544 147 183 171 129 508 443

StandardDeviation(W) 15.8 10.2 13.5 9.52 8.68 11.5 22.2 9.12

Test Number 17 18 19 20 21 22
Depth (W) 151 383 313 78 412 395

StandardDeviation (W) 11.1 11.1 13.0 13.0 21.2 13.5

The parameters of the 5-axis variable-angle laser engraving depth were are identified
by the least square method using the experimental data. Table 6 shows these results.
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Table 6. Parameter identification results of 5-axis variable-angle laser engraving depth model (all
parameters are dimensionless).

Parameter α ξ0 ξ1 ξ2 Cres

Value 0.8477 812.0 169.7 −384.2 −1171

The laser engraving depth model using the laser engraving experimental platform
under current experimental conditions is expressed as follows.

hn =

(
812 + 169.7θ − 384.2θ2)PL + 1171

v0.8477
c

√
cos2 ϕ + sec2 θ sin2 ϕ

(23)

where the unit of hn is micrometer, the unit of vc is millimeter per second, the unit of PL is
watt, and the units of θ and ϕ are radian.

The engraving depths of the orthogonal test parameters in Table 3 are predicted based
on the proposed depth model and the comparison model [13]. It can be seen from Figure 9
that the distribution of the predicted results by the proposed model relative to actual values
is closer to the symmetric line than that of the prediction results by the comparison model.
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The root mean square error (RMSE) can be used to evaluate the prediction accuracy of
the model, which is expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(
hi − ĥi

)2
(24)

where hi is the actual normal depth of the ith test, ĥi is the normal depth of model prediction
by the ith test parameters, and n is the number of tests.

The coefficient of determination, r2, is a dimensionless statistical index to reflect the
reliability of the model to describe the relationship between the dependent variable and
independent variables, which is expressed as follows:

r2 = 1−

n
∑

i=1

(
hi − ĥi

)2

n
∑

i=1

(
hi − h

)2 (25)
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where h is the average actual normal depth of the tests.
The prediction root mean square error of the proposed model is 18.6 µm, while that

of the comparative model is 31.2 µm, as shown in Table 7. The prediction accuracy of the
proposed depth model is better in the 5-axis laser engraving process. The coefficient of
determination of the proposed model is 0.977; closer to 1 than that of the comparative model,
which has a value of 0.936. The proposed depth model better describes the relationship
between the engraving depth and the processing parameters.

Table 7. The evaluation results of the model predictions.

Model The proposed model The comparison model

RMSE (µm) 18.6 31.2

r2 0.977 0.936

4.2. Laser Adjustment Results of the Variable-Angle Straight Groove Engraving

The laser power in the variable-angle straight groove engraving experiment was
adjusted based on constant power, the proposed model, and the comparison model, respec-
tively, to maintain the normal depth at the target depth of 310 µm, as shown in Figure 10.
The constant power command was set to 3.72 W throughout the engraving process. The
power command controlled based on the comparison model changed with the scanning
velocity, while the power command controlled based on the proposed model was larger
because of the beam angle variation.
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The ultra-depth microscope measured the 3D profiles at nine selected locations on
the engraved line. Table 8 shows the engraving depths results under different laser power
control methods. It can be seen from Figure 11 that the depth of constant power engraving
decreases gradually in the first uniform velocity scanning period and increases significantly
after the deceleration of the scanning velocity. The engraving depth controlled based on
the proposed model fluctuates near the target depth (310 µm), and the engraving depth
by the power controlled based on the comparison model gradually decreases from about
310 µm to about 220 µm during the whole process.
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Table 8. Depth results of the variable-angle straight groove engraving.

Measurement Number 1 2 3 4 5 6 7 8 9

X Position (mm) 2 5 10 15 20 25 30 35 38

Constant Power Depth (um) 315 332 326 316 298 263 369 385 379
Standard Deviation (um) 25.4 26.3 18.3 15.4 17.9 22.1 32.9 15.4 12.1

Power controlled based
on the proposed model

Depth (um) 298 312 311 337 329 313 313 253 251
Standard Deviation (um) 25.2 14.4 11.1 12.4 19.1 22.2 33.1 15.5 9.74

Power controlled based
on the comparison model

Depth (um) 302 317 303 307 295 285 276 256 220
Standard Deviation (um) 28.7 25.4 12.8 13.6 18.4 19.4 25.2 23.2 17.5
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The average depth of the straight groove was estimated statistically using the normal
depths in Table 8. The relative error compared with the target depth is calculated by
Equation (26):

δ =
hn − hn0

hn0
× 100% (26)

where hn is the overall average normal depth of the straight groove and hn0 is the target
normal depth.

As shown in Table 9, the results indicate that the relative error compared with the target
depth based on the proposed model (−2.6%) is the lowest among the three methods. The
standard deviation of the proposed model (30.4 µm) is the same as that of the comparison
model and better than that of the constant power experiment (40.0 µm). Therefore, the laser
power adaptive control method based on the 5-axis variable-angle laser engraving depth
model can effectively keep the engraving depth near the target depth in the case of sharp
changes in the laser beam axis angle and scanning velocity.

Table 9. The average depth results of the 5-axis variable-angle straight groove engraving.

Power Type Average Depth (µm) Standard Deviation (µm) Relative Error δ (%)

Constant Power 331.3 40.0 6.9
Power controlled by
the proposed model 302.0 30.4 −2.6

Power controlled by
the comparison model 284.5 30.4 −8.2
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5. Conclusions

A depth model of 5-axis variable-angle laser engraving is established based on the
principle of energy conservation. It clarifies the relationship between the laser beam axis
angle, scanning velocity, laser power, and the engraving depth, which supports the real-
time adaptive adjustment of laser power with scanning velocity and beam axis angles
under the target depth constraint. In order to verify the validity of the proposed model and
method, an orthogonal experiment and a 5-axis variable-angle straight groove engraving
experiment were carried out. The experimental results show that the 5-axis variable-angle
laser engraving depth model established in this paper is superior to the comparison model
in both the simulation prediction accuracy and the straight groove engraving quality.
The proposed depth model is carried out on the premise that the laser beam is circularly
polarized and the intensity distribution is the Laguerre–Gaussian mode. Further work can
consider the influence of a more general laser beam on the engraving depth. The engraving
width model can also be studied, which helps evaluate and improve the contour accuracy
of pattern engraving.
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