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Abstract: Solar cells based on lead-free perovskite have demonstrated great potential for next-
generation renewable energy. The SCAPS-1D simulation software was used in this study to perform
novel device modelling of a lead-free perovskite solar cell of the architecture ITO/WS2/CH3NH3SnI3

/P3HT/Au. For the performance evaluation, an optimization process of the different parameters
such as thickness, bandgap, doping concentration, etc., was conducted. Extensive optimization of the
thickness and doping density of the absorber and electron transport layer resulted in a maximum
power-conversion efficiency of 33.46% for our designed solar cell. Because of the short diffusion length
and higher defect density in thicker perovskite, an absorber thickness of 1.2 µm is recommended
for optimal solar cell performance. Therefore, we expect that our findings will pave the way for the
development of lead-free and highly effective perovskite solar cells.

Keywords: perovskite; electron transport layer; hole transport layer; SCAPS-1D

1. Introduction

A photovoltaic solar cell is a promising renewable and non-polluted source of energy [1].
In terms of research and development, halide-based perovskite solar cells (PSCs) are the
fastest growing photovoltaic technology [2–4]. The first potential report of halide-based
perovskite solar cells appeared in 2009. In such studies, organic−inorganic (CH3NH3PbI3)
hybrid perovskite has been used as a light-sensitizer in a dye-sensitized solar cell and a
power conversion efficiency of 3.8% has been achieved. The ability of halide perovskites
to operate not only as powerful light absorbers but also as efficient electron and hole
conductors was demonstrated in the literature [5–7] with power conversion efficiencies of
10.9% and 9.7%, respectively. These findings led to the start of a global effort to improve
perovskite cell efficiency beyond 20%. The Pb-based perovskite solar cells (PSCs) have
gained a lot of potential over silicon-based solar cells due to their ease of fabrication and low
cost. Lead-based halide perovskite also exhibits several desirable optoelectronic properties
such as a high absorption coefficient, a comparatively moderate bandgap, and a high charge
diffusion length [7–9].
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Considering these great advances towards high performance, the toxicity and lack
of stability of the absorber layer in lead-based PSCs remains a serious problem for their
widespread commercialization [10–12]. One potential way to address these concerns is
to replace the hazardous toxic lead in the PSC’s CH3NH3PbI3 absorber layer with a suit-
able non-toxic element. The methylammonium tin iodide CH3NH3SnI3 has, amongst
others, become a viable alternative due to its eco-friendliness, as well as its smaller ef-
fective mass of holes [13], excellent mobility [14], narrower bandgap, and wider visible
absorption spectrum [15].

The study of the characteristics of perovskite solar cell materials, as well as their control
through accurate modelling, can lead to the production of efficient and cost-effective solar
cells [16,17]. To build cost-effective, efficient, and lead-free PSCs, the electrical and optical
properties of CH3NH3SnI3 must be explored using modelling before dealing with very
complex fabrication processes. The main objective of this research is to design lead-free
PSCs with an improved efficiency. In this study, we have used a solar cell capacitance
simulator in one dimension (SCAPS-1D) program. To get the highest feasible PCE, different
aspects were optimized. Initially, we have calibrated the device structure with previously
reported experimental work [18]. Then, an investigation of the proposed device structure
ITO/WS2/CH3NH3SnI3/P3HT/Au has been performed.

There has been a lot of interest in WS2 as ETL due to its potential as an electron
transport layer in thin film solar cells [19]. It is easily available at a low cost and is
less hazardous than other transition metal dichalcogenides (TMDC) compounds. The
development of WS2 in thin film solar cells is still in its infancy compared with other
photovoltaic materials [20]. Due to its superior optoelectronic properties, tungsten disulfide
(WS2) has become the primary material for thin film solar cells. Its tunable bandgap is an
essential feature that is usually ignored. WS2 has a large direct bandgap (>2 eV) and a
small indirect bandgap (~1.3 eV) [20–22].

Furthermore, it exhibits high carrier mobility, good conductivity, native n-type semi-
conducting characteristics [23], and excellent electron conduction properties [24]. Moreover,
it can be deposited through a solution process or by sputtering at low temperature [25].
Homo-polymer poly (3-hexylthiophene) (P3HT) as an HTL is one of the few viable choices
for commercial Organic Photovoltaic (OPV). Its application in large-area, roll-to-roll printed
solar cells has already been amply shown [26,27]. Additionally, the semi-crystalline struc-
ture of P3HT, in contrast to more amorphous polymers, is nearly unique in setting an accept-
able morphological length-scale for bulk heterojunction OPV from a variety of solvents and
processing conditions, as well as giving it outstanding charge transport properties [28,29].
P3HT has attracted great interest as a polymeric hole-selective material for perovskite
solar cells due to its low cost [30], wide band-gap [31], relatively high hole mobility [32],
high thermal stability [33], scalable solution processability [34], robust hydrophobicity, and
oxygen impermeability [35].

