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Abstract: Corrosive and toxic solutions are normally employed to polish sapphire wafers, which
easily cause environmental pollution. Applying green polishing techniques to obtain an ultrasmooth
sapphire surface that is scratch-free and has low damage at high polishing efficiency is a great
challenge. In this paper, novel diamond/SiO2 composite abrasives were successfully synthesized by
a simplified sol-gel strategy. The prepared composite abrasives were used in the semi-fixed polishing
technology of sapphire wafers, where the polishing slurry contains only deionized water and no other
chemicals during the whole polishing process, effectively avoiding environmental pollution. The
experimental results showed that diamond/SiO2 composite abrasives exhibited excellent polishing
performance, along with a 27.2% decrease in surface roughness, and the material removal rate was
increased by more than 8.8% compared with pure diamond. Furthermore, through characterizations
of polished sapphire surfaces and wear debris, the chemical action mechanism of composite abrasives
was investigated, which confirmed the solid-state reaction between the SiO2 shell and the sapphire
surface. Finally, applying the elastic-plastic contact model revealed that the reduction of indentation
depth and the synergistic effect of chemical corrosion and mechanical removal are the keys to
improving polishing performance.

Keywords: polishing; sapphire; core shell; composite abrasives; surface roughness; material removal rate

1. Introduction

Sapphire, composed of single crystal alumina oxide (α-Al2O3), is an ideal material for
infrared windows and aerospace [1,2] and is the main substrate material for optoelectronic
devices, large-scale integrated circuits [3–6], and superconducting films due to its excellent
mechanical and optical properties, such as high hardness, strong light transmittance, and
stable chemical inertness. In particular, as the substrate material of GaN-based light-
emitting diodes (LEDs), sapphire wafers have strict requirements for processing accuracy
and surface quality, including nanoscale surface roughness, damage-free, and scratch-
free [7]. However, given the high hardness and chemical inertia of sapphire [8,9], it’s a
great challenge to achieve satisfactory processing results.

The widely used free abrasive polishing is a traditional material removal strategy,
which can provide a smooth surface in the field of electronic device substrate manufac-
turing [10]. However, because of the high hardness and brittleness of sapphire, the free
abrasive process has the disadvantages of uncontrollable trajectory [11], low removal
efficiency, and easy agglomeration, which will undoubtedly affect the polishing effect,
resulting in high roughness and heavy damage on sapphire surfaces [12]. In addition, the
free abrasive polishing of sapphire wafers usually applies strong acids, alkalis and toxic
chemicals, leading to environmental pollution [13]. Among the reported nontraditional
polishing technologies, the semi-fixed polishing pad using diamond abrasive has attracted
great attention, which effectively avoids the problems of uncontrollable trajectory and the
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agglomeration of free abrasive [14]. The abrasives in the semi-fixed pad exhibited “yielding
effects”, for which surface damage and scratches induced by the larger abrasives can be re-
duced or even eliminated. Furthermore, in the whole polishing process, the slurry contains
only deionized water, without any other chemicals, effectively avoiding environmental
pollution. Hence, a semi-fixed abrasive polishing pad is one of the most promising pol-
ishing tools for processing hard and brittle materials such as sapphire, SiC, GaN, etc. [15].
Nevertheless, the relatively soft polishing pad inevitably reduces the polishing efficiency
of the inner abrasive, making it difficult to achieve perfect surface quality with a high
material removal rate (MRR) even when using hard abrasives. In order to overcome these
problems, scholars have conducted in-depth research on polishing abrasives and made lots
of significant progress.

