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Abstract: The emergence of gallium nitride high-electron-mobility transistor (GaN HEMT) devices
has the potential to deliver high power and high frequency with performances surpassing mainstream
silicon and other advanced semiconductor field-effect transistor (FET) technologies. Nevertheless,
HEMT devices suffer from certain parasitic and reliability concerns that limit their performance. This
paper aims to review the latest experimental evidence regarding HEMT technologies on the parasitic
issues that affect aluminum gallium nitride (AlGaN)/GaN HEMTs. The first part of this review
provides a brief introduction to AlGaN/GaN HEMT technologies, and the second part outlines the
challenges often faced during HEMT fabrication, such as normally-on operation, self-heating effects,
current collapse, peak electric field distribution, gate leakages, and high ohmic contact resistance.
Finally, a number of effective approaches to enhancing the device’s performance are addressed.
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1. Introduction

The gallium nitride high-electron-mobility transistor (GaN HEMT) has attracted the
interest of many researchers as a power device platform due to its high operating frequency,
high breakdown voltage, high-temperature capability, reduced on-state resistance, and
high electron saturation velocity [1]. GaN-based HEMTs can produce high current densities
and low channel resistances due to their high electron mobility and high carrier concen-
tration [2]. These merits are vital for a wide range of high-power and high-frequency
applications [3], especially in the areas of communications, radar, and space [4,5]. However,
various limitations hinder GaN HEMTs’ ability to be fully commercially exploited [6],
including reliability and short-channel effect concerns. Moreover, their dynamic on-state
resistance (RDS,ON) values worsen during high-voltage switching, which wastes energy and
compromises the system’s reliability. This deterioration is often induced by a phenomenon
known as current collapse, which is triggered by charge trapping by surface states in the
drift region and bulk traps in the buffer layers [7]. Furthermore, as the size of transistors
has decreased over time in efforts to boost their performance speed, scaling has become
more difficult due to self-heating issues.

Much research has been conducted over the years to highlight the influence of a com-
ponent’s structural behavior on its electrical properties to assess its reliability [8]. However,
based on past achievements in improving aluminum gallium nitride (AlGaN)/GaN HEMT
performance, only a few address the multiple challenges associated with HEMT devices.
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Most studies focus on one specific issue, such as self-heating, with limited exposure to
some of the recent structural improvements. To address this gap, our study summarizes
practical and updated approaches over the past six years (from 2017 to the present) to
counter the various HEMT challenges at the device level, such as normally-off operation,
self-heating, current collapse, peak electric field distribution, gate leakage, and high ohmic
contact resistance. Aside from that, this review offers immense opportunities for optimum
HEMT device performance. Section 2 provides a brief introduction to the conventional
AlGaN/GaN HEMT technology, mainly focusing on its design and operating principles.
Section 3.1 discusses the normally-on mode of traditional HEMT devices and several
practical approaches to achieving normally-off operation. Further, we present different
HEMT substrates to improve the device’s thermal management (Section 3.2). In Section 3.3,
field-plate (FP) implementation, surface passivation, and different gate structures are in-
troduced to overcome current collapse, peak electric field distribution, and gate leakage
issues. In Section 3.4, the impact of varying metal contact combinations to surpass the high
ohmic contact resistance is explained. Finally, Section 4 provides an overall summary of
the review.

2. AlGaN/GaN HEMT Technology

AlGaN/GaN HEMT technology offers exceptional current density and output power
devices and is poised to become the dominant technology for various applications [9]. Due
to their broad energy band gap, high critical electric field, and solid thermal dissipation
capabilities, substantial research has been aimed at developing III-nitride compound semi-
conductors for optoelectronic and electronic devices [10,11]. The inherent physical features
of nitride-based semiconductors allow for high off-state voltage, low on-state resistance,
and high-power density [12,13]. Recent studies have shown that, within power device ap-
plications, GaN-based devices are superior to gallium arsenide (GaAs)-based devices [14],
with the former promising greater input power robustness [15,16]. Moreover, GaN has a
saturation electron velocity (vsat) two or more times faster than silicon (Si) and GaAs, with
a dielectric field strength (Ec) ten times greater than Si and 7.5 times greater than GaAs [17].
Consequently, GaN-based HEMTs are functionally superior to Si-based HEMTs, as they
provide a higher operating frequency, output power, and operating temperatures [18].
Table 1 lists the material properties of AlGaN and GaN recently implemented in HEMT
design [19–30].

Table 1. Material parameters of GaN/AlGaN devices.

Parameters Unit AlxGa1-xN GaN

Electron mobility (µn) cm2 V−1 s−1 300.0–985.5 800–1350
Hole mobility (µp) cm2 V−1 s−1 10.0–13.3 10.0–22.0

Energy band gap (Eg) eV 3.87–5.10 3.299–3.550
Conduction band density of state (Nc) 1018 cm−3 2.07–2.75 1.07–2.24

Valance band density of state (Nv) 1019 cm−3 1.16–2.06 1.16–2.51
Electron affinity (χ) eV 3.41–4.01 4.00–4.31

Saturation velocity (Vsat) 107 cm s−1 0.27–1.50 1.90–2.70
Relative permittivity (ε) - 8.79–9.55 8.90–9.70

Al mole concentration (x) - 0.26–0.85 -

As observed in Table 1, many reports of high Al-composition AlGaN channel devices
have surfaced in recent years due to better critical breakdown and electric field distribu-
tion [31–33], allowing for exceptionally high voltage transistor operations. In addition, the
particular contact resistivity degrades as the Al concentration increases [34], which is very
appealing for the development of ultra-wide bandgap (UWBG) semiconductor devices
because of the inherent polar nature of III-nitride materials and the availability of high
thermal conductivity substrates [35]. In terms of radio frequency (RF) performance, an
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AlGaN-channel HEMT has exhibited the highest documented current gain cut-off frequency
(fT) at 40 GHz [36].

A high degree of reliability is necessary for GaN power devices to be employed in
critical electronic systems such as HEMTs, considering the failure mechanisms associated
with high-voltage and high-temperature applications [37]. The typical configuration of
AlGaN/GaN HEMT consists of a heterojunction formation following the alignment of
adjacent wide and narrow band gap semiconductors, as shown in Figure 1. In the AlGaN
barrier layer, the gate metal produces a Schottky contact, which controls the polarization
charge density at the AlGaN/GaN interface. All the electrons then temporarily cluster
near AlGaN due to the material’s higher band gap, which acts as a barrier. As a result,
an impenetrable two-dimensional electron gas (2DEG) forms directly in GaN, near the
AlGaN border. Many factors influence the quality of the 2DEG, including substrate ma-
terials, growing method, and the doping level of the carrier supply layer. This 2DEG
formation [38–40] allows power electronics engineers to construct devices with increased
efficiency and power density while lowering costs [41].
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Figure 1. Schematic of a conventional AlGaN/GaN HEMT with an undoped AlGaN/GaN barrier
layer, a substrate, a passivation layer, and metal contacts. The AlGaN layer aids in the polarization of
the GaN region, which causes an oversupply of free dynamic electrons in the GaN layer. Reprinted
with permission from ref. [42]. Copyright 2021 MDPI.

Unlike GaAs-based devices, GaN HEMTs do not require doping to attain a high con-
centration of electrons in the channel. Instead, carriers are created by the polarization
mismatch between the GaN and AlGaN barrier layers [43] and by piezoelectric and sponta-
neous polarization. The 2DEG value for a GaN-based HEMT is significantly greater than
that of indium phosphide (InP) or GaAs-based heterostructures [44–46], as it is influenced
by the physical features of the respective materials [47]. The conduction band of the GaN
channel layer is also lower than the energy level of the AlGaNs barrier layer, shifting
the balance of the electron transfer toward the channel layer from the barrier layer and
confining the transferred electrons to the 2DEG layer.

3. Challenges and Opportunities
3.1. Normally-Off Operation

Enhancement mode (E-mode), or normally-off operation, is crucial for modern high-
frequency HEMT switching, such as in 5G applications. This function provides a more
straightforward transistor control system without a negative power supply and advanta-
geous operating conditions for device safety. However, because 2DEG allows for a large
current, HEMT devices constructed with an AlGaN/GaN heterojunction are inherently
normally-on devices. Even without gate bias, 2DEG remains present at the AlGaN/GaN het-
erointerface, resulting in a normally-on operation, also called depletion mode (D-mode) [48].
Currently, normally-off transistors are strongly recommended for power electronic applica-
tions [49] to simplify the gate drive arrangement and alleviate safety concerns. In cases of
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gate driver failure, when the gate bias drops to 0 V, a normally-off HEMT shifts to the off
state, preventing circuit burnout. This is clearly safer than leaving a switch in the always-on
position. To achieve normally-off HEMT behavior, a positive threshold voltage (Vth) is
essential. Despite being more vulnerable to high leakage current, normally-off transistors
can attain a high breakdown voltage (VBR) of over 1100 V, a significant improvement
considering that reported values are often substantially below the theoretical limit [50].