An analysis of the impact of CH3NH3SnI3 as an absorber layer with different thick-
nesses and bandgap is performed. After this, the impact of ETL (WS2) with varying
thicknesses and doping concentrations on the performance of PSCs has been investigated.
At the end of this simulation analysis, the optimized device structure with the highest
efficiency of 33.36% is obtained.

2. Device Structure and Simulation Methodology

The perovskite solar cell device structure consists of Glass/ITO/WS2/CH3NH3SnI3/
P3HT/Au, as shown in Figure 1. In this device design, ITO serves as an electron transport
layer, which is covered by an N-type (WS2) material. The organic and inorganic intrinsic
perovskite CH3NH3SnI3 serves as the absorber layer, while the p-type P3HT serves as the
hole transporting layer on which the contact is formed.
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Figure 1. Schematic device structure of perovskite solar cell.

The SCAPS-1D program was used to simulate a solar cell device. It is freely available
to the research community. Solar radiation of AM_1.5 spectrum (1 kW/m2) is illuminated
from the ITO window layer of the perovskite device structure. To start simulation one
has to insert the material parameters by selecting the option ‘set problem’, click on ‘add
the layer’, then insert the electrical and optical properties of the suitable material, such as
thickness, electron affinity, dielectric permittivity (relative), bandgap, electron and hole
thermal velocity (cm/s), electron and hole mobility (cm2/V-s), donor density ND (cm−3),
acceptor density NA (cm−3). Then, insert the absorption coefficient (α) in the absorption
model and recombination model, add the recombination details, and include the defects
of the material [36,37]. Similarly, add the layers of the different materials and make the
different types of solar cells. After adding the parameters as mentioned above, one has to
check the illumination of light and whether or not light is passing through glass substrate
(FTO, AZO, ITO, etc.) and through ETL layer which has less thickness (to allow the whole
light to be absorbed in the absorber layer). Check whether the connections of the voltage
are connected properly or not. Then, set the working point values to room temperature
(300 K) and set the frequency. Add the series and shunt resistance values, ideally the series
resistance would be low and the shunt resistance would be very high.

The SCAPS-1D simulation software is superior to other simulation software because
it gives good consistency between experimental and simulated results. In the present
simulation, series and shunt resistances are taken as 1 Ω and 106 Ω respectively. The effect
of the dangling bond on the interface of the materials has been ignored. Benchmarking is
achieved by matching the correct defect design before starting the simulation, therefore,
the simulated outcome matches the corresponding experimentally tested values.

The parameters used in the simulation for the perovskite solar cell with device struc-
ture Glass/ITO/WS2/CH3NH3SnI3/P3HT/Au are listed in Table 1.
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Table 1. Simulation parameters of each layer of the proposed device structure.

Parameters P3HT[28] CH3NH3SnI3 [18] WS2[38] ITO

Thickness (nm) 350 350 150 100

Eg (eV) 1.700 1.3 1.800 3.500

X (eV) 3.500 4.17 3.950 4.000

εr 3.000 8.2 13.600 9.000

Nc (1/cm3) 2.0 × 1018 1 × 1018 2.2 × 1017 2.2 × 1018

Nv (1/cm3) 2.0 × 1019 1 × 1018 2.2 × 1016 1.8 × 1018

Ve (cm/s) 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

Vh (cm/s) 1.0 × 107 1.0 × 107 1.0 × 107 1.0 × 107

µe (cm2/Vs) 1.8 × 10−3 1.6 1.0 × 102 2.0

µh (cm2/Vs) 1.8 × 10−2 1.6 1.0 × 102 1.0

ND (1/cm3) - 1.0 × 1017 1.0 × 1018 2.0 × 1019

NA (1/cm3) 1.0 × 1019 1.0 × 1017 - -

3. Results and Discussion
3.1. The Effect of the Thickness and Doping Concentration of the Absorber Layer

The impact of the active perovskite layer thickness on the efficiency of the solar device
will be explored in this section. Absorber layers play a vital role in the improvement of
the performance of the solar device [39,40]. All parameters, such as bandgap, thickness,
and doping concertation, play an important role in optimizing performance. Figure 2
illustrates the variation of the electrical parameters with thickness, such as Voc Jsc and FF,
η. The simulated outcome shows that solar cell parameters are highly dependent on the
thickness of the perovskite layer. The electrical parameters, such as Jsc, and η, increase
with the increase in the thickness of the perovskite layer while the FF and Voc decrease
with a further rise in thickness. When increasing the absorber layer thickness, it has been
observed that the Jsc, and eta performance improve but the Voc performance degrades.

