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Abstract: With the development of artificial intelligence technology and computer hardware func-
tions, deep learning algorithms have become a powerful auxiliary tool for medical image analysis.
This study was an attempt to use statistical methods to analyze studies related to the detection, seg-
mentation, and classification of breast cancer in pathological images. After an analysis of 107 articles
on the application of deep learning to pathological images of breast cancer, this study is divided into
three directions based on the types of results they report: detection, segmentation, and classification.
We introduced and analyzed models that performed well in these three directions and summarized
the related work from recent years. Based on the results obtained, the significant ability of deep
learning in the application of breast cancer pathological images can be recognized. Furthermore,
in the classification and detection of pathological images of breast cancer, the accuracy of deep
learning algorithms has surpassed that of pathologists in certain circumstances. Our study provides a
comprehensive review of the development of breast cancer pathological imaging-related research and
provides reliable recommendations for the structure of deep learning network models in different
application scenarios.

Keywords: deep learning; breast cancer; pathological image; histopathology

1. Introduction

Cancer is a huge public health problem worldwide. Among cancer types, breast cancer
(BC) is the most common cancer in women [1]. Since the late 1970s, the number of breast
cancer patients worldwide has increased, and to date, breast cancer has become one of
the types of cancer with the highest incidence and mortality rates in the world. Based
on statistics from the World Health Organization, 8.8 million people died of cancer in
2020, of which 684,996 died of breast cancer [2]. A histopathological examination of breast
cancer is the “gold standard” for a breast cancer diagnosis [3]. Pathologists can distinguish
between normal tissue, non-malignant (benign) tissue, and malignant lesions by observing
the microscopic structure and organization of biopsy samples in microhistological images.

A traditional pathological diagnosis has high prestige in a medical diagnosis. The
pathologist observes tissue slices through a microscope and makes the corresponding
cancer diagnosis by observing the tissue structure and cytopathic characteristics of the
slices. The staining density and flatness of the slice, as well as the collection and storage
of pathological slice images, may affect the integrity of the final pathological slice image.
The inherent complexity and diversity of breast histological images make the diagnostic
work of pathologists tedious and time-consuming. Additionally, differences in experience
and the subjectivity of pathological diagnostic criteria often lead to inconsistency and the
non-reproducibility of diagnostic results [4]. The development of digital pathology has
reduced these effects, which is helpful in obtaining high-resolution images [5]. Compared
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to traditional pathology, digital pathology uses digital pathology systems to digitize and
network process pathological resources. With the application of big data technology in
the medical field, we can describe the collection visualization, long-term storage, and
synchronous browsing of data. The processing of collected pathological resources is no
longer restricted by time and space. Therefore, digital pathology has become widely used
in related fields of pathology [6].

In recent years, the continuous development of artificial intelligence technology has
achieved remarkable results in various fields. With the continuous improvement and in-
crease in medical equipment and data recording systems, the medical field has several large-
scale datasets, such as Camelyon16. As a subcategory of artificial intelligence, deep learning
has also benefited greatly and achieved remarkable achievements [7]. Srinidhi et al., pre-
sented a comprehensive review of state-of-the-art deep learning approaches that have been
used in the context of histopathological image analysis [8]. Wang et al., summarized recent
deep learning approaches relevant to precision oncology and reviewed more than 150 arti-
cles from the past six years [9]. We searched original articles published from 2007 to 2022
using “breast cancer”, “pathology”, and “deep learning” as keywords in Web of Science and
performed a statistical analysis. By analyzing the studies from 2007 to 2022, we found that
the articles about deep learning have gradually increased since 2007, Figure 1A. Robertson
et al., introduced the development from image processing technology to artificial intelli-
gence in breast pathology [10]. Gao et al., introduced medical image analysis technology
based on convolutional neural networks in computer-aided diagnosis (CAD) research [11].
Biswas et al., introduced the development of deep learning and certain applications in
medical imaging [12]. Figure 1B shows the summary of the themes of review-type articles in
articles on the application of deep learning to breast cancer pathological pictures. Although
some articles summarizing the application of breast cancer pathology in deep learning
have been published [13–15], with the rapid development of deep learning algorithms, it
is still necessary to systematically and comprehensively summarize the research results
in this field. In this review, we summarize 202 articles from Web of Science from 2007 to
the present on the application of deep learning in breast cancer pathology. This review
analyzed the application of deep learning methods in the detection, segmentation, and
classification of breast pathological images. In addition, relevant articles were introduced
and sorted, respectively, and common public breast cancer pathological image datasets are
summarized.

Section 2 of this paper comprehensively summarizes the public dataset related to
pathological images of breast cancer. Section 3 explores the application of the deep learning
method in breast cancer pathological images from the three perspectives of detection,
segmentation, and classification. Section 4 summarizes the above methods and looks
forward to the future development of this field.
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Figure 1. Publication of articles on deep learning of pathological images of breast cancer. (A) Year
of publication of the article on deep learning in breast cancer pathological images. (B) Summary
of the themes of review-type articles in articles on the application of deep learning to breast cancer
pathological pictures.
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2. Datasets

Most deep learning networks used to process pathological images are algorithms with
supervision. To improve the network accuracy, a large amount of labeled data is required
for training to improve the fit. The acquisition and labeling of datasets are time-consuming
and complex [16]. In this section, we summarize the data and information contained
in the existing breast cancer public datasets and the number and types of pathological
images they contain. Table 1 summarizes the commonly used public datasets. Breast cancer
histopathological image classification (BreakHis) consists of 9109 microscopic images of
breast tumor tissue from 82 patients using different magnification scales (40×, 100×,
200×, and 400×). The Cancer Imaging Archive (TCIA) has identified and hosted a vast
archive of medical images of cancer for public download and includes typical patient
images related to common diseases, imaging modalities or types (Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), digital histopathology, etc.), or research
priorities. The primary file format for TCIA is Digital Imaging and Communications in
Medicine (DICOM). The Genomic Data Sharing Area (GDC) is a research initiative of
the National Cancer Institute (NCI). The mission of the GDC is to provide the cancer
research community with a unified data repository to share data across cancer genome
research to support precision medicine. Sklearn datasets are composed of classic data that
can be directly called by the classic machine learning module Sklearn in Python; these
datasets include Boston house price data, Wisconsin breast cancer data, diabetes data,
the handwritten digital dataset, Fisher’s iris data, and wine data. BACH (International
Conference on Image Analysis and Recognition (ICIAR) 2018 Grand Challenge) refers to
the ICIAR Grand Challenge on BreAst Cancer Histology images. The challenge provides a
dataset consisting of the histological microscopic examination of the breast stained with
hematoxylin and eosin (H&E) and the entire slide image. Camelyon16 refers to the dataset
provided by the Camelyon16 Challenge. The goal of this challenge is to evaluate new
and existing algorithms to automatically detect metastases in whole-slide images of H&E-
stained lymph node sections. The data in the challenge included a total of 400 full-slide
images (WSIs) from sentinel nodes from two separate datasets from the Radboud University
Medical Centre (Nijmegen, Netherlands) and the University Medical Centre of Utrecht,
Netherlands. CAMELYON17 is a dataset provided by the CAMELYON17 Challenge. The
goal of this challenge is to evaluate new and existing algorithms for the automatic detection
and classification of breast cancer metastases in full-slide images of histological lymph
nodes. The CAMELYON17 dataset comes from five medical centers in the Netherlands.
The WSIs are available as TIFF images. Comments on the lesion level are provided in the
form of XML files. For training, 100 patients will be selected, and another 100 will be tested.

