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Abstract: In this study, magnetite nanoparticles (Fe3O4 NPs) were synthesized using Baccaurea
ramiflora leaf extracts and characterized by visual observation, UV–Vis, FTIR, XRD, FESEM, and
EDS. The UV−Vis spectrum showed continuous absorption at 300–500 nm, confirming the formation
of Fe3O4 NPs. FTIR revealed that compounds containing the O-H group act as reducing agents
during Fe3O4 NPs formation. Agglomerated spherical NPs were observed in the FESEM image.
The prominent peak at ~6.4 keV in the EDS spectrum ascertained the existence of Fe, while the
sharp peak at ~0.53 keV confirmed the presence of elemental oxygen. XRD patterns affirmed the
crystalline nature. The size of as-synthesized NPs was observed to be 8.83 nm. The catalytic activity
of Fe3O4 NPs for the reduction of methylene blue (MB) dye was monitored by UV–Vis. The maximum
absorption peak of MB dye at 664 nm was almost diminished within 20 min, which revealed Fe3O4

NPs could be an excellent catalyst for wastewater treatment.

Keywords: green synthesis; Fe3O4 NPs; Baccaurea ramiflora; catalytic degradation; ecofriendly

1. Introduction

Nowadays, the release of organic dyes in water from industrial plants has become a
major threat to mankind and also to the environment. Organic dyes have been utilized
in the ventures like cosmetic, leather, food, textile, paper, and drug businesses for a long
period of time. Particularly, azo dyes have been recognized as plausible carcinogenic
agents because of their high stability and complex chemical structure, as they are not
easily biodegradable. Released dyes are exceptionally impervious to microorganisms, so
reduction through natural processes is required. A plethora of literature reported that NPs
have vivid catalytic activity because of their large surface-to-volume ratios, and thus they
can be used for the degradation of dyes [1–3].

Besides, the synthesis of NPs has become a matter of great interest due to their cat-
alytic, optical, electrical, mechanical, and magnetic properties. Numerous techniques such
as the sol–gel process [4], co-precipitation [5] sonochemical method [6], hydrothermal tech-
niques [7], non-aqueous synthesis [8], ultrasound irradiation [9], thermal reduction [10],
microemulsion method [11], etc. have been developed to synthesize NPs. However, con-
ventional chemicals and physical methods increase environmental and biological hazards
due to toxic reducing agents used during the synthesis procedures [3]. Meanwhile, green
chemistry or biological synthesis has received much attention on account of its economic
utilization of time and minimal usage of hazardous reducing chemicals [12]. However, the
microbe-mediated synthesis of metallic NPs is not viable in an industrial setting because of
the necessity of highly sterile conditions and their maintenance. Therefore, the application
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of plant extracts for the synthesis of NPs is potentially more convenient instead of the usage
of microorganisms. The green route provides natural capping agents for the stabilization of
metal nanoparticles without them being contaminated with hazardous chemicals [1,13,14].

By using the green method, different types of NPs such as magnetite [15], silver [16],
copper [17], copper oxide [18], nickel oxide [19], zinc oxide [20], manganese dioxide [21],
gold [22], etc. have been synthesized. Among them, Fe3O4 NPs are more significant and
viable on account of their preeminent properties, for example, being superparamagnetic,
biodegradable, biocompatible, and expected to be non-harmful to living organisms [1,23].
These extraordinary properties permit Fe3O4 NPs to be generally utilized in various re-
gions of utilization, for example, in biosensors, catalysis, magnetic resonance imaging,
magnetic storage media, and targeted drug delivery [15]. A study of various portions of the
literature recommends that extracts from different parts of a plant, for example Sargassum
muticum (seaweed) [24], Kappaphycus alvarezii (seaweed) [15], Azadirachta indica [25], Banana
leaves [26], Glycosmis mauritana [27], Zanthoxylum armatum [28], Cynara cardunculus [29],
Ocinum sanctum [30], Centella asiatica [31], Punica granatum [32], or Gratophyllum pictum [33],
be exploited to synthesize Fe3O4 NPs. So far, green synthesis of Fe3O4 NPs using B. ramiflora
leaves extract has not been performed yet.