Since, as the absorber layer thickness increases, more photons are absorbed, and as
photons penetrate deeper into the absorber layer, more electron-hole pairs are produced
which increases the performance of the device [41]. The decrease in Voc is caused by an
increase in the dark saturation current, which enhances charge carrier recombination [42].
This is addressed by the photo-generated current and dark saturation current’s dependence
on open-circuit voltage, which is expressed as [42,43]

Voc =
kT
q

Ln
[

Jsc
J0

+ 1
]

(1)

Here Jsc represents the photo-generated current density, kT/q represents the thermal
voltage, and J0 represents the saturation current density

The JV characteristics have been recorded by varying the thickness of the absorber
layer, as shown in Figure 3a. Current density vs. voltage characteristics show an increase
with increasing absorber layer thickness. As the thickness of the absorber layer increases,
the area under the curve also enhances, which results in an increase in the Jsc values
because more photons fall on it [40–42].

The external quantum efficiency spectra of the proposed device are shown in Figure 3b.
The relations between quantum efficiency (QE) and wavelength curve show that the %
QE increases with varying the absorber layer thickness. As the thickness of the absorber
layer increases, more light is absorbed, resulting in a large number of carriers. These excess
carriers led to the increase in the Jsc and PCE of the perovskite device [41,42]. Firstly, QE
increases rapidly (up to 1.2 m) with the increase in the thickness of the absorber layer
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and after it gets saturated (as shown in Figure 3b). Considering the short diffusion length
and higher defect density in thicker perovskite, a thickness of 1.2 µm for the absorber is
appropriate for obtaining optimal solar cell performance.
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3.2. Effect of Absorber’s Bandgap on Solar Cell Performance

In this present section, the effect of the bandgap on the solar cell performance has
been investigated, which is shown in Figure 4a. The energy bandgap of the CH3NH3SnI3
has been varied from 1.0 eV to 1.5 eV and the corresponding change in the performance
is noted. FF and Voc increase with the bandgap of absorber materials while Jsc and PCE
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decrease with an increasing bandgap of absorber materials. The FF and open circuit voltage
is proportional to the active material’s bandgap. As the bandgap widens, so does the open
circuit voltage [44].
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In Figure 4a the sharp decrease in PCE and Jsc was observed with the increase in the
bandgap of the absorber layer. Initially, FF increases with the bandgap of the absorber layer
to the particular bandgap of 1.3 eV, but with further increase, it starts to decrease.

The QE spectra of varying the bandgap of the CH3NH3SnI3 are shown in Figure 4b.
QE vs. wavelength curve demonstrates that the quantum efficiency continues to increase
with increasing the bandgap of the materials. Initially, maximum QE is observed at a
bandgap of 1.0 eV, while with the increase in the bandgap of the absorber layer, QE goes on
decreasing, which results in a decrease in the PCE and Jsc of the perovskite device.

3.3. Effect of Doping Density of ETL

The impact of the doping density of the WS2 ETL on the functional parameters of
perovskite cells has been investigated. The doping density of the ETL layer has been
varied from 1015 cm−3 to 1022 cm−3, as shown in Figure 5a. Initially, with increases in the
doping density of the ETL material, PCE, Voc, and FF go on increasing to a certain value of
1018 cm−3 and with a further increase in the doping density, Voc and FF become saturated
while PCE slightly decreases and then becomes constant.
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The QE vs. wavelength curve shows almost constant variation in quantum efficiency
with an increase in the doping concentration of the electron transport material (ETM)
(Figure 5b). The QE with varied doping density at a wavelength range of ~400–900 nm
is observed to be constant, while a slight change can be seen below 400 nm, as shown
in Figure 5b.

The doping concentration of the HTL has little impact on Jsc because photogeneration
occurs mostly in the absorber layer [45].

The maximum performance of the proposed device structure Glass/ITO/WS2/CH3NH3SnI3/
P3HT/Au is observed at a doping density of 1018 cm−3. Therefore, 1018 cm−3 is taken as
the optimum doping density for WS2 of this device structure.

3.4. Effect of Doping Density and Bandgap of HTL

The effect of the bandgap of the HTL on the performance of the perovskite solar cell
has been investigated, which is shown in Figure 6a. Increases in FF, Voc, and PCE are shown
with an increase in the HTL’s bandgap, however a substantial decrease in Jsc (mA/cm2) is
seen. Because of the large bandgap, more energy is required to transfer an electron from
the valence band to the conduction band.