Table 1. Common breast cancer pathological image public dataset.

Name Data Details

BreakHis benign 2480
(https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/,
accessed on 1 December 2022) malignant 5429

TCIA malignant 549
(https://www.cancerimagingarchive.net/, accessed on 1 December 2022)

GDC Data Portal malignant 9114
(https://gdc.cancer.gov/access-data/gdc-data-portal, accessed on 1 December 2022)

Sklearn.datasets benign 357
(https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html,
accessed on 1 December 2022) malignant 212

https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://www.cancerimagingarchive.net/
https://gdc.cancer.gov/access-data/gdc-data-portal
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
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Table 1. Cont.

Name Data Details

BACH (ICIAR 2018 Grand Challenge) normal 100
(https://iciar2018-challenge.grand-challenge.org/, accessed on 1 December 2022) benign 100

malignant 200

Camelyon16 normal 160
(https://camelyon16.grand-challenge.org/, accessed on 1 December 2022) malignant 240

Camelyon17 normal 160
(https://camelyon17.grand-challenge.org/, accessed on 1 December 2022) malignant 1240

3. Methodology

In 2006, the concept of deep learning again attracted the attention of researchers [17].
From 2007, deep learning began to be applied in breast pathology image data. Then, un-
der the efforts of many researchers, random gradient descent (SGD), Dropout, and other
network optimization strategies were successively proposed, especially GPU parallel com-
puting technology that solves the problem of multiple optimization times of deep network
parameters for a long time, which has set off an upsurge of deep learning worldwide and
continues to this day. Over the past 10 years, many classical deep learning architectures
were proposed, such as AlexNet [18], Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM) [19], Generative Adversarial Network (GAN) [20], and transformer [21].
In this section, we investigate the application of deep learning to histopathological sections
of breast cancer, including the most advanced and effective models available today, and
we provide a summary of related work. The literature can be divided into three primary
categories based on the direction of research reported in each article: breast cancer detection,
breast cancer segmentation, and breast cancer classification [22].

Figure 2 shows the common basic neural network structure, where yellow squares
represent convolution layers, orange squares represent pooling layers, purple squares
represent full-connected layers, and blue squares represent deconvolution layers. Among
them, Figure 2A is a simplified convolution neural network, which is composed of only
two layers of convolution, and the rest of the depth convolution neural network can be
composed by superimposing Figure 2A. LeNet (Figure 2B) [23] is an early convolutional
neural network, which was proposed by Yann LeCun et al., in 1990. AlexNet (Figure 2C)
is a deep convolutional neural network proposed by Hinton et al., in 2012 and won the
championship in the ImageNet challenge that year. Figure 2D is a full convolution neural
network (FCN) used for semantic segmentation in the early stage [24]. It is also widely
used in the early research of breast cancer pathological image segmentation task. The
appearance of U-Net [25] has significantly improved the performance of FCN in medical
image segmentation tasks. Holistically Nested Network (HED) [26] has achieved better
results than traditional edge detection algorithms in edge detection tasks, and this method
has also been used to improve the performance of breast cancer segmentation tasks [27].

3.1. Detection Of Breast Lesions

In medical image analysis, detection aims to locate areas of interest in tissue slices [28–40].
The detection system provides strong support for object segmentation, the distinction
between malignant and benign tumors, or the detection of tumors or lesions. For example,
nuclear or mitosis has important implications for cancer screening. Cell spatial distribution
analysis and mitotic count provide support for differentiation. Automatic cell/nucleus
detection is a prerequisite for a series of subsequent tasks, such as cell/nucleus instance
segmentation, tracking, and morphological measurements [41]. In recent years, many
studies based on deep learning were performed in this field of study. Among existing deep
learning detection algorithms, CNN-based networks perform better than other network
structures in detection accuracy [42]. In certain areas, CNN-based networks have achieved

https://iciar2018-challenge.grand-challenge.org/
https://camelyon16.grand-challenge.org/
https://camelyon17.grand-challenge.org/
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diagnostic standards that surpass pathologists [43]. Next, we will introduce some typical
models that work particularly well for accuracy and performance. Table 2 shows the
application of deep learning algorithm in histopathological detection of breast cancer. The
application of deep learning algorithm in histopathological detection of breast cancer was
classified according to the types of models, and the strategies were summarized.

Figure 2. The network structure of the neural network structure commonly used in breast pathological
image analysis. These network structure models have been widely applied and performed well in
deep learning pathological image classification, segmentation, and recognition tasks. The input size of
each layer is shown in the figure. (A) Convolutional neural network (CNN). (B) LeNet. (C) AlexNet.
(D) Fully convolutional networks for semantic segmentation (FCN). (E) UNet. (F) Holistically Nested
Network (HED).

George et al. [44] proposed a low-complexity breast cancer detection convolutional
neural network (CNN) called NucDeep, which includes a low-complexity CNN for feature
extraction of non-overlapping nuclear plaques and converts local nuclear features into
compact image-level features to improve classifier performance (Figure 3A). Chen et al. [45]
proposed a novel deep cascaded neural network model (CasNN). CasNN greatly increased
the speed of detection of mitosis (Figure 3B). Liu et al. [43] proposed InceptionV3 as a
way to automatically detect and locate cancers in high-resolution images (Figure 3C). The
author uses InceptionV3 as an experimental framework, and the balance and expansion
of data are achieved through data enhancement and balance to improve model accuracy.
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Bardou et al. [46] proposed a method for automatic classification of breast cancer histologi-
cal images based on a convolutional neural network (Figure 3D). The linear rectification
function (ReLU) layer is used for the convolution and fully connected layers to accelerate
the convergence learning rate, introduce nonlinearity, and adjust the network weight to
prevent overfitting.

