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Abstract: This paper introduces a novel theoretical model of ternary nanoparticles for the improve-
ment of heat transmission. Ternary nanoparticles in a heat conductor are shown in this model.
Ternary nanoparticles consist of three types of nanoparticles with different physical properties, and
they are suspended in a base fluid. Analytical solutions for the temperature and velocity fields
are found by using the Laplace transform approach and are modeled by using a novel fractional
operator. As a result, the ternary nanoparticles are identified, and an improved heat transfer feature is
observed. Further experimental research on ternary nanoparticles is being carried out in anticipation
of a faster rate of heat transmission. According to the graphed data, ternary nanoparticles have
greater thermal conductivity than that of hybrid nanoparticles. Moreover, the fractional approach
based on the Fourier law is a more reliable and efficient way of modeling the heat transfer problem
than the artificial approach. The researchers were driven to create a concept of existing nanoparticles
in order to boost heat transfer, since there is a strong demand in the industry for a cooling agent with
improved heat transfer capabilities.

Keywords: ternary nanoparticles; hybrid nanoparticles; mono-nanoparticles; fourier’s laws;
Prabhakar fractional approach; channel flow

1. Introduction

Channel flow is crucial in a wide variety of industrial applications, such as in chemical
reactors in the research industry and heat exchangers in power plants. There are numerous
associated applications wherever the continuous fluid phase shows non-Newtonian stream
properties, even though many procedures of real-world significance can also be character-
ized as two-phase flows through Newtonian behaviors in both phases. The biochemical,
biomedical, and food processing industries all provide numerous examples [1]. On the
scientific scale, Dippolito et al. [2] investigated the resistance of open channel flow caused
by vegetation. The effects of a vortex generator’s shape on liquids and the heat transition
of hybrid nanofluids in a channel were studied by Zheng et al. [3]. Asjad et al. [4] discussed
a hybrid nanoparticle analysis of fractional bioconvection in a channel flow.

Enhancing the rate of heat transmission of traditional base fluids is the main problem
facing modern science and technology. To enhance heat performance and cooling systems,
such as in the cooling of electronic devices, heat exchangers, and automotive cooling
systems, with the greatest thermal performance, temperature reduction, precise working
capability, and a long life span are required. As a result, scientists and researchers are
intrigued the study of how solid particles transport heat in comparison to standard base
fluids [5]. After conducting numerous studies, Choi and Eastman [6] found that adding a
specific type of nano-sized particle suspension to the base fluid can speed up the rate of heat
transfer. This fluid is referred to as a nanofluid. Moreover, it was found in this experiment
that the base fluid’s thermal transport capabilities were enhanced by a suspension of
nanoparticles, which resulted in a higher stability than that in fluids containing milli-sized
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and micro-sized solid particles. Eastman et al. [7] showed that a normal fluid’s thermal
conductivity rises by 40 when ethylene glycol is mixed with 0.3% copper nanoparticles.
Asjad et al. [8] explored advancements in generalized thermal processes and nanoparticle-
based transport phenomena for vertical plates. Reddy et al. [9] discussed the performance
of magnesium oxide and molybdenum disulfide nanoparticles in a micropolar thermal
flux model. Izadi et al. [10] discussed a three-sided cavity and the characteristics of a
porous material for the transient ordinary flow of energy transformation by a nanofluid.
The extended Mittag–Leffler kernel and the impact of the MHD on a fractional Casson
nanofluid with fixed boundary conditions were introduced by Saeed et al. [11].

Hybrid nanoparticles are combination of two different nanoparticles with a base fluid.
Babazadeh et al. [12] studied hybrid nanofluids for free convective transportation within a
porous medium in the presence of an externally supplied magnetic force. A base fluid that
resulted in an exponentially extending bent surface was addressed by Nadeem et al. [13].
A study by Waini et al. [14] studied a continuous, fully established assorted convection
stream on a longitudinally vertical surface embedded in a permeable medium with hybrid
nanoparticles. Asadi et al. [15] addressed the topic of the effect of hybrid nanofluids on
system stability. The work by Huminic et al. [16] explored different types of thermal
structures intended for different boundary scenarios, and they included a summary of
the effects of nanofluids and hybrid nanofluids on entropy formation. Asjad et al. [17]
analyzed Prabhakar’s fractional derivative and the advancement of non-Newtonian fluids
that involved hybrid nanoparticles in turbulent channels.