Recent advances in composite abrasives with core-shell structures have provided a
new direction for obtaining a supersmooth surface and a high MRR [16–19]. The core-shell
composite abrasives overcome the limitations of single hard abrasives with many deep
scratches and single soft abrasives with a low material removal rate, and they give full
play to the excellent characteristics of different abrasives. Lu et al. [20] developed novel
diamond/akageneite composite abrasives with a core-shell structure, which possessed
stronger adhesion to the semi-fixed polishing pad, and the surface quality of sapphire
has also been improved. Specifically, the surface roughness (Ra) of sapphire polished by
diamond/akageneite composite abrasives was reduced from 1.70 nm to 1.39 nm, which
is about 12.6% lower than that of pure diamond. The MRR of the diamond/akageneite
composite abrasives is similar to that of diamond, which is about 0.28 nm/min. In our
previous work [21], the prepared Al2O3/SiO2 composite abrasives achieved excellent
polishing performance, along with a 20.2% decrease in surface roughness, and the MRR
was increased by more than 5.1% compared with pure Al2O3. The improvement in the
MRR may be attributed to the solid-state reaction of the SiO2 shell with the sapphire surface
during polishing, resulting in a softened layer that can be easily removed by the mechanical
action of the hard core. With a Mohs hardness of 10, diamond has a higher removal effect
than Al2O3 (Mohs hardness of 9), which means that using diamond as the core material is
expected to further improve MRR. However, the polishing performance of diamond/SiO2
composite abrasives on the sapphire wafer has not been reported. In addition, research on
the polishing behavior and material removal mechanism of core-shell composite abrasives
is still insufficient.

In this study, the diamond/SiO2 composite abrasives were successfully synthesized
via a simplified sol-gel method and then characterized by field emission scanning electron
microscopy (FESEM), transmission electron microscope (TEM) and EDS energy spectrum,
X-ray diffraction (XRD), and Fourier transform infrared spectra (FT-IR), respectively. Sub-
sequently, the polishing performance of pure diamond and diamond/SiO2 composite
abrasives on sapphire wafers was explored by using semi-fixed abrasive polishing pad
under the same polishing parameters. The polishing results were investigated from the
aspects of surface morphology, surface roughness, the material removal rate (MRR), and
residual stress. Finally, combined with TEM and X-ray photoelectron spectroscopy (XPS),
the polishing behavior and material removal mechanism of composite abrasives on sap-
phire wafers were discussed in terms of mechanical action and chemical corrosion.

2. Materials and Experimental Methods
2.1. Chemicals and Materials

Commercial diamond particles as the core material of composite abrasives, with a nom-
inal particle size of 3 µm, were supplied by Yvxing Micro diamond Co. Ltd. (Zhengzhou,
China). Tetraethyl orthosilicate (TEOS, AR), offered by Shanghai Yien Chemical Technology
Co., Ltd. (Shanghai, China), was used as raw material to provide silicon shell through
hydrolysis polycondensation and other reactions. Other chemicals, including ammonia
solution (NH3·H2O, 25–28%) and absolute ethanol (C2H5OH, AR), were purchased from
Shanghai Chemical Reagent Co., Ltd. (Shanghai, China).



Micromachines 2022, 13, 2160 3 of 14

2.2. Synthesis of Diamond/SiO2 Composite Abrasives

Diamond/SiO2 core-shell composite abrasives were synthesized via a facile sol-gel
strategy on the basis of the hydrolysis and polycondensation reaction of TEOS. Firstly, a
certain amount of diamond particles was added to the beaker containing absolute ethanol
and was dispersed under ultrasound for 20 min until a uniform suspension was formed.
Afterward, the diamond suspension was transferred to a thermostatic water bath; under
continuous stirring, ammonia solution and deionized water were slowly dropped into
the diamond suspension. After magnetic stirring at 30 ◦C for 15 min, TEOS was drop by
drop added into the above mixed solution. The reaction was carried out at 30 ◦C for 12 h,
during which magnetic stirring at low speed was maintained. Subsequently, the resultant
precipitates were collected by centrifugation and washed three times with deionized water
and anhydrous ethanol, separately. Finally, they were dried at 60 ◦C for 12 h, with which
diamond/SiO2 core-shell composite abrasives were obtained.