(A)

(C)

(B)

(D)

Figure 3. Some typical models of breast lesion detection methods. (A) The network structure and
model reported by George et al. (B) The network reported by Chen et al. The deep cascaded
convolutional neural network was used to achieve high accuracy while greatly increasing the speed
of analysis. (Reproduced with permission from [Hao Chen], [THIRTIETH AAAI CONFERENCE ON
ARTIFICIAL INTELLIGENCE]; published by [PKP Publishing Services Network], [2016].) (C) The
automatic detection and positioning framework reported by Liu et al., (Reproduced with permission
from [Yun Liu], [arXiv]; published by [arXiv], [2017].) (D) The network of the automatic classification
of breast cancer histological images reported by Bardou et al., (Reproduced with permission from
[Dalal Bardou], [IEEE Access]; published by [IEEE], [2018].)

Some classical detection algorithms [47–49] in the field of natural images have also
been used in the problems related to pathological images of breast cancer. Lu et al. [50]
proposed a model based on the latest yolo v4 structure that can quickly and accurately
segment the lesion area in high-resolution breast cancer pathological slices. The ROI
recognition accuracy is 0.936 and F1 score is 0.787, which is of great significance for improv-
ing the diagnostic efficiency and accuracy of pathologists on breast pathological images.
Huang et al. [51] proposed an algorithm for breast cancer pathological image nuclear de-
tection based on mask RCNN. This method effectively combines feature pyramid network
(FPN), ResNet, and other modules to achieve more accurate detection. Harrison et al. [52]
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proposed an algorithm for tumor detection in breast pathological images based on Faster
RCNN and found that patching the images can significantly improve the sensitivity of the
model, from 1% to 60%, and the performance improvement brought by dye normalization
is limited. Yamaguchi et al. [53] proposed an automatic detection algorithm for breast
cancer based on single-shot multibox detector (SSD) and achieved 88.3% and 90.5% diag-
nostic accuracy in two (benign or malignant) and three (benign, non-invasive carcinoma,
or invasive carcinoma) classification tasks, respectively. Mitotic cell count is an important
biomarker for grading and prognosis of breast cancer and is also a common application of
pathological intelligence analysis of breast cancer. Zorgani et al. [54] designed a method to
detect breast cancer mitotic cells based on the deep yolo architecture and obtained 0.839 F1
measure on the ICPR2012 dataset.

Thus, by reading and analyzing the article, we found that the model proposed by [44]
is a low-complexity model with classification results comparable to existing technologies
and uses nucleus patches alone rather than random patches. The proposed method of [45]
can obtain various multi-level and multi-scale features from breast cancer histopathological
images, providing competitive performance in the classification of complex breast cancer
histopathological images. However, the dataset collected is relatively small and contains
only two types of images, and the dataset should be extended to include images for
multiclass classification problems. The authors of [43] made data enhancement for negative
samples to solve the large gap between positive and negative samples and optimized the
sampling process to remove the patch as the background. After the probability graph is
obtained, the tumor region is continuously iterated according to the current maximum
value to predict the tumor region based on the non-maximum suppression method. In [46],
compared with CNN, the performance of the manual feature-based method based on
encoding model for local descriptors to construct image representation is low, and the
performance of multiclass classification is lower than that of binary classification. Classical
object detection algorithms can also achieve remarkable results in the field of pathological
images, especially Faster RCNN series algorithms.

From the above results, it can be seen that the deep learning model has the advantages
of direct learning characteristics on breast cancer pathological images, which can greatly
reduce the manual investment and also reduce the artificial differences caused by manual
reading. Higher accuracy also provides help for the development of precision medicine.

Table 2. Summary of the application of deep learning algorithms in breast cancer histopathology
for detection.

Model Strategy Advantages Publication

RNN Development of decision support systems for
pathology

RNN allows neurons in the hidden
layer to communicate with each other,
storing the previous output as
information in the hidden layer

[55]

Propose a SmallMitosis framework for the
detection of mitotic cells from hematoxylin
and eosin (H&E)-stained breast histological
images

[56]

Inception Histologic identification of tumor cells in
lymph nodes

Inception increases the width of the
network by pooling each layer with a
different convolution to extract
features from the previous layer, and
by adding a 1*1 convolution after the
pooling layer before the 3*3 and 5*5
convolutions, which effectively avoids
complex parameters and
computational effort

[57]
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Table 2. Cont.

Model Strategy Advantages Publication

Improve the computer-aided diagnosis
method based on deep learning [58]

ResNet
Detection of invasive ductal carcinoma in
breast histological images and the
classification of lymphoma subtypes

The main feature of ResNet is the
residual block, the purpose of the
residual block is to preserve the
characteristics of the parameters before
the current layer is trained and to pass
these parameters into the subsequent
layers together with the trained data

[59]

Diagnostic breast cancer whole-slide tissue
images [60]

Propose an automatic detection method for
invasive ductal carcinoma (IDC) based on
deep transfer learning technology

[61]

Propose Mask RCNN, a multi-task deep
learning framework for object detection and
instance segmentation, to automatically
detect mitosis

[62]

DCNN
Propose an accurate method for detecting the
mitotic cells from histopathological slides
using a multi-stage deep learning framework

[63]

Present an SSAE for efficient nuclei detection
on high-resolution histopathological images
of breast cancer

[64]

Introduce deep learning as a technique to
improve the objectivity and efficiency of
histopathologic slide analysis

[65–70]

Semi-
Supervised
Learning

Present a semi-supervised deep learning
strategy for breast cancer diagnosis

Semi-supervised learning is to use a
large number of unlabeled samples
and a small number of labeled samples
to train the classifier, solving the
problem of insufficient labeled samples

[71,72]

YOLO A fast lesion detection method based on yolo
is proposed Simple structure and fast speed [50]

Faster
RCNN

A fast detection method of breast tumor
based on Faster RCNN is proposed

Faster RCNN realizes object detection
performance with high accuracy
through second-order network and
Region Proposal Network

[52]

Single Shot
multibox
Detector
(SSD)

An automatic detection method of breast
cancer lesion based on SSD is proposed

One stage, good at detecting small
objects [53]

3.2. Segmentation Method of Breast Pathological Image

Segmentation refers to dividing the input image into many specific areas with unique
properties and extracting them, separating the content in a region of interest (ROI) from
the image background. The ROI in a pathological image of breast cancer is part of a lesion.
When using deep learning correlation methods, it is generally necessary to analyze and
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extract the characteristics of tumor lesions in ROI so as to detect and classify pathological
images. Pathological image segmentation plays an important role in the field of pathological
image processing and analysis, which is helpful to provide reliable basis for clinical auxiliary
diagnosis and treatment. Despite the high complexity of pathological images and the lack
of simple linear features, pathological image segmentation technology has made significant
progress due to the effective application of deep learning algorithm in pathological image
segmentation. In pathological image segmentation, deep learning algorithms have made
remarkable achievements. Most pathological image segmentation uses supervised deep
learning algorithms, such as FCN, RNN, and U-Net. Next, we will introduce some typical
models that work particularly well for accuracy and performance. Table 3 shows the
application of deep learning algorithm in histopathological segmentation of breast cancer.
The application of deep learning algorithm in histopathological segmentation of breast
cancer was classified according to the types of models, and the strategies were summarized.