B. ramiflora, locally known as Lotkon, is a slow-growing evergreen tree in the Phyllan-
thaceae family with a dispersal crown and thin bark. It is found throughout Asia, and is
generally cultivated in India, Bangladesh, and Malaysia. Different parts of B. ramiflora have
potential medicinal value and are used in the treatment of skin diseases. Besides, this plant
is well known due to its excellent cytotoxic, antioxidant, analgesic, neuropharmacological,
anti-inflammatory, and antidiarrheal properties. The performance of a phytochemical assay
of B. ramiflora plants showed the presence of carbohydrates, phenol, alkaloids, glycosides,
flavonoids, terpenoids, sterol, resins, tannins, fixed oils, etc. [34–36]. It was assumed that
the leaves of B. ramiflora could be used for the reduction of metal compounds as an effective
reducing, stabilizing, and capping agent. Therefore, this study aimed to synthesize Fe3O4
NPs using B. ramiflora leaves and evaluate their catalytic activity.

2. Experimental Methods
2.1. Extraction of Phytochemicals

The fresh leaves of B. ramiflora were collected from the local market of Khulna,
Bangladesh. Approximately 100 g of fresh leaves was washed thoroughly several times
with deionized water. This material was then shade-dried and made into fine powder form
(~14 g) using a blender. About 5 g of B. ramiflora leaf powder was added to 100 mL of
deionized water, and the mixture was boiled for 30 min at 70 ◦C. After that, the infusion
obtained was allowed to cool down at room temperature and filtration was performed with
Whatman filter paper No. 42. For further use, ~97 mL of the extract was preserved in a
refrigerator at 4 ◦C [37].

2.2. Green Synthesis & Characterization of Fe3O4 NPs

Ferrous sulfate heptahydrate (FeSO4.7H2O) (Merck, Darmstadt, Germany) and Ferric
Chloride hexahydrate (FeCl3.6H2O) (Loba Chemie, Maharashtra, India) were taken in a
1:2 molar ratio and dissolved in 50 mL deionized water. This solution was heated at 80 ◦C
under mild stirring using a magnetic stirrer for 10 min. Then, 10 mL of plant extract was
added slowly into the solution. After 5 min, freshly prepared 1.0 M NaOH (Loba Chemie,
Maharashtra, India) was added into the solution drop by drop until uniform precipitation
of magnetite nanoparticles was obtained. At that time, the pH of the solution became 11.
The solution was kept undisturbed and allowed to cool down to room temperature. The
black-colored nanoparticles were deposited at the bottom. The separation of deposited
precipitate (Fe3O4 NPs) was conducted by a ring magnet, and decantation was performed
to remove the unwanted foreign particles. The obtained product was finally dried at
70 ◦C in an oven [38]. It is noteworthy that the overall protocol was repeated as a control
reaction without adding B. ramiflora leaves extract to the iron salt solution. However, to
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know the size, shape, surface texture, and chemical constituents, the synthesized magnetite
nanoparticles were assessed for further characterization. Initially, the Fe3O4 NPs formation
was confirmed via the magnetic bar and UV−Vis spectrophotometer (JASCO V−730, Tokyo,
Japan). The existence of various biomolecules capped on the surface of nanoparticles was
investigated by Fourier transform infrared (FTIR) spectroscopy (SHIMADZU, 8201 PC).
The surface morphology and elemental composition were inspected by using a Philips
X’PERT PRO X−Ray diffractometer and Field Emission Scanning Electron Microscopy
(FEJSM−7600F, Tokyo, Japan), respectively.

2.3. Catalytic Reduction of MB Dye

The reduction of MB dyes using sodium borohydride (Merck, Darmstadt, Germany)
in the presence and absence of Fe3O4 NPs was carried out to determine the catalytic activity
of Fe3O4 NPs. An aqueous solution of 10 mL 0.01 M of NaBH4 and 10 mL 0.1 mM of MB
was mixed in a beaker. After that, a sufficient amount of Fe3O4 NPs (0.4 g/L) was added
separately into the solution, and the UV−Vis spectra of dye degradation were recorded at
regular intervals of time.