Over the past 20 years, significant efforts have been made to investigate a possible
methodology for developing well-built, normally-off GaN HEMT technology. The original
inspirations for the study of normally-off HEMTs were the recessed-gate technique with
an ultra-thin AlGaN barrier [51] and the injection of fluorine ions into the AlGaN barrier
layer [52]. The recessed-gate technique involves reducing the thickness of the AlGaN
barrier layer beneath the gate [53,54] because a positive Vth and 2DEG depletion are
typically associated with a specific AlGaN thickness, at which the Fermi level at the
interface becomes lower than the AlGaN minimum conduction band. The reduction of the
AlGaN layer thickness through the gate recess leads to a lower polarization-induced 2DEG
density in the commonly used AlGaN/GaN heterostructure for HEMTs. With deep enough
gate-recess etching, Vth may approach a positive value, resulting in E-mode HEMTs [55].

Alternatively, fluorine gate HEMTs use either ion or plasma implantation to insert
negatively charged fluorine ions under the gate [56,57]. The negative charge then depletes
the 2DEG, reducing channel mobility and electron density. A decrease in the gate leakage
current is then expected due to the negative fixed charges of the fluorine ions. This
procedure has been further developed by adding a dielectric layer under the gate in
the recessed area to decrease leakage current and eventually move Vth to the positive
side [58]. The device’s Vth may be regulated more accurately by adjusting the dielectric
layer thickness. However, this technique has several drawbacks, mainly regarding plasma
etch process repeatability at a nano-metric level and Vth instabilities with a rising operating
temperature [59].

Off-state operation can also be achieved by combining a normally-on HEMT in a
“cascode” arrangement with a low-voltage, E-mode Si metal-oxide-semiconductor field-
effect transistor (MOSFET) [60]. These two devices are coupled such that the MOSFETs
output drain-source voltage (Vds) directly influences the HEMTs input gate-source voltage
(Vgs). The operating premise of the cascode method is as follows: Immediately after the Si
MOSFET is switched on, the normally-off GaN HEMT is switched on. Since the GaN HEMT
and Si MOSFET are coupled in series, any voltage provided to the drain terminal causes
current flow across both devices. The drain terminal of a GaN HEMT is negatively biased
when the Si MOSFET is switched off [61]. However, while the cascode arrangement may be
powered by standard MOSFET drivers, it has significant disadvantages. Connecting two
devices in series, for example, increases package complexity [62] and introduces parasitic
inductances, which influence cascode switching functioning and restrict high-temperature
capabilities [63].

Recent technological development has focused on two critical device structures for off-
state operation: recessed-gate hybrid metal-insulator-semiconductor HEMTs (MISHEMTs)
and p-type GaN (p-GaN) gate HEMTs. In recessed-gate hybrid MISHEMTs, the AlGaN
layer is separated from the device by plasma etching at the gate region, and the recessed
GaN region is passivated [64]. The resulting device is a hybrid transistor linking two low-
resistance access zones to the recessed metal-insulator-semiconductor (MIS) channel due
to the presence of the 2DEG. Nevertheless, despite promising achievements, GaN-based,
recessed-gate hybrid MISHEMTs suffer from Vth instability caused by charge trapping
inside the gate insulator [65,66]. The impacts of the instability are two-fold: a positive Vth
shift degrades the device’s on-resistance since it requires greater bias for the same current
value, while a negative threshold voltage shift (positive charge trapping) can cause the
loss of normally-off characteristics [67]. Thus, the impact of charge trapping at the gate
dielectric is a significant concern for recessed-gate MISHEMTs [68]. As normally-off GaN
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HEMTs are still novel, this method has not matured enough to market and remains a GaN
community research and development (R&D) project.

On the other hand, p-GaN gate design has long been considered the most advanced
structure for producing normally-off GaN HEMTs [69] due to its stable threshold voltage
and high reliability [70]. This implementation uses p-type GaN or AlGaN with ample
acceptor doping on top of the AlGaN [71]. The fundamental structure of p-GaN HEMTs
consists of a p-GaN cap layer, metal contact, an AlGaN barrier layer, an undoped GaN layer,
and a substrate layer, as illustrated in Figure 2a. By adding a p-GaN layer on top of the
AlGaN/GaN heterostructure, the AlGaN conduction band is lifted above the Fermi level
by an amount of energy similar to the GaN band gap (3.4 eV), causing 2DEG depletion. To
achieve 0 V gate bias, the depletion zone for the given p-type doping extends throughout
the GaN channel layer, interrupting the 2DEG at the gate position. Consequently, the GaN
HEMT switches from normally-on to normally-off mode. The 2DEG transistor channel
is then re-established using positive gate bias, resulting in on-state conditions for the
transistor [72]. Figure 2b shows the diagrams of the studied HEMT with a p-GaN structure
and its energy band gap.
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Figure 2. (a) A normally-off GaN transistor with a p-type doped GaN beneath the gate and (b) an
energy band diagram showing the comparison between an AlGaN buffer, a p-type (compensation
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is displaced above the Fermi level. Reproduced with permission from ref. [72]. Copyright 2017 MDPI.

Figure 3 shows the simulated electric field for a typical p-GaN HEMT. The active
devices that comprise power-switching systems must be normally-off for a higher level of
inherent safety (i.e., a positive threshold voltage, Vth). However, adding a p-GaN layer to
an AlGaN/GaN heterostructure is usually insufficient to achieve normally-off behavior.
Instead, various factors must be considered, including heterostructure characteristics,
thermal annealing, gate contact, p-GaN etching, and doping [73].
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As previously mentioned, the selection of metal gates in normally-off HEMTs with
p-GaN gates can also significantly influence a device’s performance and long-term reli-
ability [74]. Overall, there are two possible types of gate contacts in p-GaN gate HEMT
technology: ohmic and Schottky. A Schottky contact is a rectifying contact between a
metal and a lightly doped semiconductor. By modulating the metal with a specific gate
voltage, the charge density of the heterostructure and the drain current can be conveniently
adjusted [75]. The drain current must be switched off by setting the Schottky gate HEMT
to a reversed bias, as most GaN-based HEMTs are “usually-on” devices due to the intrinsic
characteristics of the AlGaN/GaN heterostructure [76]. The bending of the bands at the
interface then creates a Schottky barrier. The Fermi levels in the two materials should be
matched at thermal equilibrium whenever a metal or superconductor comes into close
contact with a semiconductor. The metal/p-GaN Schottky barrier height is usually propor-
tional to the device’s threshold voltage (Vth). However, an ohmic contact can be formed
by heavily reducing the Schottky barrier, enabling current conduction in both directions
without rectification. In other words, a HEMT with either a Schottky or ohmic gate can be
made by strategically structuring the Schottky barrier.

Overall, it is generally agreed that a Schottky contact is more practical for a p-GaN
HEMT than the ohmic contact since the latter induces a relatively large gate leakage current
and a lower threshold voltage [77]. Figure 4 depicts Schottky and ohmic contacts for a
p-Gan HEMT [78]. The p-GaN layer thickness, acceptor concentration, and gate metal
work function (M) are the primary design factors regulating the geometry of the Schottky
barrier. These factors impact threshold voltage, breakdown voltage, and transconductance
(gm) [79]. In p-GaN gate HEMTs, a good Schottky barrier assures the lack of substantial
current injection at the gate side, resulting in a decreased power consumption [80]. Hence,
the Schottky gate solution on p-GaN is preferred over the ohmic gate solution.
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Reprinted with permission from ref. [78]. Copyright 2021 MDPI.

In addition to establishing off-state characteristics, optimizing the performance of a
p-GaN HEMT is also a priority. This section considers factors that significantly influence
threshold voltage values, including AlGaN barrier thickness and p-GaN doping concen-
tration. Additionally, since both the on-state resistance and the threshold voltage vary
depending on the electron concentration (ne), there is a known trade-off. Table 2 shows
compilations of normally-off p-GaN gate HEMTs from recent literature.
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Table 2. Data for normally-off HEMTs with p-GaN gate, from recent literature.

Metal
Gate

Structural
Parameters

p-GaN
Thickness

(nm)

p-GaN
Doping
(cm−3)

Vth
(V)

VBR
(V)

gm,max
(mS

mm−1)

Ron
(Ω·mm)

Ids,max
(mA

mm−1)
Ref.