Mehta et al. [73] introduced a method to generate distinguishable tissue-level seg-
mentation masks for breast cancer diagnosis (Figure 4A). This Y-Net network expands and
generalizes U-Net, adds a parallel branch for the generation of discriminative maps, and
supports modularization of convolution blocks. Guo et al. [74] proposed v3-DCNN, a fast
cancer region segmentation framework (Figure 4B). The classification model Inception-
V3 was used to preselect the tumor area, and then the semantic segmentation model
DCNN was used to segment the 1280 × 1280 patch to reduce computation time and im-
prove accuracy. Pan et al. [75] proposed an automatic nuclear segmentation method for
histopathological images of breast cancer stained with H&E. The sparse reconstruction
method is used to roughly remove the background to emphasize the core of the pathological
image, and then the deep convolutional network (DCN) of the multilayer convolutional
network cascade is used to effectively segment the core from the background (Figure 4C).
Maria Priego-Torres et al. [76] presented a processing pipeline for automatic segmentation
of breast cancer images to present different types of histopathological patterns (Figure 4D).
The deep convolutional neural network (DCNN) and the encoder–decoder with separable
convolution structure were used to complete the segmentation of each patch, and the local
segmentation results were merged based on the effective full connection condition random
field (CRF) to avoid discontinuity and inconsistency.

Transformer-based methods are also widely used in medical image segmentation [21].
However, there are few studies about the segmentation task of breast pathological im-
ages. Therefore, we try to retrieve transformer-based segmentation methods in the fields
related to breast pathological image segmentation, aiming to promote the development
of transformer-based methods in this field. Cam et al. [77] quantitatively evaluated
the segmentation performance of six popular transformer-based segmentation networks
on pathological images based on the PAIP liver histopathology dataset and compared
the classical CNN-based segmentation networks. The results show that the transformer-
based segmentation network is generally better than the CNN-based model, proving the
effectiveness of the transformer architecture on pathological image segmentation tasks.
Li et al. [78] proposed a vision language medical image segmentation model, LViT (Lan-
guage measures Vision Transformer), to solve the problem of insufficient annotation of
medical images and verified the cell segmentation performance of this method on the
MoNuSeg dataset. Diao et al. [79] introduced transformer into the classic U-Net architec-
ture to extract and encode global context information and achieved SOTA performance in
the nasopharyngeal carcinoma pathological image dataset.

Semi-automatic segmentation algorithm also attracted much attention in the field of
breast cancer image analysis, mainly applied to X-ray [80], ultrasound [81], MRI [82], and
other images, and there is less research on pathological images of breast cancer. In recent
related research, Lai et al. [83], in conjunction with semi-supervised and active learning,
proposed a segmentation algorithm for brain tissue pathological images and achieved IoU
scores competitive with fully supervised learning.
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Figure 4. Some typical models of breast pathological image segmentation. (A) Overview of methods
for detecting breast cancer reported by Mehta et al. (B) The fast and refined cancer region segmen-
tation framework v3_DCNN reported by Guo et al. (C) The method reported by Pan et al. (D) The
deep neural network-based pipeline segmentation method reported by Maria Priego-Torres et al.

Thus, through research and analysis, we found that the features generated by the
discriminant segmentation mask used by the authors in [73] were able to achieve the same
segmentation accuracy as the most advanced methods while learning fewer parameters.
However, this paper only studied breast biopsy images and did not extend to other medical
imaging tasks. The method proposed in [74], based on the V3 DCNN model, achieved
a higher FROC score of 83.5% than the champion method Camelyon16 80.7%, and fur-
ther, the automatic heat map generation of WSI was achieved. However, the proposed
model lacks dataset validation and should be tested on more breast histopathological
images. In [75], k-SVD and Batch-OMP algorithms were used for sparse reconstruction
to enhance the nuclear region. In the segmentation stage, DCN trained by structural la-
bel was used to obtain the exact pixel of the nucleus, and morphological operation and
some prior knowledge were introduced to improve the segmentation performance and
reduce errors. The proposed algorithm is a general method and can be applied to many
pathological applications. However, the number of datasets is too small, and the number
of background pixels is far more than that of nuclei, so there is an imbalance between the
number of nuclear pixels and background pixels. The proposed segmentation model in [76]
performed well on standard success rate and similarity segmentation metrics, especially
considering that the dataset included WSI images with high tumor variability. Web-based
viewers and annotation tools were developed to allow collaboration with pathologists
and technologists to establish a way to create datasets. However, all images used in this
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working study were stained in the same laboratory and digitized using the same scanner,
and images from other sources should be used to increase the heterogeneity of the training
set. Transformer-based methods have achieved remarkable results in the field of computer
vision and become popular in medical image analysis tasks. [21] Transformer can well
encode context characteristics. This is also used by most researchers to build the global
features of breast cancer pathological images so as to improve the model performance. A
large number of experimental results show the effectiveness of transformer architecture in
this field [77,79,80]. The semi-automatic segmentation algorithm is relatively less used in
the breast cancer pathological image segmentation task. So far, this method is still a field
worthy of researchers to explore.

Table 3. Summary of the application of deep learning algorithms in breast cancer histopathology for
segmentation.

Model Strategy Advantages Publication

ResNet
Propose segmentation of limited data using
rough image-level tags with performance
comparable to fully labeled datasets

The main feature of ResNet is the
residual block, the purpose of the
residual block is to preserve the
characteristics of the parameters before
the current layer is trained and to pass
these parameters onto the subsequent
layers together with the trained data

[84]

FCN
Propose a fast segmentation method for
breast cancer metastases in pathological
images

The FCN replaces the fully connected
layer behind the traditional CNN with
a convolutional layer so that the output
of the network will be a heat map
rather than a category; at the same
time, the image size is recovered using
upsampling in order to address the
reduction in image size due to
convolution and pooling

[85]

Propose an automatic method for detecting
mitosis [86]

Describe a method to automatically segment
nuclei from hematoxylin and eosin
(H&E)-stained histopathology data with fully
convolutional networks

[87]

Use annotated datasets to create accurate
models [60]

Propose a histopathological tissue analysis
framework based on deep learning and
verifies its universality and model
generalization under different data
distributions

[88]

U-Net

Use histopathological images obtained with
hematoxylin and eosin staining for biopsy
samples for the diagnosis and segmentation
of breast cancer

U-Net networks are able to use valid
labeled data more effectively from a
very small number of training images,
relying on data augmentation

[89]

Address the task of tissue-level segmentation
in intermediate resolution of
histopathological breast cancer images

[90]
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Table 3. Cont.