3. Results and Discussion
3.1. Formation of Fe3O4 NPs

The formation of Fe3O4 NPs was initially assessed by (a) visual observation, (b) mag-
netic behavior, and (c) UV−Vis spectroscopy. The color of the reaction mixture was changed
from dark brown to black at the time of synthesis and it was the key sign of the forma-
tion of Fe3O4 NPs [29]. Furthermore, the synthesized NPs in the aqueous solution were
attracted to the ferrite ring magnet and deposited at the side of the magnet (Figure 1).
When the ring magnet was rotated, the deposited Fe3O4 NPs were also rotated. This
phenomenon was not observed without the external magnetic field, which specified the for-
mation of Fe3O4 NPs. The chemical reaction of Fe3O4 NPs formation can be hypothesized
by Equations (1) and (2) [12]. In the first step, it was presumed that the phytochemicals
(polyphenols, flavonoids, polycarboxylic acid, etc.), present in the B. ramiflora leaf extract,
acted as chelators to form the iron-phytochemicals complex. The next step was the con-
version of phytochemicals-Fe(OH)2/Fe(OH)3 into spherical-shaped Fe3O4 NPs due to the
addition of NaOH. In a similar study, Yew et al. [15] described that the positively charged
Fe3O4 NPs are surrounded by the negatively charged groups of phytochemicals via the
weak van der Waals forces that stabilize the molecular structure of magnetic particles.

Plant extract + Fe2+(aq) + Fe3+(aq) + H2O(l) −−−−→
Stirring

[
Phytochemicals− Fe2+/Fe3+

]
(aq) (1)[

Phytochemicals− Fe2+

Fe3+

]
(aq) + 8OH−(aq) −−−−−−→

Stirring, ∞∆
[Phytochemicals− Fe3O4](s) ↓ +4H2O(aq) (2)

3.2. UV−Vis Spectral Analysis

Figure 2 shows the UV−Vis spectrum of Fe2+/Fe3+ (1:2), control (Fe2+/Fe3+ + NaOH),
B. ramiflora leaves extract, and synthesized Fe3O4 NPs. The aqueous plant extract exhibited
characteristic peaks at 272 nm and around 213 nm due to the presence of various phy-
tochemicals [12]. The spectrum of only Fe2+/Fe3+ solution (black line) showed a broad
peak around 300 nm, and the peak completely disappeared when NaOH solution was
added to the salt solutions (control reaction, red line). On the other hand, the synthesized
nanoparticles showed continuous absorption in the visible range of 300–500 nm without
any strong absorption peak (green line) compared to the plant extract (blue line), aqueous
Fe2+/Fe3+ (1:2) solution, and control reaction. This phenomenon probably occurred due
to the reaction between iron salts and phytochemicals of plant extracts in the presence of
NaOH solution. However, studies from Dhar et al. [12] and Yew et al. [15] stated identical
UV−Vis spectra for Fe3O4 NPs synthesized using Lathyrus sativus peel extracts and seaweed
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extracts, respectively. By comparison, it was realized that the synthesized nanoparticles
were Fe3O4 NPs.
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Fe3O4 NPs.

3.3. FTIR Analysis

FTIR spectroscopy is an effective tool for the characterization of various functional
groups that are capped on the surface of metallic NPs [15]. The FTIR spectrum of B. rami-
flora leaves and the synthesized magnetite nanoparticles (Figure 3) exhibited characteristic
bands at 3333 cm−1, 2335 cm−1, 1647 cm−1, 1414 cm−1, 1121 cm−1, 973 cm−1, and 703 cm−1.
The peak at 3333 cm−1 represents the existence of the O−H group of phenolic compounds,
which mainly act as reducing agents for the NPs synthesis [28]. The band at 1647 cm−1 is
attributed to the presence of the C=O group of carboxylic acid, which acts as a capping
agent. The bands at 1414 cm−1 and 1121 cm−1 are attributed to the occurrence of aro-
matic amine (N−H bond) [29] and the C−O stretching frequency of phenolic compound,
respectively [15,26]. The peak 703 cm−1 reveals the presence of an aromatic C−H bending
band. The shifting of all FTIR bands denotes the formation of nanoparticles with the
B. ramiflora extract.
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3.4. FESEM and EDS Analyses