Ti/Al/Ti LG = 2 µm, LGD = 5 µm, LGS = 2 µm 1400 - 2.8 - - - 400 [81]
Ti/Al LG = 20 µm, WG = 2π·65 µm, LSD = 40 µm 50 3 × 1019 1.5 - - - - [82]

Mo/Ni LG = 2.0 µm, LGD = 10 µm, LGS = 1.5 µm 80 3 × 1019 1.08 560 150.0 10.7 554 [83]
Ti/Au WG = 100 µm, LG = 2 µm, LGD = 15 µm, LGS = 4 µm 70 - 1.2 - - - - [84]
Ni/Au WG = 60 mm, LG = 4 µm, LGD = 3 µm, LGS = 3 µm 70 4 × 1019 2.2 - - 43.6 112.5 [85]
Zr/Au WG = 100 µm, LG = 3 µm, LGD = 7 µm, LGS = 2 µm 80 - 1.5 - - - - [86]
Ti/Au WG = 100 µm, LG = 4 µm, LGD = 6 µm, LGS = 3 µm 85 5 × 1019 1.1 300 - 10.0 355 [87]
Ni/Au WG = 0.25 mm, LG = 1.3 µm 95 3 × 1019 1.5 >800 - - 300 [88]
Ni/Au WG = 2 × 150 µm, LG = 1 µm, LGD = 3 µm, LGS = 1 µm 80 - 0.5 - 81.5 8.2 215.9 [89]
Ni/Au WG = 10 µm, LG = 0.7 µm, LGD = LGS = 0.75 µm 70 1 × 1020 1.6 >10 - - - [90]
Ni/Au WG = 100 µm, LG = 3 µm, LGD = 10 µm, LGS = 5 µm 60 4 × 1019 1.6 - 68.0 23.0 153 [91]
Ni/Au LG = 3 µm, LGD = 7 µm, LGS = 2 µm 60 3 × 1019 2.1 218 - 5.65 272 [92]
Ti/Au WG = 100 µm, LG = 5 µm, LGD = 10 µm, LGS = 3 µm 100 4 × 1019 1.86 12.05 - 12.8 - [93]
Ni/Au WG = 2 µm, LG = 4 µm, LGD = 15 µm, LGS = 2 µm 100 3 × 1019 1.4 740 - 11.0 - [94]

The highest threshold voltage and drain current were achieved by Panda et al. [81],
with a much thicker p-GaN being implemented. Due to thermal and processing compat-
ibility, stacked Ti/Au or Ni/Au metal gate contacts have generally been preferred for
p-GaN HEMT. Chang et al. [85] illustrated the advantages of these gate contacts, achieving
a positive threshold voltage shift of 2.2 V in p-GaN HEMTs with Ni/Au gates. Efthymiou
et al. [95] also found that a Schottky contact at the p-GaN gate could reduce the gate current
by several orders of magnitude and result in a higher gate bias and gate turn-on than with
an ohmic contact. When a potential drop is detected across the p-GaN cap layer depletion
area, a larger bias voltage with a Schottky gate contact is required to minimize the potential
barrier at the p-GaN/AlGaN interface. However, this contradicts the recommendation by
Tsai et al. [96], who preferred a hybrid Schottky–ohmic gate contact. A lower gate turn-on
voltage is associated with a larger gate metal work function. Increasing acceptor doping
does not influence the device’s threshold voltage but alters the gate turn-on voltage at high
p-GaN doping levels [95]. As p-GaN doping increases, a device’s threshold voltage at first
rises, but with a further increase, it begins to drop. Tight electrical connectivity between
the p-GaN layer and gate metal is established through hole tunneling at the metal/p-GaN
interface. Introducing a different gate metal cannot appreciably modify the threshold
voltage at high doping levels.

However, compared to previous findings, Chiu et al. [97] achieved the best electrical
properties in a p-GaN HEMT design by implementing the deposition of an Al2O3/AlN gate
insulator layer through the atomic layer decomposition (ALD) process. Figure 5 illustrates
the authors’ device structure, which achieved a very high threshold voltage (3 V) and
saturation drain current (around 363 mA mm−1). The turn-on voltage in this study was
also higher than 20 V, while the gate leakage current was reduced. Overall, these electrical
properties are better than those obtained in many other studies [98–100]. Hence, including
an Al2O3/AlN layer created via ALD helped build a good interface between p-GaN and
AlN, increasing the device’s off-state VBR in the MIS gate.

Furthermore, the AlGaN barrier thickness plays a significant role in determining the
threshold voltages of p-GaN gate devices. A GaN-based HEMT is typically constructed
with a single AlGaN barrier layer with a thickness range of 10–15 nm. However, none of the
researchers had considered Al composition within the AlGaN barriers until Wu et al. [101]
developed HEMTs with a double barrier layer with consideration for the concentration of
Al. Table 3 shows several recent studies on multiple-barrier GaN-based HEMTs. The gate
dielectric is also critical for GaN-based MISHEMTs [102]. Although many studies have
focused on the gate dielectric material, only a few have considered the importance of length
and recessed depth. As seen in Figure 6, Xia et al. proposed a triple barrier layer [103] with
a variation of Al content between 15% and 25%, showing superior DC characteristics. As a
result, the particular size of the gate dielectric in the device manufacturing process must be
further investigated.
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Table 3. Electrical characteristics of multiple-barrier GaN-based HEMTs, based on recent literature.
The threshold voltage (Vth) varied greatly depending on the AlGaN barrier layers’ design and
recessed-gated depth (H).

Barrier Designs Ion/Ioff
SS (mV
dec−1)

gm,max
(mS mm−1)

Ids,max
(A mm−1)

Vth
(V) Ref.

Al0.3Ga0.7N/Al0.2Ga0.8N/GaN
(Remaining bottom of 5 nm Al0.15Ga0.88N) 4.8 × 1010 87.9 7.6 - 0.25 [101]

Al0.3Ga0.7N/Al0.2Ga0.8N/GaN
(Remaining bottom of 3 nm Al0.15Ga0.85N) 5.5 × 1010 229.3 71.2 - 3.25

Al0.3Ga0.7N/Al0.2Ga0.8N/GaN
(Remaining bottom of 5 nm Al0.2Ga0.8N) 1.2 × 1011 80.7 39 2.9 ~0
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(Remaining bottom of 3 nm Al0.2Ga0.8N) - 153.1 90 - 0.5

Al0.25Ga0.7N/Al0.11Ga0.89N/Al0.15Ga0.8N (H = 6 nm) - - 94.4 1.06 0.99 [103]
Al0.25Ga0.7N/Al0.11Ga0.89N/Al0.15Ga0.8N (H = 2.06 nm) - - 61.1 0.95 2.06

AlN/GaN/AlN/GaN - - 200 1.2 ~−4 [104]
AlGaN/GaN/AlGaN/GaN

(Fin-shaped structure) - - 245 ~0.5 0.2 [105]
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layer to deplete the 2DEG to some extent, while over-etching causes the 2DEG density to 
drop due to a thinner AlGaN barrier layer [87]. Both cases eventually impair conduction. 
Hence, different approaches have been explored to resolve this concern. For instance, Niu 
et al. [91] assessed various repair methods and recovered electrical properties by up to 
93%. Furthermore, to account for potential surface damage and reduced amplifying effec-
tiveness [108], a solution of backside dry etching was proposed [109], leading to a maxi-
mum increase in saturation current density and gm by 21.1% and 25%, respectively. Sur-
face damage may also be minimized by using a selective inductively plasma process (ICP) 
with a mixture of boron trichloride (BCI3) and sulfur hexafluoride gas (SF6) [110,111]. A 
recent study by Osipov et al. [112] suggests that stress may also alter 2DEG concentration 
and thus the electrical properties of AlGaN/GaN HEMTs, because of the piezoelectric na-
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Several methods of fabricating p-GaN HEMTs have been developed. A stacked-gate
self-aligned patterning technique is commonly used to etch the stacked metal gate and
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the p-GaN in the same sequence [106]. Essential procedures include the selective etching
of overgrown p-GaN layers and the repair process. A high etching selectivity ratio is
typically required for the p-GaN HEMT etching technique, as both over- and under-etching
negatively impact device performance [107]. Under-etching causes the residual p-GaN
layer to deplete the 2DEG to some extent, while over-etching causes the 2DEG density to
drop due to a thinner AlGaN barrier layer [87]. Both cases eventually impair conduction.
Hence, different approaches have been explored to resolve this concern. For instance,
Niu et al. [91] assessed various repair methods and recovered electrical properties by up
to 93%. Furthermore, to account for potential surface damage and reduced amplifying
effectiveness [108], a solution of backside dry etching was proposed [109], leading to a
maximum increase in saturation current density and gm by 21.1% and 25%, respectively.
Surface damage may also be minimized by using a selective inductively plasma process
(ICP) with a mixture of boron trichloride (BCI3) and sulfur hexafluoride gas (SF6) [110,111].
A recent study by Osipov et al. [112] suggests that stress may also alter 2DEG concentration
and thus the electrical properties of AlGaN/GaN HEMTs, because of the piezoelectric
nature of GaN. This theory was further proven in another study [113], demonstrating that
dielectrics liner stress may cause many piezoelectric charges within the heterostructure
underneath the gate metal. Hence, strain engineering is considered an effective method to
improve threshold voltage with a scaled gate length.

In sum, devices with normally-off characteristics are highly recommended for power
switch applications to assure fail-safe operation. A reliable normally-off HEMT technology
is essential for the long-term widespread use of GaN transistors. Due to the favorable
trade-off between reliability and cost, the p-GaN gate HEMT is currently the only viable
solution [114]. However, various issues, such as threshold voltage instability [115] and
increased off-state leakage current persist due to the on-state gate bias [116]. However,
the charge-transferring effect [117] of the charge control model may explain the threshold
voltage instability. Additionally, high positive threshold voltages are difficult to attain due
to the trade-off between the threshold voltage and sheet resistance in the channel [118].