Model Strategy Advantages Publication

Propose a deep learning framework
consisting of high-resolution encoder paths,
pyramidal pooled bottleneck modules in
porous space, and decoders

[91]

Investigate whether it is possible to further
improve the performance of the classifier
model at the patch level by integrating
multiple extracted histological features into
the input image

[92]

CNN

Improve the performance of current Simple
Linear Iterative Clustering (SLIC) algorithm
to achieve hyperpixel segmentation of
high-dimensional features

[93]

Use a pretrained convolutional neural
network (CNN) for segmentation and then
another Hybrid-CNN for classification of
mitoses

[94]

Identify a useful cell segmentation approach
with histopathological images that uses
prominent deep learning algorithms and
spatial relationships

[95]

Propose a framework that combines the
effectiveness of attention-based
encoder–decoder architecture with an empty
space pyramid pool with efficient
dimensional convolution (kide-Segnet)

[96]

Propose a deep learning model for automatic
segmentation of complex cores in tissue
images by encoder-decoder structure

[97,98]

Transformer Transformer-encoded global features improve
U-Net segmentation performance

Transformer model can be used to
encode the global features of
pathological images and can improve
the performance of current algorithms
in many fields

[79]

3.3. Disease Classification Based on Breast Pathological Images

Classification of medical images by defining the anatomical or pathological features
distinguishes certain anatomical structures or tissues. Classification tasks can include many
applications in determining the presence of disease, including the identification of tumor
types. Deep learning is often used with medical images to classify target lesions into two or
more categories. Binary classification refers to distinguishing between breast cancer tissue
slices and normal breast tissue slices in the pathological tissue slice dataset used. Multiclass
classifications divide pathological tissue slices of the breast into multiple categories using
deep learning algorithms based on requirements. Common classifications of breast tissue
slices are normal, benign, in situ carcinoma, or invasive carcinoma. In general, the accuracy
of the binary classification task is higher than that of the multiclass classification task.
Among some existing deep learning classification algorithms, the classification accuracy
has reached or even exceeded that of pathologists [43]. Next, we will introduce some
typical models that work particularly well for accuracy and performance. Table 4 shows the
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application of deep learning algorithm in histopathological classification of breast cancer.
The application of deep learning algorithm in histopathological classification of breast
cancer was classified according to the types of models, and the strategies were summarized.

Convolution neural network is the most widely used method in breast cancer patholog-
ical image classification task. [46,99–109] Roy et al. [110] developed a patch-based classifier
(PBC) through a convolutional neural network (CNN) for automatic classification of breast
cancer histopathological images (Figure 5A). They used two methods: one patch in one
decision (OPOD), and all patches in one decision (APOD). Gandomkar et al. [111] proposed
a framework MuDeRN (multicategory classification of breast histopathological images
using deep residual networks) (Figure 5B). The 152-layer RsetNet is used to sort tasks to
improve deeper network optimization for higher model accuracy. Vesal et al. [112] pro-
posed a method based on metastatic learning to divide histological images of breast cancer
into four subtypes: normal, benign, carcinoma in situ, and invasive carcinoma(Figure 5C).
Migration learning migrates ImageNet’s pretrained parameters into InceptionV3 and Rest-
Net50 and removes the last five layers of the network model to obtain global information.
Alom et al. [113] proposed a method for breast cancer classification using the Inception
recurrent residual convolutional neural network (IRRCNN) model, which is a combination
of the Inception network (Inception-v4), the residual network (ResNet), and a convolutional
neural network (RCNN), which provides advantages to DCNN models that exhibit superior
performance in object recognition tasks (Figure 5D). Sudharshan et al. [109] proposed a
weakly supervised learning framework based on multi-instance learning for classification
of breast pathological images. This method does not need to label each instance so it
significantly alleviates the problem of difficult labeling of pathological images.

In the field of medical image analysis, transformer-based methods were first used
to process disease classification tasks and produced significant results. [114–122] There
have also been many significant advances in the classification of pathological images of
breast cancer. Alotaibi et al. [119] designed an integrated model based on VIT and DeiT to
classify pathological images of breast cancer tissues and achieved an accuracy of 98.17 on
BreakHis public dataset. However, this method requires pretraining on large-scale datasets
and model fine-tuning to alleviate the data hunger of the transformer, which will obviously
increase the training cost of the model and limit the scope of use. Shao et al. [120] used
the global characteristics of the transformer to build the relationship between instances
in order to capture the context information so as to improve the performance of multi-
instance learning on the breast whole-slide image. They achieved 93.09% of AUC’s binary
classification performance on CAMELYON16 dataset. Chen et al. [121] proposed the
Multimodal Co-Attendance Transformer (MCAT) architecture, which aims to build the
relationship between WSI and genomic features and use it in survival analysis tasks. This
method has proved effective on different cancer datasets, including breast cancer datasets.
Chen et al. [122] proposed a multi-scale vision transformer model (GasHis Transformer)
for gastric cancer tissue image classification. The author also verified the effectiveness
of this method on the breast pathology image dataset. He et al. [123] proposed Deconv-
Transformer (DecT), which incorporates the color deconvolution in the form of convolution
layers, and uses a self-attention mechanism to match the independent properties of the HED
channel information obtained by the color deconvolution. In [124], DCET-Net (based on
two backbone streams of CNN and transformer) was proposed, which utilizes CNN stream
to focus on the local deep feature extraction of histopathological images, while through the
Transformer stream, it enhances the global information representation of images.

The capsule network proposed by Geoffrey Hinton also has some valuable exploration
in this field. Anupama et al. [125] used capsule network with preprocessed histology
images, which demonstrates that preprocessing data and tuning parameter can improve
the performance of conventional architectures. Wang et al. [126] used FE-BkCapsNet
based on deep feature fusion and enhanced routing, which combines the advantages of
CNN and CapsNet, and the classification performances are better than that of BkNet and
CapsNet. However, it is a very time-consuming methodology to classify based on capsule
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features and convolution features extracted in two parallel channels. Iesmantas et al. [127]
developed convolutional capsule network for classification of four types of images of breast
tissue biopsy when hematoxylin and eosin staining is applied, but regularization was not
taken into consideration.