Recently, researchers and scientists created a new class of nanoparticles by suspending
three dissimilar types of nanoparticles in a pure fluid; this new class is known as ternary
hybrid nanoparticles. Researchers have modified existing nanofluids in order to improve
their thermal features, leading to the introduction of tri-hybrid nanoparticles, in response to
the increased demand for cooling agents combined with the high thermal capabilities at the
industrial level. As a result of this reasoning, more experimental studies have been carried
out to improve the thermal properties of existing ternary nanoparticles by suspending
three dissimilar types of solid nanoparticles in fluids [18,19]. Sahoo and Kumar [20]
invented a novel correlation for evaluating the viscosity of ternary hybrid nanoparticles.
The influences of temperature and particle volume concentration on the thermo-physical
characteristics and rheological behaviors of aqueous ternary hybrid CuO/MgO/TiO2
nanoparticles were introduced by Mousavi et al. [21]. Raju et al. [22] discussed the nonlinear
motions of isotropic ternary nanoparticles in thermally radiated Darcy walls of various
forms and densities with extending or expanding permeability according to elementary
linear regression. The stability of tri-hybrid nanoparticles in a water–ethylene glycol
mixture was studied by Ramadhan et al. [23].

Fractional derivatives are essential in the mathematical modeling of practical events.
It should be mentioned that fractional calculus is a topic from differentiation science, and
L’Hopital introduced it in 1695. Fractional differential equations have recently gained much
attention due to their numerous applications in the domains of engineering and physics.
Therefore, learning how to generalize classical fluid models to fractional models is of
interest for many analysts [24,25]. Some key findings on how to solve fractional differential
equations were provided by Diethelm and Ford [26]. Sene [27] investigated a fractional
derivative equation and the Caputo–Liouville component derivative to study the design of
a second-grade fluid. The Caputo fractional derivative was used by Mozafarifarda et al. [28]
to examine fractional thermal transfer equivalence for thin metallic sheets. Reyaz et al. [29]
analyzed the Caputo–Fabrizio fractional derivative to assess the effects of thermal radiation
and chemical reaction on MHD Casson fluid. An application of the Caputo–Fabrizio time-
fractional derivative by Haq et al. [30] revealed the impact of MHD on the channel flow of a
fractionally viscous fluid through a porous medium. Thabet et al. [31] used a mathematical
technique that connected the presence and constancy of ABC to study the numerical results
of a unique disease, COVID-19. A Prabhakar fractional method based on the generalized
Fourier law was used to study the convection flow of a Casson fluid through an oscillating
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surface by Sarwar et al. [32]. Shah et al. [33] discussed Prabhakar-like fractional Maxwell
fluids with generalized thermal transfer in natural convection.

An important class of nanoparticles, that of mono-, hybrid, and ternary nanoparticles
on a two-sided vertical plate, has not been studied while using a fractional operator. To
describe the channel flow problem, the Prabhakar fractional derivative was used, as it
included mono-, hybrid, and ternary nanoparticles. As a result, the primary goal was to
discover analytical solutions for the energy and momentum by using the Laplace transform
method. The researchers were driven to create a concept of existing nanoparticles in
order to boost heat transfer, since there is a strong demand in the industry for a cooling
agent with improved heat transfer capabilities. Three types of nanoparticles with different
physical properties were suspended as ternary nanoparticles. In order to support the
experimental results, a theoretical model for ternary nanoparticles is presented in this study.
The relationship between the thermo-physical properties of ternary nanoparticles is given
in Table 1. The thermo-physical properties of nanoparticles and the base fluid are given in
Table 2.

Table 1. Thermo-physical properties of ternary nanoparticles [34].