3.2. Self-Heating Issues

With the modernization of semiconductor technologies, designers have continually
increased the power density of power devices, leading to increased channel temperatures
and decreased drain currents (Ids). For GaN-based HEMTs, a high drain bias (VD) is used
for high-power and high-frequency applications, producing a strong lateral electric field
from the drain electrode side at the gate edge. As a result, the local lattice’s temperature
rises, a result that is known as the self-heating effect. In practice, extreme overheating even-
tually reduces the lifetime of GaN devices or causes irreparable damage [119], significantly
impacting long-term use [103]. Therefore, commercial GaN HEMTs are currently restricted
to 2–4 W mm−1 output power, compared to the proven 40 W mm−1 power output as
power amplifiers. Lowering the structural temperature would therefore enhance devices’
power efficiency and reliability in the long run [120–122]. Amar et al. [123] shared the
same concern, believing that HEMT technology failures are primarily linked to operational
temperatures exceeding critical levels due to component self-heating. Self-heating may also
cause other issues, including gate burying, connection chip-package damage, electron mo-
bility degradation, and current decrease [124]. Thus, thermal management is critical at the
design stage [125–128] to limit performance degradation and increase reliability [129,130].

Improving the thermal design of AlGaN/GaN HEMTs requires precisely estimating
the underlying thermal transport mechanisms. When multi-layer architectures with a low
thermal conductivity are used in the HEMT structure, they impede heat dissipation from
the junction to the substrate [131], increasing the relevance of the GaN layer for effective
heat removal. Since heat is created solely around the gate, and the gate length is less than
a micrometer, proper temperature monitoring necessitates spatial resolution on a scale
of 1 µm or less. Practically, this procedure is possible with micro-Raman spectroscopy
and thermoreflectance thermal imaging [132], which allow designers to quantify channel
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temperatures and map a device’s temperature distribution with a spatial resolution in range.
Lundh et al. [133] and Chatterjee et al. [134] used the same method, measuring the lateral
and vertical steady-state operating temperatures of AlGaN/GaN HEMTs. Their outcomes
revealed that channel temperature could not be calculated exclusively by continuous scale
heat transfer principles due to the interaction of heat concentration and subcontinuum
thermal transport. It has since been proposed that nanowire-channel HEMTs reduce the
temperature dependence and overall threshold voltage for better temperature stability [135].
These findings may be used to assess self-heating effects in HEMTs and as a reference for
further improvement.

From a structural perspective, thermal improvement is typically influenced by the
substrate materials on which HEMT devices operate. For GaN-based HEMTs, epitaxial
layers are commonly grown on a foreign substrate, such as sapphire, silicon (Si), silicon
carbide (SiC), or diamond [136]; Figure 7 illustrates the thermal analysis for some of
these materials [137]. These dissipative substrates help suppress thermal mismatch while
improving thermal stability [138]. It is also determined that a highly resistive substrate may
enhance breakdown robustness, but there is always a trade-off between threshold voltage
stability and material cost [139].
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The most notable substrate materials used to determine the effect of dislocation on
thermal behavior are Si and sapphire, preferred due to their low costs [140]. One of the most
noteworthy accomplishments using Si was made by Xing et al. [141], who achieved an fT of
250 GHz, the highest for GaN-based HEMTs, on Si with deeply scaled gates. Furthermore,
they achieved a 25% increase in output current and a 40% reduction in heat. GaN-on-Si
structures are also promising for vertical HEMTs because they could reduce switching
loss (Esw), which accounts for significant power loss and device temperature, especially
under high-frequencies. Compared to lateral structures, vertical devices have much simpler
thermal management [142] but are significantly more difficult to demonstrate on foreign
substrates than on native GaN substrates [143]. Therefore, GaN-on-Si HEMTs have been
considered the overall best-in-class power semiconductors [144] despite severe limitations
due to losses associated with output capacitance [145].

However, the poor thermal conductivity of Si and sapphire restricts heat dissipation
during HEMT operation, which may affect electrical performance and reliability [146].
For this reason, replacement substrates with better thermal conductivity, such as GaN or
SiC [147], are commonly used. Broad band gaps make these replacement substrates better
than Si for very high-temperature operations (up to 600 ◦C versus 200 ◦C) [132]. Moreover,
their high-power densities can be successfully dissipated at realistic drain efficiencies,
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avoiding the severe channel temperatures generated by other substrate technologies due
to self-heating. Figure 8 illustrates a HEMT structure grown on a heat-dissipating SiC
substrate, with the simulated thermal modeling shown in Figure 9. Another benefit of a
SiC substrate is that it has a reduced lattice misfit of 3% for GaN, compared to 17% for
Si. Hence, devices using GaN and SiC substrates are predicted to function favorably in
high-temperature conditions due to their better material characteristics [148].
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Figure 9. Temperature distribution in the HEMT grown on a SiC structure. As shown, in the
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Less favorably, commercial GaN and SiC bulk substrates have been relatively chal-
lenging and expensive to acquire [149]. However, Huang et al. [148] addressed pricing
concerns by proposing a low-resistivity SiC (LRSiC) substrate. This proposal has several
benefits over Si HEMT, including a larger output current, a higher off-state, a higher verti-
cal breakdown voltage, and a lower dynamic specific on-resistance ratio, which are vital
for thermal performance. The LRSiC substrate is also three times less expensive than a
standard SiC substrate, as shown in Table 4. Thus, it may be an excellent solution to the
heat and cost problems associated with power devices.
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Table 4. Comparison of LRSiC and High-Resistivity SiC (HRSiC) Substrates. Reproduced with
permission from ref. [148]. Copyright 2021 MDPI.

Reference Price (USD) Resistivity (Ω·cm)

LRSiC (6 in) 1000 0.015~0.025
HRSiC (6 in) 300 1 × 10−5

AlN can also be implemented to improve heat dissipation in the HEMT design. For
example, Cheng et al. [150] investigated AINs inherent thermal conductivity by growing a
thick film of AlN on sapphire substrates, improving heat dissipation. This research agrees
with a study by Chang et al. [151], who operated GaN-based HEMTs on an AlN substrate or
a Cu film, improving electrical and RF performances such as the gm, the drain current, the
fT, and the maximum oscillation frequency, as seen in Table 5. The reduction of self-heating
helps increase carrier mobility beneath the gate and reduce sheet resistance at the access
region, promoting electrical improvement [152,153].

Table 5. Output GaN-based HEMT based on different properties of substrates/films. Reproduced
with permission from ref. [151]. Copyright 2021 MDPI.

Parameters

ID at VG = 0.0 V
(mA mm−1) gm,max

(mS mm−1)
Max. µ Max. µ

(cm2 V−1 s−1)
fT

(GHz)
fmax

(GHz)
at VD = 0 V at VD = 10.0

V

Sapphire substrate 658 542 220 1109 408 14.8 28.6
AlN substrate 717 705 251 1189 393 16.3 31.1

Cu film 776 795 271 1253 389 16.6 32.6

Diamond is also a suitable substrate for further reducing the self-heating effect because
of its high thermal conductivity (up to 2000 W m−1 K−1) [154]. Integrating AlGaN/GaN
thin-film transistors onto diamond substrates improves heat dissipation and device per-
formance and reliability. For instance, Gerrer et al. [155] have tested this approach, which
allowed for more effective heat dissipation, improving performance and reliability with a
significant GaN-on-diamond output power of 14.4 W at a Pout of 8.0 W mm−1. The rela-
tionship between the geometric parameters of GaN-on-diamond substrates and junction
temperature was observed, particularly in relation to diamond thickness. The alteration in
thickness correlates to changes in the distance between the diamond and the heat source
edges and, thus, to changes in the junction temperature. Hence, as the thickness of the
diamond substrate increases, the temperature (T) proportionally decreases [156]. However,
the epitaxial development of a diamond substrate is typically more complicated and costly
than a SiC substrate [155,157].

A better thermal design is also possible through the construction of HEMTs with
Cu-filled structures. Jang et al. applied two different Cu-filled thermal designs [137] under
the active portion of the basic GaN-on-SiC (BGS) HEMT, as illustrated in Figure 10. The
2DEG channel’s lateral and vertical lattice temperatures were addressed during device
operation, followed by a transient thermal analysis. Figure 10a shows a BGS device,
whereas Figure 10b,c illustrates the two thermal structures in the SiC substrate. SiC
substrates beneath the active area were etched away, forming Cu trenches or vias. This
thermal design benefits from the control of steady-state thermal parameters, such as the
vertical lattice temperature, the lateral lattice temperature inside the 2DEG channel, and
the heat production rate as power density increases. Overall, Cu-filled thermal structures
have lower maximum junction temperatures and attaching thermal structures to GaN
HEMTs reduces the time to achieve the maximum lattice temperature. Thus, implementing
Cu-filled thermal vias (CTV) improves heat regulation.
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Alternatively, thermal improvement is possible with the modification of AlGaN barrier
layers. Since GaN and AlGaN layers are much thinner than the substrate layers, their effects
on channel temperature should be less substantial. However, the AlGaN layer still controls
substrate heat dissipation capability due to the differing thermal conductivities of AlGaN
and GaN [158]. An increased room temperature thermal resistance often instigates higher
device self-heating and broader temperature gradient layers due to the reduced thermal
conductivity of the AlGaN. Wang et al. [159] proposed a viable solution by introducing a
back-barrier (BB) layer to the buffer layer, thus limiting the impact of the doped acceptor
between the channel and buffer layers. Apart from the thermal improvement, the withstand
voltage was also enhanced, which, in turn, decreased the current collapse effect.