      

(A)

(D)(B)

(A)

(C)

Figure 5. Some typical models of disease classification based on breast pathological images. (A) The
block diagram of patchwise classification and the block diagram of the CNN architecture reported
by Roy et al. (B) The steps of MuDeRN reported by Gandomkar et al. (C) The workflow of breast
histology image classification reported by Vesal et al. (D) Alom et al., reported the implementation
diagram of the IRRCNN model to identify breast cancer.
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Table 4. Summary of the application of deep learning algorithms in breast cancer histopathology for
disease classification.

Model Strategy Advantages Publication

Deep Belief
Network
(DBN)

Propose a new patch-based deep learning
method PA-DBN-BC for breast cancer
detection and classification in
histopathological images

[128]

Deep Neural
Network
(DNN)

Propose a new feature extractor, Deep
Manifold Reservation Autoencoder, for
automatic classification of breast cancer
histopathological images

Deep Belief Network is a probability
generation model, which has
important value in the early
application of deep learning methods

[129]

Generative
Adversarial
Network
(GAN)

Explore whether a deep learning algorithm
can learn objective histologic H&E features

GAN can be used as a means of data
enhancement to alleviate the problem
of insufficient data of pathological
images of breast cancer

[103]

Visual
Geometry
Group
Network
(VGG)

Discuss and compare the task of automatic
amplification in breast cancer detection based
on multiple classification

VGG is a deep neural network
proposed in 2014, which provides rich
deep features for early breast
pathological image research

[130]

Recurrent
Neural
Network
(RNN)

Present a deep learning model to classify
hematoxylin¨Ceosin-stained breast biopsy
images into four classes

RNN can construct the context
between pathological image features
and be used for prediction of
slide-level diagnostic results

[131]

Propose a second-order multi-instance
learning approach that stacks adaptive
aggregators by attentional mechanisms and
recurrent neural networks (RNN) for
histopathological image classification

[132]

Inception
Compare different machine learning methods
for classification and evaluation of breast
cancer tumors

[133]

Propose a depth model based on
computer-aided transfer learning as a binary
classifier for breast cancer detection

[134]

Propose a method for diagnosing breast
cancer as benign or malignant in
magnification specific binary (MSB)
classification

[135]

Dynamic
Convolution
Neural
Network
(DCNN)

Propose an efficient deep convolutional
neural network classification model for fast
back propagation learning

DCNN can adaptively adjust the
convolution kernel parameters
according to the input data, enhance
the feature expression ability of the
model, and specifically solve the tasks
related to breast pathological images

[136]

Develop a deep learning model biopsy
microscopic image cancer network
(BMIC_Net) for multiple classification of BC

[137]



Micromachines 2022, 13, 2197 17 of 30

Table 4. Cont.

Model Strategy Advantages Publication

Propose two efficient models based on deep
transfer learning to improve the binary and
multiclassification systems

[138,139]

Convolution
Neural
Network
(CNN)

Propose a new deep architecture based on
self-integration to leverage semantic
information from annotated images and
explore information hidden in unlabeled data

[140]

Propose an analysis and synthesis model
learning method with novel algorithms and
search strategies to classify images more
effectively

[141–150]

Propose a set of training techniques and use
image processing techniques to improve the
performance of CNN-based models in breast
cancer classification

[143,151–
157]

Deep
residual
network
(ResNet)

Present a deep neural network which
performs representation learning and cell
nuclei recognition in an end-to-end manner

[158]

Propose an automatic multiclassification
method for breast cancer histopathological
images based on metastasis learning

[159]

Present a method that employs a
convolutional neural network for detecting
tumor on entire-slide images

[59,130,136,
160]

Propose a breast cancer multiclassification
method using a proposed deep learning
model

[106,113,
137,161–
168]

Thus, through research and analysis, we found that the classifier proposed by [110]
first predicts the class label of each input patch by OPOD technique and then predicts the
whole-image label by APOD technique. At the same time, the number of filters and kernel
size of each layer are adjusted so that the number of trainable parameters is smaller than
the number of samples and overfitting can be prevented. The authors’ proposed framework
in [111], MuDeRN, first trains a deep residual network (ResNet) to classify patches in
images as benign or malignant. Images classified as malignant were then subdivided into
four cancer subgroups, and images classified as benign were divided into four cancer
subgroups. MuDeRN classified patients as benign or cancerous with 98.77% accuracy and
achieved 96.25% patient-level accuracy across the eight categories. However, for some
subtypes with too few cases, MuDeRN’s performance should be investigated on a larger
database. In [112], the conventional use of normalized means to deal with color differences,
using a different normalized way, showing a good effect but should verify its effect. The
author does not use a test set in the training, and the results produced by using only one
partition in the training set are hardly convincing. At the same time, the author changed the
structure of the end of the network without proving the correctness of the modification by
experiment. The method proposed in [113], the IRRCNN model, was used to successfully
classify binary and multiple types of breast cancer with constant amplification coefficients.
Image and patient-level data were evaluated using different magnifications on publicly
available histopathological datasets for breast cancer. Compared with the existing breast
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cancer classification algorithm, it shows superior performance. Recently, there were also
some studies based on attention mechanisms [169] and the use of deep semantic features
and image texture features [170] for breast cancer classification. They all achieved good
results and provided some references and directions for future research.

From the above results, it can be seen that deep learning has already achieved remark-
able results in the field of pathological image classification of breast cancer. How to further
improve the performance of deep learning-assisted diagnosis and better provide treatment
recommendations based on existing results in pathological image analysis will be the focus
of research in the following section. Eventually, we hope to realize a deep learning model
that can integrate multimodal data (including medical images, gene sequences, diagnostic
reports, drug molecular structure, and other related information) and truly exert the value
of deep learning in clinical applications.

3.4. Genetic Prediction Based on Deep Learning

WSI is widely used in digital pathology to predict gene mutations, molecular sub-
types, and clinical outcomes. Therefore, they are usually divided into patches for training
neural networks and prediction models. However, because patch-level tags are usually
unavailable, we cannot directly classify each patch. In the past few decades, with the
help of the rapid development of high-throughput technologies of microarrays and gene
expression analysis technologies, there have been many studies that use gene expression
patterns to understand the molecular characteristics of breast cancer. Van de Vijver [171]
conducted a preliminary study to effectively predict the prognosis of breast cancer through
gene expression profile. They clustered gene expression profile data and correlated them
with prognostic values. The integration of gene expression profile data and clinical data
may improve the accuracy of prognosis and diagnostic prediction models [172]. In fact,
microarray data are high-dimensional, and each patient contains about 25,000 genes. There
may be potential relationships between different genes, which may improve the accuracy of
prognosis prediction of breast cancer [173]. Many genes related to breast cancer have been
identified. Mutation and abnormal amplification of oncogenes and tumor suppressor genes
play a key role in the occurrence and development of tumors. For example, two famous
breast cancer risk anti-cancer genes, BRCA1 and BRCA2, and human epidermal growth
factor receptor 2, also known as c-erbB-2, are important carcinogens in breast cancer, and
so on. Table 5 shows the application of deep learning algorithm in genetic prediction of
breast cancer.