By means of a simplified sol-gel method, tetraethyl orthosilicate (TEOS, Si (OC2H5)4)
was catalyzed by ammonia to form a SiO2 shell on the surface of diamond particles through
hydrolysis and polycondensation. The formation of the SiO2 shell can be summarized by
the following chemical equations [22]:

(1)

(2)

(3)

Combined with the above chemical formulas, TEOS hydrolyzes to generate silanol,
which can also be regarded as the release of active monomers, leading to a nucleation
phenomenon [23]. On account of the existence of multiple O-H functional groups on the
surface of diamond particles, coupled with its high specific surface area and high specific
surface energy, the O-H functional groups are preferentially combined with silanol groups
through a condensation reaction, which is the key for SiO2 to nucleate on the surface of
diamond. Subsequently, as-nucleated SiO2 particles slowly gathered on the surface of
diamond particles to form a discontinuous coating. Given the colloidal stability, there is a
balance between the hydrolysis of TEOS and the primary particles. In other words, with
the progress of reaction, the active monomer increases continuously, and the SiO2 seeds on
the diamond surface grow further to form a uniform and dense SiO2 shell.

2.3. Characterizations

FESEM (NovaNanoSEM450, FEI Ltd., Natural Bridge Station, VA, USA) was employed
to observe the external morphology of pure diamond and composite abrasives. The
microstructure and elemental composition of abrasives were characterized by using the
TEM (JEM-2100, JEOL Ltd., Tokyo, Japan) equipped with EDS (Oxford X-MaxN, Oxford
Instruments Ltd., Abingdon, UK). XRD (D8ADVANCE, Bruker Ltd., Ettlingen, Germany)
was adopted to analyze the phase components of pristine and composited abrasives by
using Cu Kα radiation. To interpret the surface functional groups of abrasives, the spectra
were measured within the wavenumber range of 400 cm−1 to 4000 cm−1 on FT-IR (Nicolet
6700, Thermo Ltd., Waltham, MA, USA).
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2.4. Polishing Tests

Commercially available single crystal sapphire wafers (C-M plane; two-inch in diame-
ter; Mohs hardness of 9) with original surface roughness values (Ra) of 10 ± 1 nm were
bought from Wuxi Jingdian Semiconductor Material Co., Ltd. (Wuxi, China). Polishing
texts of sapphire wafers were conducted on a rotary-type polishing tester (UNIPOL-1200S,
Shenyang Kejing Co., Ltd., Shenyang, China) with a semi-fixed abrasive polishing pad. The
abrasives (5 wt%) were evenly dispersed in a flexible matrix with unsaturated resin as the
main component through full mixing and stirring, and then the semi-fixed polishing pad
with a diameter of 300 mm was prepared through processes such as screeding and curing.
Pure diamond and diamond/SiO2 core-shell composite abrasives were separately used as
abrasives for the semi-fixed flexible polishing pad. Before polishing, sapphire wafers were
several times ultrasonically cleaned in deionized water and absolute ethanol to remove
natural oxides and pollutants from their surfaces. The polishing parameters were described
as follows: the polishing pressure was set as 5 kg, the polishing time was 3 h, and the
rotation speed of the workpiece and that of the polishing pad were 60 rpm and 120 rpm,
respectively. No chemicals were used in the polishing process, and only deionized water
was used as coolant. After polishing, the sapphire wafers were cleaned repeatedly with
deionized water and ethanol under sonication, and then they were dried in a drying oven.
The schematics of the polishing process are shown in Figure 1.
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Figure 1. (a) Device diagram and (b) schematic diagram of the polishing process.

The atomic force microscope (AFM, Dimension Icon, Bruker Ltd., Germany) was
utilized to investigate the surface topography and profile curve of the sapphire wafers
before and after polishing, with an accuracy of 0.01 nm. During the polishing process,
the contact surface roughness meter (MarSurf GD25, Mahr Ltd., Germany), with 0.1 nm
accuracy, was used to measure the surface roughness (Ra) of workpieces every half an
hour. For each machined workpiece, surface roughness (Ra) is the average value of 10 areas
evenly distributed on the sapphire wafer surface.

To further analyze the material removal mechanism of sapphire wafers, the surface
elements and existing forms of polished sapphire wafers were characterized by XPS (ES-
CALAB 250XI, Thermo Ltd., USA). TEM was used to analyze the wear debris removed from
the surface of sapphire wafers during polishing. The material removal rate (nm/min) was
calculated by Equation (4), and the masses (the average value of three measurements) of
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sapphire wafers before and after polishing were tested by an electron balance with 0.01 mg
precision (GE0505, Shanghai YoKe, Ltd., Shanghai, China).