Ternary Nanoparticles

µmn f = µ f (1− (φCu + φAg + φTiO2 ))
−2.5

ρmn f = (1− (φmn f )ρ f ) + φCuρCu + φAgρAg + φTiO2 ρTiO2

(ρCp)mn f = (1− (φmn f )(ρCp) f + φCu(ρCp)Cu + φAg(ρCp)Ag + φTiO2 (ρCp)TiO2

(ρβT)mn f = (1− φmn f )(ρβT) f + φCu(ρβT)Cu + φAg(ρβT)Ag + φTiO2 (ρβT)TiO2

σmn f
σf

= 1 +
3(

φCuσCu+φAg σAg+φTiO2
σTiO2

σf
−φmn f )

(
φCuσCu+φAg σAg+φTiO2

σTiO2
φmn f σf

+2)−(
φCuσCu+φAg σAg+φTiO2

σTiO2
σf

−φmn f )

kmn f
k f

=

φCukCu+φAg kAg+φTiO2
kTiO2

φmn f
+2k f +2(φCukCu+φAgkAg+φTiO2 kTiO2 )−2k f φmn f

φCukCu+φAg kAg+φTiO2
kTiO2

φmn f
+2k f +(φCukCu+φAgkAg+φTiO2 kTiO2 )−k f φmn f

Table 2. Thermo-physical properties of nanoparticles and the base fluid from [35,36].

Material Base Fluid:
Kerosene Oil Silver (Ag) Copper (Cu) Titanium

Dioxide (TiO2)

ρ (kg/m3) 783 10500 8993 4250
Cp (J/kg·K) 2090 235 385 686.20
k (W/m·K) 0.145 429 401 8.9538

σ (s/m) 21× 10−6 3.6× 107 59.6× 106 2.6× 106

β× 10−5 (1/K) 99 1.89 1.67 0.90
Pr 21

2. Mathematical Formulation for Fourier’s Law

Let us consider an MHD convection flow through the microchannel of electrically con-
ductive (Cu-Ag-TiO2) tri-hybrid nanoparticles, as shown in Figure 1, under the following
constraints. The microchannel length is infinite, with width h. The channel is along the
x-axis and is normal to the y-axis. At t = 0, the temperature of the system is T0. After
t = 0+, the temperature increases from T0 to T1. The fluid accelerates in the x-direction. A
magnetic field of strength B0 works transversely to the flow direction.

The flow of electrically conductive (Cu-Ag-TiO2) tri-hybrid nanoparticles causes an
electromotive force, which yields a current. Simultaneously, the induced magnetic field
is ignored because of the hypothesis of a very small Reynolds number. Moreover, the
electromagnetic force changes the intensity of the electric flux [17,18].
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Figure 1. Physical model.

The momentum equation is:

ρmn f

(
∂ŭ(y, t)

∂t
+ βb∗ ŭ(y, t)

)
= µmn f

∂2ŭ(y, t)
∂y2 − σmn f B2

0 ŭ(y, t)

+g(ρβT)mn f [T̆(y, t)− T̆0]. (1)

The energy equation is:

(ρCp)mn f
∂T̆(y, t)

∂t
= −∂q̆(y, t)

∂y
. (2)

The generalized Fourier law for thermal flux is as follows:

q̆(y, t) = −kmn f
CDγ

α,β,a
∂T̆(y, t)

∂y
, (3)

where the definition of the regularized Prabhakar derivative is CDγ
α,β,a and is defined

as in [27,28].
For (1)–(3), we consider the following initial and boundary conditions [37]:

ŭ(y, 0) = 0, T̆(y, 0) = T0, as, y ∈ [0, h], (4)

ŭ(0, t) = 0, T̆(0, t) = T0, as, t ≥ 0, (5)

ŭ(h, t) = 0, T̆(h, t) = T1. (6)

By introducing dimensionless variables, we get

τ =
ν f

h2 t, Y =
y
h

, V̆ =
h
ν f

ŭ, q̆0 =
k̆mn f (T̆1 − T̆0)ŭ0

νmn f
, q̆∗ =

q̆
q̆0

, T̆∗ =
T̆ − T̆0

T̆1 − T̆0
. (7)
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The dimensionless fundamental equations are obtained by substituting (7) into (1)–(6)
and ignoring the star documentation.

