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Abstract: Self-sustained motion can take advantage of direct energy extraction from a steady external
environment to maintain its own motion, and has potential applications in energy harvesting,
robotic motion, and transportation. Recent experiments have found that a thermally responsive rod
can perform self-sustained rolling on a flat hot plate with an angular velocity determined by the
competition between the thermal driving moment and the friction moment. A rod with a hollow cross
section tends to greatly reduce the frictional resistance, while promising improvements in thermal
conversion efficiency. In this paper, through deriving the equilibrium equations for steady-state
self-sustained rolling of the thick-walled cylindrical rod, estimating the temperature field on the
rod cross-section, and solving the analytical solution of the thermally induced driving moment, the
dynamic behavior of the thermally driven self-sustained rolling of the thick-walled cylindrical rod is
theoretically investigated. In addition, we investigate in detail the effects of radius ratio, heat transfer
coefficient, heat flux, contact angle, thermal expansion coefficient, and sliding friction coefficient
on the angular velocity of the self-sustained rolling of the thick-walled cylindrical rod to obtain
the optimal ratio of internal and external radius. The results are instructive for the application of
thick-walled cylindrical rods in the fields of waste heat harvesters and soft robotics.

Keywords: thermally responsive; self-sustained; rolling; thick-walled cylindrical rod; energy
conversion efficiency

1. Introduction

A self-sustained motion is a periodic motion continuously driven by a steady external
stimulus, and has recently attracted widespread attention [1–9]. Research on self-sustained
motion has potential applications in various areas, such as energy harvesting [10–12],
subsidiary transport [13,14], self-cleaning systems [15], and small motors [16,17]. The
application of this device can simplify equipment [18], optimize the control [19], and
reduce the energy loss [20].

In recent years, based on various stimulus-responsive polymeric materials, includ-
ing humidity-responsive polymeric materials [21–23], thermally responsive polymeric
materials [24–26], light-responsive liquid crystal polymers [27–29], and chemically respon-
sive hydrogels [30–33], rich motion modes have been proposed [34–38]. For instance,
rolling [39,40], torsion [41,42], vibration [17,43], bending [44,45], and jumping [46–50] have
been proposed according to the theory of self-sustained motion. The main challenges
regarding the theoretical modeling of self-sustained motion are the interactions between
different fields and the intrinsic nonlinearity of the system. Nevertheless, various theo-
retical models have been proposed for self-sustained motion to reveal the mechanism of
self-sustained motion [6,51–54]. The main challenges regarding the theoretical modeling of
self-sustained motion are the interactions between different fields and the intrinsic non-
linearity of the system. Nevertheless, various theoretical models have been proposed for
self-sustained motion to reveal the mechanism of self-sustained motion [6,51–54].
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Recently, the study of self-sustained motion for thermally responsive polymeric ma-
terial has gained plenty of attention [4,17,55]. It has been observed experimentally that a
polymer rod can roll or rotate steadily on a flat hot plate with uniform temperature. During
its steady motion, the driving moment originates from the inhomogeneous expansion of
the thermally responsive polymeric material. The self-sustained motion device can con-
tinuously obtain energy from the steady environment to maintain its motion, converting
thermal energy into mechanical energy. Li et al. developed a thermodynamic model of
a rod rolling on a hot plate and calculated the thermally induced deformation and stress
fields of the rod during steady-state rolling, which also successfully predicted the bistability
of the rod [55]. In addition, Du et al. developed a theoretical model of thermally driven
self-sustained rotation of a hollow torus, and found that for a given heat flux, there exists an
optimal radius ratio maximizing the energy efficiency [17]. Similar to other self-sustained
motions [56–58], self-sustained rolling can harvest energy directly from the environment
to maintain its own motion under the action of steady external stimuli [59–61], which has
considerable application prospects in the field of soft robotics [13,15,62].

Similar to the overturning characteristics of the ring, the central part of the torus
contributes less to the driving moment, but instead increases its friction moment and
reduces the overturning angular velocity of the torus. Other things being equal, a rod
with hollow section is expected to greatly reduce the friction moment and obtain a larger
rolling angular velocity than a solid rod. It is possible for the rod to have an optimum
radius ratio that maximizes the angular velocity and efficiency of the rod rolling, so it
is of great interest to study thick cylindrical rod rolling on hot plate. In contrast to the
hollow torus with constant curvature [17], the curvature of the steadily rolling thick-
walled cylindrical rod varies with parameters such as heat flux, heat transfer coefficient,
etc. Constrained by complex experimental conditions, this paper focuses on theoretical
modelling to theoretically investigate the effects of various system parameters, including the
radius ratio, on the angular velocity of a thermally responsive rod rolling itself on a flat plate;
the effect of the radius ratio on the thermal conversion efficiency of a hollow self-sustaining
rolling rod; and ultimately to predict the optimum internal and external radius ratio.