MRR =
107 × ∆m

ρ× 2.542 × π × t
(4)

Here, ∆m (mg) is the mass loss of sapphire wafers before and after polishing,
ρ (3.98 g/cm3) is the sapphire density, and t (min) is the polishing time.

3. Results and Discussion
3.1. Characterizations of the Diamond/SiO2 Composite Abrasives

FESEM images of pure diamond and diamond/SiO2 composite abrasives are illus-
trated in Figure 2. The morphology of pure diamond shown in Figure 2a demonstrates that
the pristine diamond particles have a uniform shape and smooth surface. As can be seen in
Figure 2b, the prepared diamond/SiO2 composite abrasives have good dispersion and no
agglomeration. It is also noticed that there are no SiO2 microspheres nucleated separately
in Figure 2b, suggesting that the deposition of SiO2 onto the diamond occurred in the form
of a SiO2 network rather than SiO2 particles.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 14 
 

 

was calculated by Equation (4), and the masses (the average value of three measurements) 

of sapphire wafers before and after polishing were tested by an electron balance with 0.01 

mg precision (GE0505, Shanghai YoKe, Ltd., Shanghai, China). 

𝑀𝑅𝑅 =
107×∆𝑚

𝜌×2.542×𝜋×𝑡
  (4) 

Here, ∆𝑚 (mg) is the mass loss of sapphire wafers before and after polishing, 𝜌 

(3.98 g/cm3) is the sapphire density, and t (min) is the polishing time. 

3. Results and Discussion 

3.1. Characterizations of the Diamond/SiO2 Composite Abrasives 

FESEM images of pure diamond and diamond/SiO2 composite abrasives are illus-

trated in Figure 2. The morphology of pure diamond shown in Figure 2a demonstrates 

that the pristine diamond particles have a uniform shape and smooth surface. As can be 

seen in Figure 2b, the prepared diamond/SiO2 composite abrasives have good dispersion 

and no agglomeration. It is also noticed that there are no SiO2 microspheres nucleated 

separately in Figure 2b, suggesting that the deposition of SiO2 onto the diamond occurred 

in the form of a SiO2 network rather than SiO2 particles. 

  
  

Figure 2. FESEM images of (a) pure diamond and (b) diamond/SiO2 abrasive particles. 

To give a better understanding the microstructure and elemental composition of di-

amond/SiO2 composite abrasives, TEM images and an EDS spectrum of pure diamond 

and diamond/SiO2 composite abrasives are demonstrated in Figure 3. The TEM images 

and EDS spectrum exhibited in Figure 3a clearly show that the surface of pure diamond 

is smooth and not covered with other impurities. As presented in the HRTEM image, the 

lattice fringes of the detected area are clearly visible, which reveals that the pure diamond 

is crystalline and that the lattice fringe spacing is 0.206 nm, corresponding to the (111) 

crystal plane. From the EDS elemental map of pure diamond, C and Cu elements could 

be found in the detection area. Among them, part of C element comes from diamond, the 

other part stems from carbon film, and Cu element is attributed to copper mesh. From the 

above results, the pure diamond has high purity and no impurities on the surface, which 

is conducive to the coating process of diamond abrasive. 

Figure 2. FESEM images of (a) pure diamond and (b) diamond/SiO2 abrasive particles.

To give a better understanding the microstructure and elemental composition of
diamond/SiO2 composite abrasives, TEM images and an EDS spectrum of pure diamond
and diamond/SiO2 composite abrasives are demonstrated in Figure 3. The TEM images
and EDS spectrum exhibited in Figure 3a clearly show that the surface of pure diamond
is smooth and not covered with other impurities. As presented in the HRTEM image, the
lattice fringes of the detected area are clearly visible, which reveals that the pure diamond
is crystalline and that the lattice fringe spacing is 0.206 nm, corresponding to the (111)
crystal plane. From the EDS elemental map of pure diamond, C and Cu elements could
be found in the detection area. Among them, part of C element comes from diamond, the
other part stems from carbon film, and Cu element is attributed to copper mesh. From the
above results, the pure diamond has high purity and no impurities on the surface, which is
conducive to the coating process of diamond abrasive.