For another thermal solution, Chvála et al. [160] proposed a multi-finger power HEMT
structure with thermal crosstalk among several individual gate fingers. This structure may
help raise structural temperature and reduce power density with compact multi-finger
layouts. They considered various thermal bottlenecks in GaN-based HEMTs, including a
lower thermal conductance of transition layers, heat transport across interfaces, and thermal
conductivity from phonon-scattering processes. Additionally, a commercially available
engineered substrate, Qromis Substrate Technology (QST), has already been proven to
mitigate the impact of low heat dissipation [161]. The overall thermal resistance of QST
substrate is lower than that of Si substrate due to its higher thermal conductivity, which
may lessen the influence of heat on a device. Micro-trench structures packed with Cu can
also be modeled to offer a heat escape path from any hot region, leading to considerable
improvements in electrical performance [162]. As shown in Figure 11, heat generation
can be firmly focused within the channel on the drain side of the gate, hence dramatically
lowering temperatures in these hot areas.

In short, self-heating is a critical concern in HEMTs due to the possibility of locally
reaching a high power density and a non-uniform thermal dissipation. This concern is also
supported by the fact that many of these devices’ features, including electron mobility, the
saturation rate, and the thermal conductivity, are temperature-dependent [163]. Thus, ther-
mal behavior significantly influences a HEMTs long-term reliability [164,165], as shown by
the possible gate burying, deterioration of the feed metal interconnection, and degradation
of the Schottky contact, which all eventually impact the failure rate [166–168]. Given the
availability of various HEMT substrates to improve thermal behavior, a significant trade-off
exists between performance and manufacturing costs.
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Figure 11. Validation of temperature rise in a device structure with Raman thermometry: (a) peak
frequency of GaN and Si E2, (b) dependence on temperature of the active E2 mode in GaN, (c) peak
E2 shift of GaN without micro-trench fabrication, and (d) peak E2 shift using a Cu-filled micro-trench,
which is lower than without the micro-trench. Based on the channel temperature at various drain-
source biases (Vds) in the Cu-deposited trench structure, the shift of the E2 (high) peak is reduced,
suggesting effective heat removal. Reprinted under terms of the CC-BY license [162]. Copyright 2019,
Mohanty et al., published by Springer Nature.

3.3. Current Collapse, Peak Electric Field Distribution, and Gate Leakage

Another critical challenge for a GaN HEMT is current collapse, or on-state resistance
(RDS,ON) dispersion [169]. The fundamental source of this issue is the formation of a
virtual gate between gate and drain terminals. When the gate and drain voltages are
adjusted rapidly, slow current transients can occur, often referred to as gate lag and drain
lag [170]. This issue manifests as an increase in the dynamic on-state resistance in switching
devices [171] and significantly affects a device’s long-term reliability.

Furthermore, there are also issues with the high peak electric field, which occurs at the
gate edge of the drain side during operation under high bias circumstances [172]. This high
electric field may facilitate charge trapping between the passivation layer and III-nitrides
interface. Electrons may also become stuck in free surface states under a strong electric field,
triggering virtual gating and current collapse [173]. Owing to smaller gate–drain spacing,
devices undergo significantly higher current collapse when scaled down for high-speed
operation, amplifying the virtual gating effect of surface traps. Moreover, controlling the
electric field distribution between the gate and drain is critical for obtaining a linearly
scaled breakdown voltage per channel length. Scaling high-power GaN-based HEMTs to
achieve low on-resistance and gate charge (Qg) is thus still a challenge for high-power and
high-speed operation. Hence, the peak strength of the electric field at the gate edge must
be reduced to achieve a high breakdown voltage [174].

Likewise, the gate leakage current is an essential parameter for GaN HEMTs and is
directly linked to device performance and reliability. Forward gate leakage current restricts
the gate voltage swing and results in drive losses, while the reverse may result in off-state
power consumption and a reduction of VBR [175]. Excessive gate leakage currents are
not permitted, as they may lead to unwanted power consumption. Therefore, setting the
Schottky gate to a reversed bias can help evade potential power loss by switching off the
drain current. For this reason, research studies on gate leakage mechanisms are commonly
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linked to peak electric field distribution and current collapse concerns [176]. The supply
of active electron traps between the gate and drain decreases dramatically with the peak
electric field, resulting in a lower current collapse and knee walkout [177]. Large band gaps
and significant band offsets for gate insulators are thus required to suppress gate leakage
current, even at forward bias.

Some viable solutions to address these concerns include FP implementation, surface
passivation, and gate structure variations. FP refers to an extension of the gate deposited
onto the passivation layer toward the drain side, where the electric field at the AlGaN
surface decreases. As shown in Figure 12a, the metallization layer sits on top of the
passivation layer of HEMTs and prevents the current collapse effect by reducing the peak
electric field near the gate’s drain edge [178]. In theory, the profile of the electric field
distribution improves as FP successfully broadens the depletion region with multiple
peaks that may substitute for a single peak, resulting in a more uniform electric field
distribution [179]. FP implementation also helps reduce reverse leakage current. By
providing an extra surface for field line termination and thus dispersing the electric field
over a longer gate-to-drain interval, FP can reduce the maximum electric field and lessen
electrical field congestion at the drain side of the gate edge.
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To date, various architectures of HEMT have used FP. For instance, Zhang et al. [180]
discovered that FP technology might give lateral power devices a novel charge-balancing
effect. Wong et al. [173] created a GaN HEMT with an innovative asymmetric slant FP,
achieving a high breakdown voltage of 146 V with the aim of increasing the breakdown
voltage without increasing the device size. This outcome was consistent with a study by
Chen et al. [181], which found that the potential dispersion near the drain edge grew as
the source voltage increased, caused primarily by the increasing electric field between the
gate and drain areas. There was also a rise in potential near the standard FP edge, resulting
in an extremely high electric field of 4.8 MV cm−1. Kabemura et al. also investigated this
topic [182] and saw an enhancement in breakdown voltage when using short- and moderate-
length FPs on HEMTs. Table 6 reports multiple recent findings on the characteristics
of HEMTs using FP and highlights the importance of optimizing devices’ geometrical
parameters.
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Table 6. Comparison of output characteristics of GaN-based HEMTs with FPs.

LFP
(µm) LG (µm) LGD

(µm)
Passivation

Layer
Cap

Layer
fT

(GHz)

Electric
Field (MV

cm−1)

Vth
(V)

gm,max
(mS

mm−1)

Ids,max
(mA

mm−1)

VBR
(V) Ref.

0.67 0.26 2.00 SiN - 41.00 0.71 0.65 780.0 1060 138 [173]

1.75 0.40 - SiN
HfO2

- 40.00
28.00 - −4.30 434.8

434.0
2160
2110

872
912 [174]

0.60 0.70 - SiN - - - - - - 150 [177]
0.90 0.25 2.70 SiN GaN 20.00 17.00 - 270.0 760 330 [179]
2.00 3.00 22.00 - - - 3.00 - - - 2200 [183]
1.00 0.25 2.70 SiN AlN/GaN - 2.90 0.50 175.0 900 291 [184]
1.50 1.50 5.00 Si3N4 - - - −4.00 70.0 310 970 [19]
2.00 2.00 15.00 SiN GaN - - −3.50 138.0 - 365 [185]
3.00 1.00 8.00 SiN - 19.00 4.87 - - 3400 376 [186]
0.30 0.30 1.50 SiN - - 2.70 −5.84 - - 400 [187]
0.80 0.50–1.00 3.55 Si3N4 - 6.70 - −2.683 58.0 ~100 669 [188]
0.20 0.25 2.70 SiN GaN 28.30 - - 350.0 1000 254 [189]
0.10 0.25 2.70 SiN GaN 28.00 1.80 - 314.0 820 342 [190]
0.50 0.25 2.70 SiN GaN 47.07 - −4.30 323.0 1080 298 [191]
0.75 0.2 1.35 SiN - 62.40 - −2.60 - 1000 140 [192]
0.30 0.23 1.00 SiCN - - - - - - 282 [193]
0.80 0.25 1.00 SiN - 38.00 - −3.30 58.7 - 127 [194]

As shown in Table 6, few FP HEMTs have employed a GaN cap layer to help suppress
self-heating effects and current collapse. This layer also shields the AlGaN surface from
oxidation, offers an extra barrier at the Schottky contact, and decreases leakage current [195].
The concept could be further enhanced with a high-resistivity GaN cap layer, which can
improve the electric field distribution, current collapse, and breakdown capability, resulting
in a high VBR of 1020 V [196]. Nirmal et al. [184] investigated this theory further by adding
an AlN layer between the SiN and GaN layers, as shown in Figure 13a, resulting in a 6.26%
increase in drain current compared to the conventional design. Breakdown voltage was
also 14% higher, while the current collapse was reduced by 10%. These improvements
were caused by the AlN cap layer, which can accommodate more heat than the GaN cap
layer due to its better thermal conductivity of 2 W cm−1 K−1. Thus, a sandwiched AlN
layer helps reduce lattice mismatch and trap charges at the SiN/AlN interface, ultimately
improving the proposed HEMT design.