Figure 4a depicts the SEM images of Fe3O4 NPs, which were synthesized from aque-
ous leaf extract of Baccurea ramiflora. The observed morphology is semi-spherical with
several agglomerates. These agglomerates are the results of the stearic effect attributed
to the interactivities of active sites on the NPs’ surfaces. Yet, the magnetic interactions
generated by the individual Fe3O4 NPs are also important in explaining these observed
agglomerations [29]. The elemental analysis of Fe3O4 NPs is represented in Figure 4b. In
the EDS image, a prominent peak at ~6.4 keV affirmed the presence of elemental iron (Fe),
while an intense peak at ~0.53 keV ensured the existence of elemental oxygen (O). Similar
types of results were previously reported by Dhar et al. [12]; Sirdeshpande et al. [14]; and
Groiss et al. [13] while synthesizing Fe3O4 NPs using the Lathyrus sativus peel extract, and
the leaf extract of Calliandra haematocephala and Cynometra ramiflora, respectively. However,
the distinctive peak of iron in the range between 6 keV and 7 keV and oxygen in the EDS
spectrum confirmed the formation of Fe3O4 NPs via the green approach.
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3.5. XRD Analysis

The confirmation of the crystalline nature of Fe3O4 NPs was established using powder
XRD. The XRD pattern of Fe3O4 NPs, synthesized using aqueous leaves of B. ramiflora
leaves, is given below in Figure 5. The brag reflection peaks were detected at 2θ values
at 30.1◦, 35.5◦, 43.21◦, 57.01◦, and 62.61◦, respectively indexed to (220), (311), (400), (511)
and (440) planes which exactly matched with JCPDS No. 19−0629. The size of MNPs was
calculated using the Debye–Scherrer formula:

D = Kλ/β cos θ (3)

where D is the crystalline domain size perpendicular to the reflecting planes, K is a shape
factor (0.9), λ is the X-ray wavelength (0.1546 nm), β is the full width at half maximum
(radian) and θ is the diffraction angle (radian) [12,15].
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By applying Equation (3), the approximated crystalline size of NPs was 8.83 nm, which
was calculated from the full-width half-maximum of Fe3O4 at a 311 plane and a diffraction
peak at 2θ = 35.50◦. The finding of this study was consistent with the mean size of 17.72 nm,
16.79 nm, and 18.69 nm observed by Dhar et al. [12], Yew et al. [15], and Kumar et al. [1],
respectively. Equivalently, 13.5 nm, 20.7 nm, and 23.82 nm were also documented for
the Fe3O4 NPs synthesized using Cynara cardunculus leaf extracts [29], the leaf extract of
Zanthoxylum armatum DC [28], and Peltophorum pterocarpum pod extract [39], respectively.
The Miller indices for the 311 planes were estimated based on Equations (4) and (5).

dhkl =
λ

2 sin θ
(4)

a = dhkl ×
√

h2 + k2 + l2 (5)

The interplanar spacing (dhkl) and lattice parameters were observed as 2.536 Å and
8.409 Å, which were consistent with the previously reported magnetic standards
(dhkl = 2.535 Å, a = 8.322) [40]. Furthermore, this data was in good agreement with the
lattice parameter value of 8.377 Å [12], 8.4343 Å [39], and 8.399 Å [14], respectively for the
Fe3O4 NPs (Table 1).
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Table 1. Comparison of Miller indices for Fe3O4 NPs with other similar studies.