Figure 3b exhibits the microstructure and elemental composition of diamond/SiO2
composite abrasives. It is noticed that there is an obvious boundary between the core and
shell [24]; under the HRTEM, the lattice fringes can be observed in the core; and the spacing
of lattice fringes is 0.206 nm, which corresponds to the pure diamond in Figure 3a, whereas
the fact that the shell has no lattice fringes confirms the amorphous structure of coating
layer. Furthermore, the coating layer is uniform and dense, with a thickness of 10 nm. The
EDS spectrum of diamond/SiO2 composite abrasives is illustrated in Figure 3b. Compared
with pure diamond, besides C and Cu elements, Si and O elements could be found in the
composite abrasives. Combined with the TEM images, it can be explained that the coating
layer is amorphous SiO2.
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Figure 3. TEM images and EDS spectrum of (a) pure diamond and (b) diamond/SiO2 abrasive particles.

An attempt can be made to research the surface functional groups of abrasives by using
FTIR spectroscopy. Figure 4 presents the FT-IR spectra of pure diamond and diamond/SiO2
composite abrasives. For pure diamond, the absorption peaks around 3461 cm−1 and 1632
cm−1 are attributed to O-H stretching and bending vibrations of adsorbed water [25],
respectively. In contrast, the peak at 1076 cm−1 appears in the spectra of diamond/SiO2
composite abrasives, which is ascribed to the asymmetric stretch vibration of Si-O-Si [26],
indicating that SiO2 is grafted on the surface of the diamond.
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Figure 4. FT-IR spectra of pure diamond and diamond/SiO2 composite abrasives.

The XRD patterns of pure diamond, amorphous SiO2, and diamond/SiO2 composite
abrasives are demonstrated in Figure 5. As we can see, the characteristic diffraction peaks
at 2-theta = 43.9◦ and 75.3◦ correspond to the (111) and (220) lattice planes [20], respectively,
which could be indexed as the diamond standard card (PDF#06-0675). The diffraction
peak of amorphous SiO2 is a wide and low diffusion peak near 24.3◦. The feature peaks of
diamond/SiO2 composite abrasives match well with all the diffraction peaks, suggesting
that the composite abrasives both contain crystalline diamond and amorphous SiO2, and
they have a stable interfacial bonding in core-shell structure, which corresponds to the
TEM characterization results. From the above characterization results, it can be seen that
diamond/SiO2 core-shell structure composite abrasives were successfully synthesized
and that amorphous SiO2 with a thickness of about 10 nm was closely coated on the
diamond surface.
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3.2. Polishing Test

Under the same testing conditions, sapphire wafers were polished with pure diamond
and diamond/SiO2 composite abrasives to investigate the polishing performance of as-
prepared diamond/SiO2 composite abrasives.