FP technology has been continually modified to improve performance. Wong et al. [173]
recently developed an exceptional SiN slant FP on AlGaN/GaN HEMTs by employing the
surface tension properties of hydrogen silsesquioxane (HSQ) on a pre-patterned plasma-
enhanced chemical vapor deposition (PECVD) SiN dielectric. With fT/fmax = 41/100 GHz,
the resulting HEMT with a tuned slant FP displayed a very low dynamic-specific on-
resistance and a solid high-frequency performance. Augustine Fletcher et al. [179] achieved
a similar result using a discrete FP with part of the lateral plate removed, as shown in
Figure 14. With a high breakdown voltage of 330 V, compared to 298 V in a conventional
design, the discrete FP reduced the maximum electric field between the gate and drain
regions. Furthermore, the FP gate HEMTs leakage current was around ten times lower than
that of the non-FP design. This lower current may be attributed to the FPs smooth electric
field distribution, which effectively lowers the inverse piezoelectric and electron tapping
effects in the AlGaN barrier layer. The improvement can also be attributed to fewer defects
generated via gate leakage.

Soni et al. performed further research on FPs [197] by comparing three designs:
a drain-connected lateral FP, a drain-connected vertical FP, and a dual-FP structure. A
significant breakdown voltage roll-off was observed after increasing FP length in a lateral
design due to a change in the peak electric field from the drain edge to the gate edge. This
was followed by an increase in the peak electric field at the gate edge. In a drain-connected
vertical design, the breakdown voltage is restricted by the buffer thickness, resulting in
a breakdown voltage roll-off as the FP thickness increases. However, both concerns are
addressed by the dual-FP structure, which allows the electric field to be shared over the gate
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and drain side, especially in scaled designs. This enables the scaling of HEMTs with a dual-
FP architecture, improving the on-state performance without sacrificing the breakdown
performance.
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Xia et al. [198] investigated the potential of micro-FP technology. They found that the
suggested technique may offer a charge balancing effect for HEMTs with better performance
than a lateral structure. This outcome is due to the impact on the potential distribution,
resulting in an expanded electric field distribution between the gate and drain and a peak
electric field concentration at the micro-drain field plate (D-FP), the gate field plate (G-FP),
and the source field plate (S-FP) edge. Figure 15 shows the schematic diagram of HEMT
with a micro-FP structure.
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FP remains in contact with the passivation layer made of nitride or oxide, preventing
electron leakage with high-density shallow surface traps [199]. A passivation layer such as
Si3N4 can be formed with the metal-organic chemical vapor deposition (MOCVD) method,
which helps lessen the influence of surface states that restrict saturation current and the
device’s breakdown voltage [200]. Hence, using a passivation layer can improve the
saturation current, the breakdown voltage, and the noise level [201]. However, several
elements of a passivation layer’s action mechanism, such as layer thickness, are still being
debated [202].

When designing HEMTs, it is also essential to include a gate insulator layer between
the AlGaN barrier layer and the gate metal to reduce gate leakage [203]. For gate insula-
tor applications, various dielectric materials have been investigated, including hafnium
dioxide (HfO2), silicon dioxide (SiO2), aluminum oxide (Al2O3), silicon nitride (SiNx), and
zirconium dioxide (ZrO2). High-k dielectrics, in particular, promise particularly beneficial
channel controllability for low off-state leakage currents, high on-to-off ratios, and low
SS, suggesting improved power efficiency in device applications [23]. Table 7 shows di-
electric characteristics for commonly used high-k materials [204]. However, although the
threshold voltage may be raised, many gate-related adjustments result in undesirable side
effects such as excessive gate leakage and low gate swing. High-quality gate dielectrics
are therefore required to minimize gate leakage and retain the inherent high mobility of
2DEG, particularly in the recess gate structure, which often oversees scatterings from a poor
dielectric/GaN surface, resulting in decreased gate reliability. Further, an additional gate
dielectric layer usually results in more complicated material interfaces, and the interface
quality substantially influences the device’s electrical properties [205]. Hence, the interface
quality of HEMT devices warrants further study.

Table 7. Properties of different high-k materials. Reproduced under terms of the CC-BY license [204].
Copyright 2021, Babaya et al., published by Universitas Ahmad Dahlan (UAD).

Materials ε (F m−1) C (J K−1) K (W m−1 k−1) Energy Gap (eV) Ec (eV) Ev (eV)

SiO2 3.9 3.066 0.014 9 3.5 4.4
SiN 7.5 0.585 0.185 - - -

Al2O3 9.3 3.14 0.29 8.8 3 4.7
Hf02 22 - - 5.8 1.4 1.3
TaO5 26 - - - - -
TiO2 80 - - 3.5 1.1 1.3

Currently, HfO2 is the most extensively used high-k gate insulator, particularly in the
Si complementary metal-oxide semiconductor (CMOS) industry, due to its high-k value
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and large band gap (5.8 eV). However, using such a dielectric layer typically increases the
complexity of the new interface; HfO2 suffers from extreme oxygen transparency, which
introduces unfavorable Ga–O bonds in GaN-based devices and degrades the condition of
the HfO2/GaN interface [206]. While HfO2 HEMTs can attain more efficient electrostatic
control, they suffer from excessive leakage current owing to an inadequate barrier height,
which degrades device performance through gate leakage. This drawback was noted by
Huang et al. [207], who recommend devices with SiNx gate dielectric over those with HfO2
due to a better electrical stability and a low threshold voltage drift resulting from a lower
interface trap density. Therefore, the superior electrical stability of the MIS-HEMTs with
SiNx gate dielectrics can be attributed to their greater interface quality. However, this
information might not be accurate across all applications, such as in the space industry,
where the impact of proton radiation on a HEMT device using a dielectric layer must also be
considered. As per a study by Lee et al. [208], proton irradiation induces negative charges
in gate dielectric layers, which can degrade certain performances of MISHEMTs, such as
threshold voltage shift and the reduction of drain current. This investigation indicated
that the Al2O3 dielectric layer is considerably more suitable than SiNx as a gate insulator
for AlGaN/GaN MISHEMTs in space applications since the increased induced charge
density in the MISHEMT is not severe, resulting in less degradation of electrical properties.
However, it is still feasible to enhance the dielectric behavior of HfO2 by incorporating Si
into the dielectric layer, improving the breakdown strength and interface properties. A
study by Li et al. [209] found that including Si in HfO2 reduced the fixed oxide traps and
interface trap density within the dielectric, thereby boosting the breakdown properties of
the dielectric.

To further advance high-k metal gate technology, high-mobility substrates for CMOS
technologies, such as III-V compound semiconductor materials, have also been investigated.
The direct deposition of high-k dielectric can reduce the burden of finding a stable oxide
such as SiO2. However, due to the intrinsic features of III-V surfaces and their oxidation
chemistry, fabricating the high-k/III-V material interface is very challenging and typically
results in a high interface state density, leading to a higher concentration of interface states
with Fermi-level pinning. Overall, interface properties appear to depend on the deposition
technique, a combination of deposition parameters, the substrate surface orientation, pre-
deposition surface treatments, and the subsequent annealing temperatures based on the
electrical performance [210].

Inserting a high-permittivity passivation layer or a material with a high dielectric
constant (k) to boost breakdown behavior should also be considered, as this directly
influences the smoothness of the electric field profiles between the gate and the drain.
As the electric field at the drain edge of the gate is lowered, the breakdown voltage
rises with εr. The breakdown voltage is also enhanced in the high εr area when the
gate voltage is more negative since the buffer leakage current is likewise lowered [182].
There is a direct correlation between the band gap and the permittivity for materials
widely used as passivation layers, as seen in Figure 16, which emphasizes their trade-
offs [211]. Given the massive difference in permittivity between high-k dielectrics and
AlGaN, a high-k film should be able to transmit or extract electric flux more effectively
from the semiconductor surface. Multiple studies have also demonstrated this impact by
implementing different passivation layer materials, such as MgO, SiO2, ZnO, and Si3N4,
with varying k. It is noteworthy that the drain current typically increases with high-k
passivation layers. Furthermore, the surface effects are reduced, boosting the channel
carriers and increasing the drain current [212]. This outcome agrees with the usage of
high-k dielectric material as a passivation layer, ultimately reducing the dynamic specific
on-resistance or current collapse while improving breakdown voltage [213].
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Implementing multiple passivation layers in a single HEMT device may also improve
performance. In one study [214], the breakdown voltage for a double passivation layer
structure was enhanced significantly against a single passivation of SiN due to the weak-
ened electric field around the drain edge of the gate. The stack passivation layer of Al/SiN
also minimizes damage at the AlGaN surface. A similar improvement was observed in
another study [215] with an Al/SiN stack layer, in which the gate leakage was reduced
by several orders of magnitude, effectively suppressing moderate current collapse and
improving the breakdown voltage by 32.8%. Murugapandiyan et al. [216] studied a dual
SiN/AlN passivation HEMT with a self-heating model and showed a 60% increase in drain
current density and a 63% increase in gm; thus, they found that the model was reliable and
stable for an extensive range of operations.