The dimensionless form of the momentum equation is as follows:

a∗0
[∂V̆(Y, τ)

∂τ
+ β∗bV̆(Y, τ)

]
= a∗1

∂2V̆(Y, τ)

∂Y2 − a∗2 MV̆(Y, τ) + a∗3GrT̆(Y, τ). (8)

The dimensionless form of the energy equation is as follows:

a∗4Pr
Re

∂T̆(Y, τ)

∂τ
= −∂q̆(Y, τ)

∂Y
. (9)

The dimensionless form of the generalized Fourier law for thermal flux [27,28] is as
follows:

q̆(Y, τ) = −CDγ
α,β,a

1
Re

∂T̆(Y, τ)

∂Y
. (10)

The dimensionless forms of the associated conditions [37] are as follows:

V̆(Y, 0) = 0, T̆(Y, 0) = 0, as, Y ≥ h, (11)

V̆(0, τ) = 0, T̆(0, τ) = 0, as, τ ≥ 0, (12)

V̆(1, τ) = 0, T̆(1, τ) = 1. (13)

where the variables are as follows:

Pr =
(µCp) f

k f
, β∗b =

βb∗h2

ν f
, Gr =

g(βT) f h3(T̆1 − T̆0)

ν2
f

, M =
σf h2B2

0

µ f
, Re =

ŭ0h
νmn f

,

a∗0 = 1− (φmn f ) +
φCu(ρ)Cu + φAg(ρ)Ag + φTio2(ρ)Tio2

ρ f
, a∗1 =

1
(1− (φCu + φAg + φTio2))

2.5 ,

a∗2 =
σmn f

σf
, a∗3 = 1− (φmn f ) +

φCu(ρβT)Cu + φAg(ρβT)Ag + φTio2(ρβT)Tio2

(ρβT) f
,

a∗4 = 1− (φmn f ) +
φCu(ρCp)Cu + φAg(ρCp)Ag + φTio2(ρCp)Tio2

(ρCp) f
, λmn f =

kmn f

k f
,

B0 = a∗4Pr, B1 =
a∗0
a∗1

, B2 =
a∗2M + a∗0 β∗b

a∗1
, B3 =

a∗3Gr
a∗1

, B4 =
B3

B2
.

3. Results of the Problem for Fourier’s Law

This section deals with the solution of the temperature and velocity fields with the
Laplace transform method.

3.1. Outcome for the Temperature Field

By applying the Laplace transform to Equations (9) and (10) with conditions (12)2 and
(13)2 and by utilizing the Prabhakar fractional derivative, for the temperature field, we get

B0

Re
s ¯̆T(Y, s) = −∂ ¯̆q(Y, s)

∂Y
, (14)

and

¯̆q(Y, s) = −(1− as−α)γsβ 1
Re

∂ ¯̆T(Y, s)
∂Y

. (15)
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By introducing Equation (15) into Equation (14), we get the following homogeneous
differential equation:

∂2 ¯̆T(Y, s)
∂Y2 − B0s ¯̆T(Y, s)

(1− as−α)γsβ
= 0, (16)

which satisfies the following limitations:

¯̃T(0, s) = 0, ¯̃T(1, s) =
1
s

. (17)

The general solution of Equation (16) with Equation (17) is as follows:

¯̆T(Y, s) =
1
s

 sinhY
√

B0s
(1−as−α)γsβ

sinh
√

B0s
(1−as−α)γsβ

. (18)

It is important that Equation (18) can be written in the equivalent form:

¯̆T(Y, s) =
1
s

 ∞

∑
m=0

e
−(2m+1−Y)

√
Bos

(1−as−α)γsβ −
∞

∑
m=0

e
−(2m+1+Y)

√
Bos

(1−as−α)γsβ

. (19)

The inverse Laplace transform cannot be found simply from the Laplace transform
equation. As a result, Equation (19) is represented in the series as follows:

¯̆T(Y, s) =
1
s
+

∞

∑
m=0

∞

∑
n=1

∞

∑
k=0

(Y− 2m− 1)n(Bo)
n
2 (a)k

n!k! sαk+ βn
2 −

n
2 +1

Γ( γn
2 + k)

Γ( γn
2 )

+

∞

∑
m=0

∞

∑
p=0

∞

∑
l=0

(−Y− 2m− 1)p(Bo)
p
2 (a)l

p!l! sαl+ βp
2 −

p
2 +1

Γ( γp
2 + l)

Γ( γp
2 )

. (20)