Figure 6 illustrates surface morphology and corresponding profile curves of the sap-
phire wafers before and after polishing with pure diamond and diamond/SiO2 composite
abrasives, respectively. As shown in Figure 6a, the AFM images of pristine sapphire wafers
demonstrate poor flatness, rough surface, and numerous scratches, with a maximum scratch
depth of more than 22.3 nm, as well as the PV (peak-to-valley) value of 44.13 nm. Figure 6b
presents the morphology of the sapphire wafer after polishing with pure diamond. On
the whole, the surface flatness has been improved. However, two obvious scratches pass
through the sapphire surface, with a depth of 13.1 nm, and the value of PV is 23.48 nm.
It could be found that pure diamond abrasives will inevitably bring pits and scratches,
which offer limited improvement to the surface quality of sapphire. The morphology of a
sapphire wafer after polishing it with diamond/SiO2 composite abrasives is exhibited in
Figure 6c, in which all the obvious defects, such as bumps and scratches on the pristine
surface, are eliminated. By contrast, the micro profile curve is smooth, and the PV value
is the lowest, at 2.52 nm. It can be concluded that the surface morphology of sapphire
wafers polished by diamond/SiO2 composite abrasives is superior to that treated by pure
diamond, resulting in a smoother and scratch-free surface.
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The roughness at different processing time periods and the MRR of a sapphire wafer
polished by pure diamond and diamond/SiO2 composite abrasives are exhibited in Figure 7,
in which the roughness shows a downward trend in 3 h of processing with both abrasives
under the same parameters. Because of the limitations of pure diamond abrasives, the
roughness finally tends to be flat, whereas the roughness of composite abrasives always
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keeps significantly dropping. Finally, the Ra value of pure diamond decreased to 7.16 nm,
and the composite abrasives reached 5.21 nm, which decreased by 27.2%. Meanwhile,
after machining a sapphire wafer with diamond/SiO2 composite abrasives, the MRR is
1.47 nm/min, which is 8.8% larger than the 1.35 nm/min of pure diamond. Along with the
morphology of sapphire wafers shown in Figure 6, it can be concluded that compared with
pure diamond, the diamond/SiO2 composite abrasives have achieved more-significant
polishing performance on sapphire wafers with lower surface roughness and a higher MRR.
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3.3. Polishing Mechanism

The mechanical-chemical polishing of sapphire wafers includes chemical corrosion
and mechanical action, which complement and promote each other. On the basis of these
two aspects, the mechanism of improving the polishing quality of diamond/SiO2 composite
abrasives was investigated.

The wear debris, which was removed from the surface of sapphire wafers during
polishing, can be used to analyze the polishing mechanism. TEM images, HRTEM images,
EDS spectra, and SAED patterns of the wear debris generated by pure diamond and
composite abrasives during polishing are presented in Figure 8. The C and Cu elements
in the EDS spectra come from the copper mesh plated with carbon support film. As
shown in Figure 8a, the wear debris produced by pure diamond is in the form of a block
with a size of about 200 nm [27]. Under HRTEM, lattice stripes can be observed with a
spacing of 0.24 nm, which matches the (1120) crystal plane of sapphire. Combined with
the EDS energy spectrum, it can be preliminarily determined as sapphire wear debris.
The corresponding SAED pattern shows regular diffraction points, but polycrystalline
concentric rings can also be vaguely observed, demonstrating that the wear debris was
most likely both crystalline and amorphous, indicating that the pure diamond abrasives
are removed mainly by a single mechanical method in the polishing process. Figure 8b
illustrates the wear debris generated by diamond/SiO2 composite abrasives, and that
debris is in the shape of fragments, showing the size of dozens of nanometers. Under
the detection area shown in the figure, the HRTEM image has no lattice fringes, and the
SEAD pattern presents a large diffuse halo, indicating that the wear debris is amorphous.
Furthermore, the EDS spectrum contains not only Al and O elements but also an Si element.
It can be inferred that the SiO2 shell reacts with sapphire in the process of polishing to form
a new amorphous Al2O3-SiO2 compound, which means that the material removal process
combines chemical corrosion and mechanical action [28].
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by (a) pure diamond, (b) diamond/SiO2 composite abrasives.

XPS was used to characterize the composition and existing form of elements in the
sample, which can confirm the chemical corrosion mechanism in the polishing process.
Figure 9 demonstrates the XPS spectra of the Al and Si elements on the sapphire wafer
surface polished by diamond/SiO2 composite abrasives. According to the narrow scanning
spectrum of Al 2p shown in Figure 9a, there are three main chemical states of Al on the
surface of sapphire. The peak, centered at 73.57 eV, corresponds to Al2O3, which is the
main component of sapphire wafer, and peaks at 74.10 eV and 74.60 eV can be assigned to
AlOOH and Al2Si2O7·H2O [29], respectively. From Figure 9b, the peak of Si 2p with the
binding energy of 100.43 eV could be attributed to Al2Si2O7·H2O [30]. This observation
indicates that the SiO2 shell of composite abrasives underwent a solid-state chemical
reaction with the surface of sapphire, which yields AlOOH with a Mohs hardness of 3–3.5
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and Al2Si2O7·H2O with a Mohs hardness of 4. Possible reactions can be summarized
as follows:

Al2O3 + H2O→ 2AlOOH (5)

2AlOOH + 2SiO2 → Al2Si2O7·H2O (6)
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In addition, the types and properties of the abrasive particles are the keys to mechanical
action, which affects the whole mechanical-chemical polishing process. Compared with
pure diamond, the composite abrasives coated with amorphous SiO2 shells have a lower
elastic modulus. On the basis of the microcontact mechanics model proposed by Chen [31],
and given the deformation of abrasive particles in the machining process, the microcontact
model between sapphire wafer, abrasive particles, and polishing pads was established,
as shown in Figure 10. Equations (7)–(9) demonstrated the calculation formulas for the
indentation depth into the sapphire wafer and the deformation of abrasive particles. Under
the action of polishing pressure F, the indentation depth δw pressed into the sapphire wafer
is reduced because of the lower Young’s modulus Es of composite abrasives. As a result,
the diamond/SiO2 composite abrasives became an ellipsoid during the polishing process,
which makes the contact stress lower and more uniform. The reduction of the indentation
depth can effectively avoid deep scratches and serious damage, which has a decisive impact
on improving the surface roughness. In this case, the roughness of a processed sapphire
wafer will be improved when diamond/SiO2 composite abrasives are used in polishing,
but the MRR will decrease because of the reduction in the indentation depth, which results
in a weaker plow effect.

δ = (
9F2

8DE2
sw

)

1
3

(7)

1
Esw

=
1− vs

2

Es
+

1− vw
2

Ew
(8)

δw = D− δ− δp = D− δ[ 1 + (
Esw

Esp
)

3
2
] (9)

where F is the polishing pressure, δ is the deformation of the particle; D is the diameter
of the particle; Esw is the Young’s modulus of the particle and wafer pair; Es and vs are
the Young’s modulus and the Poisson’s ratio of the abrasive particle, respectively; Ew
and vw are the Young’s modulus and the Poisson’s ratio of the wafer, respectively; Esp
is the Young’s modulus of the particle and pad pair; δp is the indentation depth of the
particle into the polishing pad; and δw is the indentation depth of the particle into the
sapphire wafer [31].
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Figure 10. Microcontact diagram of pure diamond and diamond/SiO2 composite abrasive during
the polishing process.

In fact, when the diamond/SiO2 composite abrasives are used in the polishing process
of sapphire, the larger elastic deformation also obtains a larger contact area with the
sapphire wafer, such that the solid-state reaction can proceed more continuously and
fully [32]. Subsequently, the softening reaction products can be easily removed by the
mechanical action of abrasives, which is more significant than the plow effect, thus further
improving the MRR. Therefore, only by relying on the chemical corrosion and mechanical
action of composite abrasives to balance and promote each other is it possible to at the same
time improve the surface roughness and the MRR. Figure 11 shows the material removal
model of diamond/SiO2 composite abrasives for polishing sapphire wafers.
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4. Conclusions

By depositing SiO2 on diamond surface, core-shell structured composite abrasives
can be synthesized using a simplified sol-gel method. The diamond/SiO2 core-shell
composite abrasives showed excellent polishing performance in green polishing technology
without corrosive slurry. Compared with pure diamond, composite abrasives obtained
ultrasmooth and low-damage sapphire surfaces, which effectively reduced the surface
roughness by 27.2%, accompanied by an 8.8% improvement in the MRR. The reduction in
surface roughness may have been caused by the lower Young’s modulus of diamond/SiO2
composite abrasives, which resulted in the decrease in indentation depth pressed into
the sapphire wafer. In addition, chemical reactions occurred between the sapphire and
SiO2 shell during the polishing process, which yielded AlOOH and Al2Si2O7 with low
hardness. Meanwhile, the sufficiently continuous solid-state reaction brought by soft SiO2
shells enhanced the MRR in cooperation with the mechanical removal action of composite
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abrasives. Thus, diamond/SiO2 composite abrasives are well-defined abrasives that meet
the practical requirements of the high surface quality and high MRR of sapphire wafers.
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