Khademi et al., proposed the probability graph model (PGM) [172], which predicts
and diagnoses breast cancer by integrating two independent microarray models and clinical
data. They first applied principal component analysis (PCA) to reduce the dimensions of
microarray data and built a depth confidence network to extract the feature representation
of the data. At the same time, they also applied structural learning algorithms to clinical
data. However, today, inspired by the successful application of deep learning methods
in the cv field and the huge contribution of multidimensional data to cancer prognosis
prediction, there is a lot of work to directly provide slide-level prediction through deep
learning, and digital whole image (WSI) may provide a computationally effective and
efficient method to quantitatively characterize the heterogeneity of cancer specimen cell
level. Pathologists usually use WSIs to identify nuclear features, diagnose cancer status,
and measure histopathological grading of cancer tissues. Preliminary evidence shows that
the application of deep learning method can automatically predict the cancer subtypes
of various cancers [174], predict the mutations of lung cancer [175] and liver cancer [176],
classify mesotheliomas [172], detect DNA methylation patterns [177], estimate the status
of human epidermal growth factor receptor in breast cancer [178], and predict the pan
cancerous prognosis of patients [179]. However, pan cancer research [180] cannot provide
an in-depth description of breast cancer histopathology, mutation, and pathway activity
level. At present, DL based on cnn can predict the gene mutation status in H&E-stained
WSIs, and it has the potential to improve the prognosis and treatment of cancer by using
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biomarkers that are currently undetectable to clinicians. Although artificial intelligence
cannot completely replace human beings in practice, gene mutation prediction can be used
as a prescreening to improve the cost efficiency before next-generation sequencing, thus
improving the performance of precision medical treatment.

However, there is still a lack of research related to deep learning that links breast cancer
WSI with genes [181]. After our careful search, Wang, Xiaoxiao et al. [182] developed a
computer system (DL based on cnn) to predict the molecular marker (gBRCA mutation) of
BC through tumor histomorphology analysis. To study whether gBRCA mutation can affect
the tumor cell pattern on BCH&E-stained WSIs; Qu, Hui et al. [181] used ResNet followed
by a full connection layer with self-attention and maximum pooling to display the weight
graph of each tumor tile so as to understand the decision of the classifier and highlight the
area that contributes the most to the final prediction. It is proved that the key gene mutation
results and biological pathway activities of breast cancer can be predicted through the deep
learning classifier of full-slide images; He, Bryan et al. [183] used a complete slide image
combined with hematoxylin and eosin (H&E) staining, trained a large number of H&E and
IHC-labeled image pair datasets using deep neural networks, and proved the accurate ER
receptor state estimation from H&E staining (Figure 6B).

In addition, considering the limitations of the method based on a single information
source, such as a lack of nonuniversality, uniqueness, and noise data, multimodal learning
is proposed to solve these problems and obtain a final decision by combining relevant
information from multiple sources [184,185]. As a kind of multimodal learning, multimodal
deep learning [186] proposed a new multimodal deep neural network prognosis prediction
for human breast cancer by integrating multidimensional data (MDNNMD). MDNNMD is
an effective method to integrate multidimensional data, including gene expression profile,
copy number change (CNA) profile, and clinical data with the score level of final prediction
results. This method takes into account the heterogeneity between different data types and
makes full use of the abstract high-level representation of each data source (Figure 6A).

Petkov et al. [187] accurately predict the prognosis of IDC, which is helpful to determine
the individualized adjuvant treatment of breast cancer patients. Lin, Zhiquan et al. [188]
proposed and tested WSI preprocessing and feature extraction methods. Combining CAF
gene, WSI characteristics, and lymph node status, a multigroup model was established to
predict the prognosis of IDC breast cancer patients (Figure 6C).

In the field of digital pathology, unsupervised clustering has been widely used to
reduce the dimension of patches to facilitate multi-instance learning (for example, patches
from WSI can be immediately installed on the graphics processing unit (GPU)) [189]. This
method is also used to derive additional cluster-based characteristics and identify rare
events. Dooley et al. [190] and Zhuet al. [191] clustered the plaques and used the frequency
of plaques in each cluster as a new feature to predict the rejection of heart transplantation.
Similarly, see Abbet et al. [189]. Although various unsupervised clustering applications
have been developed in digital pathology, few studies have evaluated the use of unsu-
pervised clustering to identify image patches related to gene mutation. Chen et al. [192]
proposed a multi-instance learning method based on unsupervised clustering and devel-
oped an in-depth learning model using WSIs of three common cancer types obtained from
the Cancer Genome Map (TCGA) to optimize the prediction of genetic mutation.
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（a）

（b）

（c）

Figure 6. Typical application of deep learning in genetic prediction task. (a) MDNNMD model uses
multidimensional data to predict the prognosis of breast cancer [186]. (b) Estrogen receptor status
(ERS) was predicted from the whole-slide image of H&E staining [183]. (c) A multi-omics signature
to predict the prognosis of invasive ductal carcinoma of the breast [188].

Table 5. Summary of the application of deep learning algorithms in breast cancer histopathology for
genetic prediction.

Model Strategy Advantages Publication

Attention
mechanism

Weighting different pathological images
based on attention mechanism to improve
prediction results

Attention mechanism simulates human
visual behavior by applying different
weights to images. This method can
highlight the key areas and non key
areas in pathological images, thus
improving the prediction results of the
model

[181]

Based on ResNet and attention mechanism, a
method for predicting pathological gene
subtypes of breast cancer is proposed

[183]

KNN and
K-means

Use unsupervised clustering method to
reduce the workload of manual labeling by
pathologists

Unsupervised [192]

4. Conclusions and Perspective

Deep learning is widely used for the detection, segmentation, and classification of
breast cancer pathology and has achieved remarkable results. There are several common
networks in the detection, including CNN and RNN, which have reached the level of
pathologists in some areas of recognition accuracy. Among these network structures,
a CNN-based network structure performs excellently in recognition accuracy. On the
Camelyon 16 challenge test set, the CNN-based network NCRF achieved an average FROC
score of 0.8096, higher than the previous champion of the challenge. For comparison,
the score of professional pathologists is 0.7240. Further comparing the CNN and RNN
methods, the RNN can be used to describe the output of the continuous state in time with
a memory function, while the CNN is used for static output. Although the RNN can solve



Micromachines 2022, 13, 2197 21 of 30

problems that the CNN cannot handle, it is not as effective as the CNN. We can integrate
the time-series processing method of the RNN into the CNN so that we can combine the
output of the continuous state in time to obtain a better result of the image recognition.