Using the inverse Laplace transform of Equation (20), we have

T̆(Y, τ) = 1 +
∞

∑
m=0

∞

∑
n=1

∞

∑
k=0

(Y− 2m− 1)n(B0)
n
2 (a)k

n!k!
t(αk+ βn

2 −
n
2 )

Γ(αk + βn
2 −

n
2 + 1)

Γ( γn
2 + k)

Γ( γn
2 )

+

∞

∑
m=0

∞

∑
p=0

∞

∑
l=0

(−Y− 2m− 1)p(B0)
p
2 (a)l

p!l!
tαl+ βp

2 −
p
2

Γ(αl + βp
2 −

p
2 + 1)

Γ( γp
2 + l)

Γ( γp
2 )

. (21)

3.2. Outcome for the Velocity Field

By taking the Laplace transform of Equation (8) with constraints (12)1 and (13)1, we
attain [

∂2

∂Y2 − B1s− B2

]
¯̆V(Y, s) = −B3

¯̆T(Y, s), (22)

which satisfies the following constraints:

¯̆V(0, s) = 0, ¯̆V(1, s) = 0. (23)
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From Equations (19), (22), and (23) we acquire the following results:

¯̆V(Y, s) = −B4

s

∑∞
m=0 e

−(2m)
√

Bos
sβ(1−as−α)γ −∑∞

m=0 e
−(2m+2)

√
Bos

sβ(1−as−α)γ

[1 + ( B1s
B2
− B0s

B2sβ(1−as−α)γ )]


×
[

∞

∑
n=0

e−(2n+1−Y)
√

B2+B1s −
∞

∑
n=0

e−(2n+1+Y)
√

B2+B1s

]

+
B4

s

∑∞
m=0 e

−(2m+1−Y)
√

Bos
(1−as−α)γsβ −∑∞

m=0 e
−(2m+1+Y)

√
Bos

(1−as−α)γsβ

[1 + ( B1s
B2
− Bos

B2(1−as−α)γsβ )]

. (24)

The inverse Laplace of Equation (24) can be obtained numerically by using Tzou’s and
Stehfest’s algorithms [38,39].

4. Mathematical Formulation of the Ternary Nanoparticles for Artificial Replacement

The momentum equation is:

ρmn f

(
∂ŭ(y, t)

∂t
+ βb∗ ŭ(y, t)

)
= µmn f

∂2ŭ(y, t)
∂y2 − σmn f B2

0 ŭ(y, t)

+(gβT)mn f [T̆(y, t)− T̆0]. (25)

The generalized Fourier law for thermal flux is as follows:

(ρCp)mn f
∂T̆(y, t)

∂t
= kmn f

CDγ
α,β,a

∂2T̆(y, t)
∂y2 . (26)

where the definition of the regularized Prabhakar derivative is CDγ
α,β,a and is defined as

in [27,28].
We get the results for the temperature and velocity fields by using Equations (12) and (13).
The dimensionless form of the momentum equation is:

a∗0
[CDγ

α,β,a
∂V̆(Y, τ)

∂τ
+ β∗bV̆(Y, τ)

]
= a∗1

∂2V̆(Y, τ)

∂Y2 −Ma∗2V̆(Y, τ) + Gra∗3 T̆(Y, τ). (27)

The dimensionless form of the generalized Fourier law for heat flux is:

CDγ
α,β,a A∗4Pr

∂T̆(Y, τ)

∂τ
=

∂2T̆(Y, t)
∂Y2 . (28)

5. Results of the Problem for Artificial Replacement

This section deals with the solutions of the temperature and velocity fields with the
Laplace transform method.

5.1. Outcome for the Temperature Field

By applying the Laplace transform to Equation (28) with conditions (12)2 and (13)3
and utilizing the Prabhakar fractional derivative, for the temperature field, we get

B0(1− as−α)γsβ ¯̆T(Y, s) =
∂ ¯̆T(Y, s)

∂Y2 , (29)

which satisfies the following limitations:

¯̃T(0, s) = 0, ¯̃T(1, s) =
1
s

. (30)
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The general solution of Equation (29) with Equation (30) is as follows:

¯̃T(Y, s) =
1
s

 sinhY
√

B0 sβ(1− as−α)γ

sinh
√

B0 sβ(1− as−α)γ

. (31)

It is important that previous Equation can be written in the equivalent form:

¯̆T(Y, s) =
1
s

[
∞

∑
m=0

e−(2m+1−Y)
√

B0sβ(1−as−α)γ −
∞

∑
m=0

e−(2m+1+Y)
√

B0sβ(1−as−α)γ

]
. (32)

The inverse Laplace transform cannot be found simply from the Laplace transform
equation. As a result, Equation (32) is represented in the series as follows:

¯̆T(Y, s) =
1
s
+

∞

∑
m=0

∞

∑
l1=1

∞

∑
l1=0

(Y− 2m− 1)l1(B0)
l1
2 (a)l2

l1!l2! sαl2−
βl1
2 +1

Γ( γl1
2 + 1)

Γ( γl1
2 + 1− l2)

+
∞

∑
m=0

∞

∑
l3=0

∞

∑
l4=0

(−Y− 2m− 1)l3(B0)
l3
2 (a)l4

l3!l4! sαl4−
βl3
2 +1

Γ( γl3
2 + 1)

Γ( γl3
2 + 1− l4)

. (33)

Using the inverse Laplace transform of Equation (33), we have

T̆(Y, τ) = 1 +
∞

∑
m=0

∞

∑
l1=1

∞

∑
l1=0

(Y− 2m− 1)l1(B0)
l1
2 (a)l2

l1!l2!
tαl2−

βl1
2

Γ(αl2 − βl1
2 + 1)

Γ( γl1
2 + 1)

Γ( γl1
2 + 1− l2)

+
∞

∑
m=0

∞

∑
l3=0

∞

∑
l4=0

(−Y− 2m− 1)l3(B0)
l3
2 (a)l4

l3!l4!
tαl4−

βl3
2

Γ(αl4 − βl3
2 + 1)

Γ( γl3
2 + 1)

Γ( γl3
2 + 1− l4)

. (34)

5.2. Outcome for the Velocity Field

By applying the Laplace transform to Equation (27) with constraints (12)1 and 13)1,
we attain [

∂2

∂Y2 − B1sβ(1− as−α)γ − B2

]
¯̆V(Y, s) = −B3

¯̆T(Y, s), (35)

which satisfies the following constraints:

¯̆V(0, s) = 0, ¯̆V(1, s) = 0. (36)

From Equations (32), (35), and (36), we acquire the following results:

¯̆V(Y, s) = −B4

s

∑∞
m=0 e−(2m)

√
B0sβ(1−as−α)γ −∑∞

m=0 e−(2m+2)
√

B0sβ(1−as−α)γ

[1 + (B1−B0)sβ(1−as−α)γ

B2
]


×
[

∞

∑
n=0

e(Y−2n−1)
√

B2+B1(1−as−α)γsβ −
∞

∑
n=0

e(−Y−2n−1)
√

B2+B1(1−as−α)γsβ

]

+
B4

s

∑∞
m=0 e−(2m+1−Y)

√
B0sβ(1−as−α)γ −∑∞

m=0 e−(2m+1+Y)
√

B0sβ(1−as−α)γ

[1 + (B1−B0)sβ(1−as−α)γ

B2
]

. (37)

The inverse Laplace transform of Equation (37) can be obtained numerically by using
Tzou’s and Stehfest’s algorithms [38,39].
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6. Results and Discussion

Figures 2 and 3 present the behavior of the concentrations of the three types of nanopar-
ticles for the temperature and velocity fields, respectively. It is clear in Figure 2 that the
temperature can be enhanced to its maximum, unlike with hybrid and mono-nanoparticles.
Due to the increase in the concentration of ternary nanoparticles, the thermal conductivity
and, hence, the temperature increase. Figure 3 depicts the outcomes for the velocity to see
the impact of the volume fraction (φ1 = φ2 = φ3 = 0.02). It is found that the velocity is a
decreasing function of the concentration of the nanoparticles, and the maximum decline
can be observed, unlike with hybrid and mono-nanoparticles. Physically, this is due to fact
that increasing the concentration causes the fluid to become more thick; the space between
the layers is reduced and, ultimately, the fluid flows slowly.

Figure 2. Comparison of temperature field assessments across y for the volumetric fraction of
φ1 = φ2 = φ3 = 0.02, where α = β = γ = 0.5, a = 0.02, t = 1.6, and Pr = 21.