A charged passivation layer (CPL) has also been considered for a GaN HEMT struc-
ture to enable higher modulation of the electric field distribution along the channel layer,
thus improving the homogeneity of the electric field along the entire channel [217]. In
general, CPL HEMTs outperform traditional structures in breakdown voltage, frequency
performance, and specific on-resistance. In addition, a study reported that a graphene layer
(GL) could be mounted above the SiN passivation layer of HEMT, improving devices’ ther-
mal management [218]. Due to the excellent hydrophobic properties, trapping effects are
efficiently prevented, particularly those that are water-related. This implementation allows
for a thinner SiN layer, reducing fringing capacitance without compromising water-related
current collapse effects. These findings emphasize the importance of the GL in increas-
ing the SiN passivation layer’s moisture resistance while maintaining the AlGaN/GaN
MISHEMT’s electrical properties.

Several new ideas concerning barrier layer variations have been introduced to address
current collapse and E-field distribution concerns. A novel design of enhancement-mode
GaN HEMT with a thick GaN buffer and a step-etched GaN structure (SGB) has been
explored [219], resulting in improved forward output characteristics. As shown in Figure 17,
a thin GaN buffer without a step structure (TGB) and a conventional GaN buffer structure
(CGB) were developed for comparison. As the GAN buffer’s thickness increased, the
breakdown voltage and maximum current drive capacity increased only marginally, as
detailed in Figure 18. A recent proposal implemented an ultra-thin barrier (UTB) and
a local charge compensation trench (LCCT) [220]. Deeper and longer LCCTs produce
more negative charges, resulting in a high E-field redistribution capacity. Hence, any
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potential lattice damage in the barrier might be avoided. This topology modulates the
2DEG concentration to smooth the reverse E-field by injecting additional negative charges.
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Figure 18. Breakdown voltage (VBR) of SGB, TGB, and CGB for different gate-to-drain distances
(LGD), and dependence of VBR and peak drain current on GaN buffer thickness. The developed
step-etched GaN structure may alter the electric field distribution, resulting in a greater VBR since
the equipotential lines are more uniform than for standard HEMTs. Furthermore, at the ideal angle
of the GaN buffer, the electron density at the AlGaN/GaN interface is unaffected, resulting in an
output Ids–Vds curve and current drive capacity comparable to conventional HEMTs. Reprinted with
permission from ref. [219]. Copyright 2021 Elsevier.

Current collapse in GaN HEMTs can also be addressed through notch formation
between the gate and drain. A notch in the AlGaN barrier layer may help reduce the 2DEG
concentration inside the channel while suppressing the peak electric field alongside the gate
electrode. Figure 19 illustrates a basic HEMT with a single notch structure. Zou et al. [221]
investigated the impact of the dimensions and numbers of notch structures by covering six
models with varying notch designs. Compared to the conventional AlGaN/GaN HEMT,
double-notch HEMT showed the most significant DC and RF performances, including
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increases of 30% in gate voltage swing, 42.2% in breakdown voltage, and 9% in fT, in
addition to strong suppression of the current collapse.
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It is also essential to address the challenges outlined above through structural variation
of the gate. The focus is on efficiently distributing the electric field while effectively
managing current collapse and other electrical properties, such as breakdown voltage and
gm. A significant electrical improvement has been observed when the gate structure has
been changed from an FP to a gamma gate [222]. A similar outcome was recorded for a
slanted tri-gate design [223], which efficiently distributed the electric field and significantly
enhanced the breakdown voltage. This gamma gate structure can be engineered through
lithography by adjusting the width of the tri-gate nanowires. Accordingly, the impact of
the gate length has been addressed in two commercial Gan/AlGaN HEMT devices with
different gate lengths, as listed in Table 8. Both models ultimately share the same voltage
breakdown behavior and drain current; therefore, no differences are expected regarding
gate leakage or current collapse [224].

Table 8. Main features of two commercial GaN-on-Si HEMT technologies with different gate lengths.
Reproduced with permission from ref. [224]. Copyright 2021 MDPI.

Parameter
GaN Processes

D01GH D006GH

Gate length 100 nm 60 nm
Cut-off frequency 110 GHz 150 GHz

Maximum oscillation frequency 180 GHz 190 GHz
Gate–drain breakdown voltage 36 V 36 V
Maximum drain current density 1200 mA mm−1 1200 mA mm−1

Maximum extrinsic transconductance 800 mS mm−1 950 mS mm−1

Minimum noise figure at 40 GHz 1.5 dB 1.1 dB
RF power density 4 W mm−1 3.3 W mm−1

Increasing the number of gate contacts may also reduce current collapse and address
high peak E-field issues. For instance, a dual-metal-gate (DMG) construction is superior to
a typical single-metal-gate (SMG) structure for achieving the channel’s appropriate electric
field distribution. Accordingly, the E-field with a DMG structure is better distributed
due to its improved ability to suppress current collapse while boosting overall electrical
properties [225]. This information also applies to a tri-gate structure [226] coupled with a
hybrid ferroelectric charge trap gate stack. Due to electrostatic control by trapped charges
in the charge-trapping layer on the nanowire sidewalls and optimization of the tri-gate
form, this structure exhibits a low current collapse and robust electrical characteristics. The
hybrid ferroelectric charge trap gate stack also provides a high density of negative charges,
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resulting in a high positive threshold voltage. However, this result contradicts another
study [227] in which a triple material gate (TMG) HEMT provided a lower threshold voltage
than SMG and DMG HEMTs. The application of a comb-gate design within AlGaN/GaN
HEMT devices has also been proposed, which effectively reduces the off-state leakage
current by three orders of magnitude. However, this topology may be insufficient due to the
limitation of breakdown voltage, even if the short-channel effect is suppressed. Nonetheless,
the quasi-normally-off comb-gate devices are superior to the typical design in regard to
switching characteristics and on-state performance, particularly on-state resistance, in
the absence of recess operations for device setup [228]. Another study [229] explored the
idea of combining gate and ohmic recess. Due to the achievable maximum E-field and
electron mobility with a reduced gate channel distance, they were able to attain a low
leakage current.

Trench formation is also key to demonstrating high-voltage behavior while addressing
some of the challenges associated with HEMT devices. A trench is typically formed between
the nucleation and GaN layers, as shown in Figure 20. Zhang et al. [230] presented two
trench structures to identify the impact on blocking capability. They found that a flat-
bottom rounded trench is the best option for high-voltage vertical GaN power devices,
with the lowest possible gate leakage current and the highest breakdown voltage of 500 V.
Yang et al. [231] also suggested a novel method of preventing electrons from becoming
trapped in the GaN buffer by developing a deep-source metal trench in the GaN HEMT
structure. Four device structures were used for comparison: a conventional HEMT, a device
with a deep-source contact trench within the mesa area, and double-gate HEMTs with and
without the trenches outside the region. Improvement in the current collapse was observed
for devices with the source trench within the mesa due to the redistribution of the electric
field profile.
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To summarize, the challenges associated with current collapse, leakage current, and
high peak E-field may be addressed through different structural solutions. To mitigate the
impact of ionization on breakdown voltage, for example, it is essential to control the peak
electric field. This can be achieved by implementing the correct FP approach. As reported
in many studies, the FPs’ purpose is to disperse the electric field profile and lower the
electric field peak value, thus minimizing trapping while enhancing the breakdown voltage.
A better gate control performance will eventually cause the threshold voltage to become
positive and the breakdown voltage to rise due to the smooth electric field distribution.
However, the influence of the FP on the electric field is still affected by various factors,
including the device’s architecture, thickness, doping concentration, and the k of each layer,
which all influence the electric field distribution. Other structural solutions using gate
structures, barrier layers, trenches, and notches are also possible.
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3.4. High Ohmic Contact Resistance

Another challenge associated with HEMT devices is the high level of ohmic contact
resistance. In basic terms, the ohmic contacts of HEMT are the device’s access points
for connecting to external circuits. Ideally, their resistance should be very low compared
to the channel drift region in order to lower the device’s specific on-resistance. Hence,
the source and drain ohmic contact resistance (Rc) should be kept as low as possible for
high-power HEMTs [232]. However, the enormous band gap, which naturally favors
Schottky connections, makes it difficult to produce excellent ohmic contacts on GaN-based
materials. The resulting output power, power efficiency, frequency responsiveness, and
noise performance are all known to depend on a low drain ohmic contact resistance. As a
result, the work function and thickness of metal layers, the semiconductor doping level, the
annealing temperature, the recess depth of the barrier layer, and other parameters require
further optimization.