There are several common networks in the segmentation, including the FCN, U-Net,
RNN, and GAN. Those models have good results in pathological image segmentation,
whereas pathological image segmentation methods based on an FCN usually use manually
segmented samples at a pixel level as the training dataset and then learn by calculating the
loss per pixel. The network structure is affected by subsampling, which makes it difficult
to retain meaningful spatial information in the upsampled feature map. In addition to
improving the network structure and training learning methods, we can also solve the
segmentation problem of pathological cases by defining different loss functions. However,
it still relies on the mechanism of comparing the differences per pixel, so its ability to
constraint spatial geometric information is very limited. The method of pathological image
segmentation based on U-Net is one of the most widely used techniques. The U-Net
network can effectively solve the segmentation problem of complex neural structures by
capturing global features in the contracting path and achieving an accurate localization in
the expanding path. However, the local dependence between pixels is not fully considered,
which makes it susceptible to the influence of the external characteristics of the target.
We can evaluate the importance of different positional features by combining it with an
attention mechanism and assigning weight, and then model the context dependence of
the local features. Further comparing the FCN and RNN methods, the network structure
and training method adopted by the pathological image segmentation method based on
the RNN fully consider the long-term and global dependence between similar pixels,
and the ability to capture the spatial and apparent consistency of segmentation marks is
enhanced. GAN-based pathological image segmentation methods generally do not need
to be modeled in advance; generators and discriminators can choose any structure of the
neural network. A GAN model usually leads to poor controllability in the training process
and the insufficient stability of the model. Therefore, when using a GAN model to learn
the distribution of large-scale pathological data, it is necessary to enhance the stability of
the model and its training process. The improvement in the segmentation accuracy of the
pathological images of breast cancer will improve the model accuracy of recognition and
classification tasks.

In a classification task, the accuracy of multiclassification tasks is usually lower than
that of binary classification tasks. Among the deep learning models for classification tasks,
the models based on the Inception-V3 series yield a better accuracy in both binary classifica-
tion and multiclassification tasks. Further comparing the Inception and RestNet methods,
Inception requires fewer parameters to set than RestNet. In addition, we can introduce an
attention mechanism into a deep learning network to analyze pathological images. The
weights corresponding to different scales were learned through the network framework,
and then the features of different scales were fused with the attention mechanism to obtain
richer features of the pathological images so as to achieve an accurate classification of the
pathological images.

The successful application of deep learning in breast cancer pathology has provided
pathologists with auxiliary diagnosis methods, which significantly improve the accuracy
and efficiency of breast cancer diagnoses. For supervised deep learning algorithms, many
labeled training set samples are required to improve the models’ R-squared values. There
are few labeled data in the existing public datasets, and the high precision of the patho-
logical sections also makes manual labeling extremely cumbersome. To develop models
with higher R-squared values, it is an effective way to obtain more labeled training sets
via dataset sharing or using unsupervised deep learning algorithms. In addition, the lack
of interpretability of deep learning algorithms has hindered their application in medical
diagnosis. It is difficult to understand the features or decision logic of a neural network
at the semantic level due to a lack of mathematical tools to diagnose and evaluate the
characteristic expression ability of the network (for example, the generalization ability
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and convergence speed of the depth model). It is also difficult to explain the information
processing of different neural network models. When sample data are input into a neu-
ral network, we have a hard time explaining the reasons for the predicted results, and
optimizing a neural network is difficult. To describe the interpretability of deep learning
algorithms, we can start from the internal interpretability based on the model as we can
understand the internal operation process of the model while obtaining the output result.
We can also start from the interpretability based on the results to infer the operation process
of the model from the output results.

With the development of deep learning, AI systems can be built to provide pathologists
with auxiliary diagnosis methods. The assisted diagnosis based on deep learning is benefi-
cial to provide more objective and reasonable diagnosis results for patients. Further, AI and
healthcare are combined to promote intelligent health management. Intelligent health man-
agement is a specific scenario in which artificial intelligence technology is applied to health
management for risk identification, virtual nursing, mental health consultation, online
consultation, health interventions, and health management based on precision medicine.
In the future, pathology image AI needs to further improve its interpretability, such as
developing more rational visualization algorithms and adding causal inference to deep
learning algorithms.

The medical image analysis method based on deep learning still has many limitations
and challenges. At present, the mainstream deep learning method is still the data-driven
supervised learning method. Large-scale datasets and fine-grained manual annotation are
the key factors for such methods to achieve an excellent performance. This is contrary to the
actual clinical environment. The development of deep learning in the field of medical image
analysis is limited by the long tail of diseases, the heterogeneity of medical images, and
the professionalism of fine-grained labeling. Therefore, how to make full use of large-scale
unlabeled datasets, how to mitigate the heterogeneity of multicenter data, and how to make
full use of only coarse-grained labels have become the key issues in this field. Unsupervised
learning, few-shot learning, image denoising, and other methods will have important value
in the future medical image analysis field.

This paper has some limitations. First, this paper focuses on the application of deep
learning in breast cancer pathology images, with less description of the innovation of the
algorithm and the details of the model. Second, the included articles are mainly based on
the prediction of images and lack a focus on multimodal models.
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CAD Computer-Aided Diagnosis
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GDC The Genomic Data Sharing Area
NCI The National Cancer Institute
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H&E Hematoxylin and Eosin
WSIs Full-Slide Images
CNN Convolutional Neural Network
IDC The Invasive Ductal Carcinoma
Faster R-CNN Faster Region Convolutional Neural Network
SGE Stacked Generalized Ensemble
ROI Region of Interest
DCN Deep Convolutional Network
DCNN Deep Convolutional Neural Network
CRF Condition Random Field
SLIC Simple Linear Iterative Clustering
PBC Patch-based Classifier
OPOD One Patch in One Decision
APOD All Patches in One Decision
MuDeRN Multicategory Classification of Breast Histopathological

Images Using Deep Residual Networks
IRRCNN Inception Recurrent Residual Convolutional Neural Network
ResNet Residual Network
MSB Magnification Specific Binary
BMIC_Net Biopsy Microscopic Image Cancer Network
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