Figure 4 presents the issue of modeling with the fractional derivative. This figure is
plotted for the solutions that were obtained artificially and with the Fourier law. By fixing
the flow parameters as constant and varying the values of the fractional parameters, it is
evident that the solutions based on the Fourier law are efficient and exhibit more memory
in comparison with the solutions obtained through replacement. A similar behavior
is observed for velocity, as shown in Figure 5. Physically, the fractional operators are
responsible for the memory of the fluid’s properties for different values of the fractional
parameters at different times.

Figure 6 shows only the effects of ternary nanoparticles with the Fourier law and
replacement. Taking φ1 = φ2 = φ3 = 0.01 for the solutions, it was found that the ternary
nanoparticles with the Fourier law predicted a greater enhancement in the temperature
than that predicted in the artificial case. On the other hand, by increasing the concentration
from 0.01 to 0.04, the temperature also increased, which supported the physical reasoning
of the fluid temperature. Figure 7 plots only the effects of the ternary nanoparticles with the
Fourier law and replacement. Taking φ1 = φ2 = φ3 = 0.01 for the solutions, it was found that
the ternary nanoparticles with the Fourier law predicted a greater decline in the velocity
than that predicted in the artificial case. On the other hand, by increasing the concentration
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from 0.01 to 0.04, the velocity was also decreased, which supported the physical reasoning
of the fluid velocity.

Figure 3. Comparison of velocity field assessments across y for the volumetric fraction of φ1 = φ2 =

φ3 = 0.02, where α = β = γ = 0.5, t = 1.1, Gr = 15, Pr = 21, a = 0.02, and M = 1.2.

Figure 4. The effects of fractional parameters on the temperature field. Here, a = 0.02, t = 0.4, Pr = 21,
φ1 = 0.01, φ2 = 0.02, and φ3 = 0.03.
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Figure 5. The effects of fractional parameters on the velocity field. Here, a = 0.02, t = 0.2, Pr = 21,
Gr = 15, M = 1.2, φ1 = 0.01, φ2 = 0.02, and φ3 = 0.03.

Figure 6. The effect of the volumetric fraction on the temperature field. Here, Pr = 21, γ = 0.7,
α = 0.7, β = 0.7, a = 0.02, and t = 0.3.
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Figure 7. The effect of the volumetric fraction on the velocity field. Here, Pr = 21, a = 0.02, t = 2,
α = 0.7, β = 0.7, γ = 0.7, Gr = 15, and M = 1.2.

7. Conclusions

This study focuses on the numerical solutions of fractional partial differential equa-
tions that appear in phenomena. An approach that uses Prabhakar fractional models with
a Laplace transform is used to investigate unsteady MHD convective streams of incom-
pressible viscous fluids in a moving frame with a non-Newtonian fluid in a turbulent
channel with ternary nanoparticles and Prabhakar fractional derivatives on the boundary.
Therefore, the thermal transport model is based on the generalized fractional Fourier law of
the thermal flux. By using the Mathcad software, some of the physical implications of the
flow characteristics were examined. Graphical representations of two components, velocity
and temperature, were created. It was discovered that the thermal transport’s damping has
a significant impact on the fluid’s temperature and velocity.

• The heat transfer properties of ternary nanoparticles are superior to those of fluids,
mono-nanoparticles, and hybrid nanoparticles.

• It is evident that fractional modeling based on the Fourier law is efficient and suitable
in comparison with replacement.

• The Prabhakar fractional approach is responsible for the better memory of the function
due to the generalized Mittag–Leffer kernel of the three parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

Pr Dimensionless Prandtl number
Gr Dimensionless Groshof number
M Magnetic field parameter
k̆ Thermal conductivity (m/WK)
θ̆ Dimensionless temperature
ρ Fluid density (kg/m3)
σ Electrical conductivity
ν Kinematic viscosity (m2/s)
t Time (s)
µ Dynamic viscosity (kg/ms)
Cp Specific heat (J/kg K)
(ρCp) Heat capacitance (J/kg m3)
T̆ Temperature (K)
T̆∞ Ambient temperature (K)
T̆w Surface temperature (K)
ŭ, v̆ Velocity component (m/s)
α, β, γ Fractional parameters
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