Furthermore, the influence of the P3HT’s doping density on the perovskite cell’s
functional characteristics has been studied. The doping density of the HTL layer has been
varied from 1015 cm−3 to 1022 cm−3, as shown in Figure 6b. Initially, as the doping density
of the ETL material increases, PCE, Voc, and FF increase to a certain threshold prior to
getting saturated. While a small drop in Jsc (mA/cm2) has been noticed with a rise in P3HT
doping concentration. Moreover, photogeneration occurs mainly in the Ch3NH3SnI3 layer,
and as a result, the doping concentration of the HTL has little effect on Jsc [45].
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From the graph, it is concluded that the maximum performance of the device structure
glass/ITO/WS2/CH3NH3SnI3/P3HT/Au is at a doping density of 1018 cm−3. As a result,
1018 cm−3 is chosen as the best doping density for P3HT in this device configuration.

3.5. Optimized Performance

The performance of the lead-free perovskite solar cell with the device structure
Glass/ITO/WS2/CH3NH3SnI3/P3HT have been studied. The optimized performance of
the CH3NH3SnI3 perovskite solar cell using WS2 as an electron transporting layer is shown
in Figure 7a,b. To optimize the performance, different parameters such as thickness, doping
concentration, and bandgap have been varied. In this study, room temperature (300 K)
is used for optimization. The best PCE with optimized parameters has been observed
as 33.36%.

The light transmittance of the substrate, which is known to be over 90% for glass
substrates, has a substantial impact on the efficiency of perovskite solar cells. Solar cell
power is primarily affected by optical losses via a reduction in the short-circuit current.
Light that could have produced an electron-hole pair but does not because it is reflected off
the front surface or because it is not absorbed by the solar cell is referred to as an optical
loss. The ideal situation would be for visible light (350–780 nm) to be totally absorbed,
since it has enough energy to produce electron–hole pairs [46,47]. There are a number of
measures to lower optical losses, including coating the top surface of the cell with anti-
reflective materials, reducing top contact coverage of the cell surface, increasing absorption
by thickening the active layer, reducing reflection by texturing the surface, increasing the
optical path by combining surface texturing, and light trapping, among others [48,49].

The potential of these materials, such as WS2 and P3HT, to act as electron and hole
transport layers in thin film solar cells could be one of the reasons for the high-power
conversion efficiency [20–22]. Another reason could be optical effects caused by multi-
reflection within the device between layers, which could result in the active layer absorbing
more photons and producing larger short-circuit currents [50].
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The simulated and experimental reported results are listed in Table 2. Our simulated
study, according to the tabulated results, is in good agreement with experimentally reported
work by various researchers working in this field.

Table 2. Comparison with the finding of the simulated and experimentally reported results.

Device Structure PCE
(%)

FF
(%)

Voc
(Volt) Jsc (mA/cm2) References

Zn0.75Mg0.25O/CH3NH3SnI3/MASnBr3(simulated) 26.33 82.01 0.95 33.85 [18]

ITO/PEDOT: PSS/CH3NH3SnI3/C60/
BCP/Ag (experimental) 17.1% 76.41 1.00 22.95 [51]

FTO/TiO2/Perovskite/
SpiroMeOTAD/Ag(experimental) 15.1 64.2 0.99 23.71 [52]

ITO/PEDOT: PSS/CH3NH3PbI3−xClx/C60/
BCP/Ag (experimental) 21.1 80.3 1.09 22.3 [53]

FTO/TiO2/FASnI3/Spiro-OMeTAD/Au (simulated) 19.08 33.72 1.18 31.20 [54]

FTO/ TiO2-ZnS/Spiro-OMeTAD/Au 14.90% 74.43 1.02 19.07 [46]

WS2/CH3NH3SnI3/P3HT(simulated) 33.46 81.59 1.0997 37.17 This work
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4. Conclusions

In the present study, a novel device structure composed of Glass/ITO/WS2/CH3NH3SnI3/
P3HT was investigated to boost solar cell performance. The lead-free perovskite solar cell
can have good efficiency by selecting a buffer layer of wide bandgap materials that can
transmit more photons to the absorber layer. Here, the impact of the various parameters on
the performance of the perovskite solar cell has been studied. The optimized performance
of the proposed device structure such as Voc, FF, Jsc, and PCE are 1.0997 V, 37.1778 mA,
81.59%, and 33.36% respectively. It can also be concluded that with the increase in the ETL
doping concentration, the suggested structure has good performance and can compete with
the existing lead-based perovskite solar cells. The present study would serve as a beneficial
roadmap in developing lead-free, high-efficiency perovskite solar cells.
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