In recent years, different metallization strategies have been employed to achieve low
contact resistance. Principally, it would seem that adding Si into the AlGaN barrier would
help reduce the ohmic contact resistance. However, when the contacts are annealed at high
temperatures to activate the Si dopants, the dopants immediately diffuse away from the
contacts, resulting in an increased gate leakage current and charge trapping. Thus, the
development of ohmic contacts in AlGaN/GaN heterostructures remains the only solution
for ohmic contact resistance issues in modern GaN technology. This is a significant barrier
to developing Al-rich AlGaN transistors, as the process of ohmic contact formation becomes
significantly more complicated in the presence of an AlGaN barrier and 2DEG [233]. To
fully comprehend the development of ohmic connections in heterostructures, one must
also fully consider Al concentration and the thickness of the AlGaN barrier layer, which
affect features of the 2DEG. The electron affinity in AlGaN transistors decreases when the
Al concentration increases, causing massive Schottky barriers at the metal–semiconductor
interface. As a result, though shifting to a higher Al composition has numerous advantages,
forming an excellent ohmic contact becomes progressively challenging [234].

The combination of multiple ohmic contact materials of HEMT devices is considered
the most significant influence on the contact resistance, with multi-layer materials typically
applied. The traditional ohmic contact in GaN HEMTs is formed with a Ti/Al/Ni/Au
metal stack [235–238] due to its ease of evaporation and superior electrical properties.
Conducting intermetallic titanium aluminide (Ti–Al) is thought to aid electron transport
mechanisms, resulting in a low ohmic contact resistance. However, since a HEMT with
Au-based ohmic contact is typically incompatible with the latest CMOS technology, recent
research has shifted toward Au-free ohmic contacts [239]. An example of this alteration is
the combinations of Ti/Al and Ti/Al/Ti/W metal schemes, which lead to superior electrical
performance [240], improving maximum drain current by 40.7% compared to conventional
structures. It has also been discovered that adding a Ti/W cap layer on top of the Ti/Al
ohmic layer results in a much lower contact resistance and a smooth contact surface mor-
phology. The low ohmic contact resistance of 0.56 Ω mm has been achieved with moderate
post-metal annealing settings of 600 ◦C, one of the lowest recorded values for similar metal
schemes. Gao et al. [241] experimented with this idea by proposing a quadruple metal
stack of Ti/Al/Ni/Ti ohmic contacts and showed an increased edge sharpness and surface
metal morphology. This research also revealed an increased breakdown voltage, a more
concentrated statistical distribution, and a lower ohmic contact resistance.

Constant et al. [242] investigated barrier height dependence on specific contact resis-
tance for Au-free ohmic contacts generated on AlGaN/GaN heterostructures. They found
that lowering the AlGaN thickness to an optimum level, at which a maximum polarization
field-induced carrier density (ND-2DEG) is produced, reduces specific contact resistance.
Li et al. [240] made a similar observation, discussing the reduced thickness of the barrier
and the broader area for tunneling. Electron tunneling is therefore projected to improve
massively, substantially lowering the contact resistance. On the other hand, it is also be-
lieved that the annealing temperature and ohmic groove etching significantly influence
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the ohmic behavior, device performance, and surface topography of HEMT devices [243].
Zhu et al. [244] have explored this theory by utilizing six different samples with varying
combinations for the metal stack, as shown in Table 9. In sum, excellent ohmic connections
are critical for regulating the annealing temperature and duration to balance the pace of
different reactions.

Table 9. Summary of data based on six samples annealed at 850 ◦C. Reproduced under terms of the
CC-BY license [244]. Copyright 2021, Zhu et al., published by AIP Publishing.

Samples A B C D E F

Metal stack Ti/Al/Ni/Au Ti/Al/Ni/Au Ti/Al/Ni/Au Ti/Al/Ti/Al/
Ti/Al//Ni/Au

Ti/Al/Ti/Al/
Ti/Al//Ni/Au

Ti/Al/Ti/Al/
Ti/Al//Ni/Au

Etching depth (nm) 0 10 20 0 10 20
Annealing temperature (◦C) 850 850 850 850 850 850

Annealing time (s) 30 30 30 30 30 30
RC (Ω mm) 1.6748 1.1597 1.1535 1.6554 0.9101 1.0108

ρc (Ω cm2) × 10−5 7.9677 3.5520 3.6413 6.3174 2.2471 2.6838
rms (nm) 105 55.7 81.9 75.8 42.5 52.2
Ra (nm) 87.3 65.4 68.4 63.3 33.3 42.6

Regarding metallization procedures with multi-layer Ti/Al structures and ohmic
grooves, Zhu et al. [244] explained the detailed etching process, as depicted in Figure 21. The
study highlighted the impact of different Ti/Al electrode layers, annealing temperatures,
and ohmic groove depth on the ohmic characteristics of the HEMT devices. It found that
the upgraded device achieved the best performance in terms of contact resistance, with the
lowest specific contact resistivity of 2.2471 × 10−5 cm2 and the lowest contact resistance of
0.91014 Ω mm. These values are 71.8% and 54.3% lower than the conventional structure,
respectively. These experimental results match older studies [243,245], with the Ti/Al
layer for reduced resistance and the Ni/Au layer for smooth surface morphology, in which
implementing an annealing temperature ohmic groove with rapid annealing at a high
temperature is a decent approach to addressing the concern of high contact resistance. The
duration of annealing is also an equally critical factor. In sum, excellent ohmic connections
are essential for regulating the annealing temperature and duration in order to balance the
pace of different reactions.
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4. Conclusions and Future Prospects

In the past 6 years, we have seen the continuous development of AlGaN/GaN HEMT
technology, and along the way, there have been many challenges encountered by designers
to produce AlGaN/GaN HEMT with optimum performance. From a structural perspective,
recent studies have proposed adequate solutions, showing opportunities for this technology
to continue maturing. The following findings are drawn from the review:

(1) As the industry demands normally-off devices for safety reasons, implementing the
feature remains a research challenge. Ultimately, the issue requires solutions at the
device technology level. p-GaN remains the only viable structural solution. However,
issues such as degradation and mechanism failure still exist and require fixes to
improve reliability and manufacturability. One suggestion for future improvement is
to explore further the idea of a gate insulator layer that can achieve a high threshold
voltage, a saturation drain current, and a turn-on voltage while reducing the gate
leakage current and instability. This implementation involves the deposition of the
Al2O3/AlN gate insulator layer in the p-GaN HEMT design, which can be further
improved with modifications such as barrier layer variation. Nevertheless, more
investigation is required before it can be widely adopted.

(2) To address self-heating issues, comprehensive device thermal management, mainly fo-
cusing on the variation of extrinsic substrates as heat spreaders, is essential for reliable
and robust HEMT devices. However, materials with a high thermal conductivity, such
as diamond substrates, are still not a viable option due to their lack of compatibility
with other substrate materials (GaN-diamond lattice mismatch). This leaves SiC as
the most feasible option. To further close the gap between cost and performance,
we propose the idea of exploring an LRSiC substrate. On top of being three times
less expensive than a standard SiC substrate, it delivers better thermal management
than a Si substrate. This suggests that LRSiC could be an excellent and cost-effective
solution to the heat problem. However, more research is also required before it can be
widely accepted.

(3) Several structural solutions have been identified to resolve the challenges related to a
high peak electric field, leakage current, and current collapse. To date, FP technology
is a proven solution that can effectively control electric field distribution and lower the
peak electric field below the GaN material’s critical electric field. Another possible way
is through various structural modifications, including surface passivation, notches,
trenches, gate structures, and barrier layer variations. Combining these different
structures could resolve these issues. For instance, adding FP and notch structures
on the same device could further reduce the challenges of a high peak electric field,
leakage current, and current collapse.

(4) Using different metallization strategies is a popular method of overcoming the prob-
lem of high-resistance ohmic contact. Researchers have demonstrated that implement-
ing a stack of several materials may help improve ohmic contact resistance. We can
expect other material combinations to be exploited in the near future, which may
further enhance the ohmic contact.

Although tremendous improvements have been made in GaN device performance,
there are still significant gaps between the observed device performance in real-world ap-
plications and theoretical predictions. For example, cost and material crystallization quality
must be considered in practical research, as these factors will eventually decide whether
the ideas can be fulfilled commercially. This study has thus identified many structural
conceptualizations proven to overcome existing challenges associated with HEMT devices.
Ideal characteristics for practical transistor applications, such as a stable threshold voltage,
a low leakage current, a high transconductance, an effective current control with a high
linearity, and a wide dynamic input voltage range, have the potential to be discovered.
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