Stabilizing Agents dhkl (Å) a (Å) References

Lathyrus sativus peel extract 2.526 8.377 [12]

Calliandra haematocephala leaves extract 2.530 8.399 [14]

Peltophorum pterocarpum pod extract 2.543 8.4343 [29]

Co-precipitation 2.535 8.322 [40]

B. ramiflora leaves extract 2.536 8.409 Present study

3.6. Reduction of MB Dye

The usage of metal nanoparticles as a catalyst can be effective for the reduction of dyes
as they have high reactive activity and specific surface area. The catalytic performance of
Fe3O4 NPs was studied using MB dye. Figure 6a depicts the UV−Vis spectra of MB dye in
the presence of only NaBH4. Interestingly, the absorbance and color of the dye remained
unchanged even after 1 h. The effective depletion of MB dye with NaBH4 is observed in
the presence of Fe3O4 NPs (catalyst) shown in Figure 6b. The maximum absorption of MB
dye at 664 nm is gradually reduced over time, and adverts the catalyst which is to be used
to deplete the MB dye. During the degradation process (Scheme 1), the color of the MB dye
solution became almost faded after 20 min.
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Scheme 1. A possible reaction mechanism of the reduction of MB dye in the presence of NaBH4.

To estimate the rate constant of MB catalytic reduction by Fe3O4 NPs, a kinetic study
was conducted. It is well known that the catalytic reduction of dye molecules follows a
pseudo-first-order reaction [41]. Considering that reaction order, ln (A/A0) vs. time plot
was plotted in Figure 6c. The slope of the fitted line (red) reflects the rate constant of the
MB reduction. The rate constant for the MB was estimated to be 0.067 ± 0.010 min−1.

However, the catalytic efficiency of synthesized Fe3O4 NPs for the reduction of
MB dyes has been compared with previously published similar reports (Table 2), some-
thing which complies with our current study. Overall, the phytochemicals present in the
B. ramiflora leaves extracts could be used as a capping and stabilizing agent for the synthesis
of spherical-shaped Fe3O4 NPs, which could further be used as potential catalysts for the
reduction of MB dyes via an easy and eco-friendly approach.

Table 2. Comparison of catalytic efficacies of Fe3O4 NPs for the reduction of harmful dyes [12].

Model Dyes Size (nm) Shape NPs Dose (g/L) Dye Conc. (mg/L) Time (min) Methods References

MO 20–30 Spherical 0.15 100 60 Adsorption [2]

Methylene blue 23.82 Spherical 2.0 20 45 Adsorption [29]

Bromophenol blue 10–80 Spherical 0.4 20 60 Photocatalytic [42]

Methylene blue 58–78 Spherical 0.6 20 110 Photocatalytic [43]

Methylene blue 20–35 Spherical 0.2 120 30 Catalytic [23]

Methylene blue 17.72 Spherical 0.2 30 32 Catalytic [12]

Methylene blue 8.83 Spherical 0.4 ~32 20 Catalytic Present Study

4. Conclusions

The preparation of Fe3O4 NPs by B. ramiflora plants was performed based on the green
method. The synthesized nanoparticles were initially confirmed by visual observation
and the use of a UV−Vis Spectrophotometer. The formation of Fe3O4 NPs was further
confirmed by the presence of noticeable absorption peaks of FTIR, and the elemental
composition of iron and oxygen in the EDS spectrum. FESEM analysis indicated that most
of the particles were agglomerated and spherically shaped. The magnetite structure was
completely recognized by the XRD and the size of the crystal was estimated to be 8.83 nm.
So, it can be concluded that the synthesis conditions were sufficient for the procurement of
Fe3O4 NPs. Nevertheless, the green synthesis by B. ramiflora leaves extract offers a non-toxic
and eco-friendly alternative for the preparation of Fe3O4 NPs. Furthermore, the prepared
Fe3O4 NPs showed compatible catalytic activity in the methylene blue dye degradation
process. The color of the MB dye solution became almost faded within 20 min and the
rate constant was 0.067 ± 0.010 min−1. These findings signify the utility of Fe3O4 NPs as a
proficient catalyst in wastewater management.
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