According to the existing literature, there are many studies on the self-rolling of the
solid rod, but that of the thick-walled cylindrical rod has not been explored. The objective
of this paper is to theoretically analyze the influence of a hollow section on a rod’s self-
rolling, with the aim of playing a guiding role in improving the energy efficiency. The
layout of this paper is as follows. In Section 2, the theoretical model of thermally driven
self-sustained rolling of a thick-walled cylindrical rod on a hot plate is established, the
temperature field on the rod cross-section is studied, and the analytical solution of the
thermally induced driving moment of the rod is derived. In Section 3, the equilibrium
equation for the steady-state self-sustained rolling of a thick-walled cylindrical rod is given.
Meanwhile, the effects of radius ratio, heat transfer coefficient, heat flux, contact angle,
thermal expansion coefficient, and sliding friction coefficient on the rolling angular velocity
of the thick-walled cylindrical rod are investigated in detail. In addition, the effects of
radius ratio and dimensionless heat flux on the energy efficiency are also investigated. In
Section 4, a summary of this study is presented.

2. Thermally Induced Driving Moment of the Thick-Walled Cylindrical Rod
2.1. Temperature Field in the Steadily Rolling Rod

Our model is sketched in Figure 1. As shown in Figure 1a,b, a thick-walled cylindrical
rod with internal radius a, external radius b, and length L was placed on a horizontal hot
plate. For thermal expansion materials, the rod rolled in the concave direction (Figure 1a),
and for thermal shrinkage materials, the rod rolled in the convex direction as shown in
Figure 1b and Video S1. In Video S1, we use the nylon 6 material as an example. Figure 1c
shows the driving moment applied to the thick-walled cylindrical rod and the friction
moment acting on the rod. Figure 1d shows the stresses developed in the section of the
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thick-walled cylindrical rod and the moments in all directions. In Figure 1e, q indicates the
heat flux, Te is the external environment temperature, and θ0 is the half contact angle.
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Figure 1. Schematic of a thermally driven rolling thick-walled cylindrical rod on a hot plate. (a) For
thermal expansion materials, the thermal expansion coefficient CT is positive, and the rod rolls in
a concave direction. (b) For thermal shrinkage materials, the thermal expansion coefficient CT is
negative, and the rod rolls in a convex direction. (c) The driving moment applied to the thick-walled
cylindrical rod and the friction moment acting on the rod. (d) The stresses on the cross-section
of the thick-walled cylindrical rod and the moments in all directions. (e) The cross-section of the
thick-walled cylindrical rod. Considering that the length of the rod is much greater than its thickness,
we assume that the temperature distribution in the rod cross-section remains the same throughout
the length of the rod. An inhomogeneous temperature field in the rod cross-section leads to uniform
thermal expansion/shrinkage, which generates a driving moment Mdrive that equilibrates with the
friction moment Mf and causes the thick-walled cylindrical rod to self-roll.

In this study, our proposed model adopts the direct heating method. Of course, it is
entirely possible to use indirect heating methods such as light or electromagnetic heating, as
in the study of Ref. [14], the self-sustained rolling of solid LCE rod was achieved using light.
Therefore, the light-powered self-sustained rolling of the hollow LCE rod will be a very
worthwhile study. It is worth mentioning that, in order to simplify the problem, we assume
that a thermal insulation layer is coated on the inner wall of the thick-walled cylindrical rod,
and the inner wall of the thick-walled cylindrical rod was seen as an adiabatic boundary.

The coordinate systems in this paper are established with respect to plane, as shown
in Figure 1. The Poisson effect of the thick-walled cylindrical rod and the rod end effect are
neglected in the following analysis of this paper, so as to simplify the problem as a plane
problem. Figure 1c shows the driving moment applied to the thick-walled cylindrical rod
and the friction moment acting on the rod. In addition, since the deformation in this study
is small, we assume that the contact angle is constant in the calculation. The rolling angular
velocity of the thick-walled cylindrical rod at moment t is represented by ω(t). The heat
transfer coefficient, the heat conduction coefficient, the mass density, and the specific heat
of the rod are denoted by h, k, ρ and c, respectively. During the steady-state rolling of the
thick-walled cylindrical rod, we have T(r, θ, t) = T(r, θ) and ω(t) = ω.

For the problem studied in this paper, we assume that except for the small area in
contact with the hot plate, the remaining external surface of the thick-walled cylindrical
rod is cooled by convection, while the internal surface of the rod is adiabatic. Due to
the complexity of the thermal boundary of the rod, the thermal radiation effect has been
neglected in order to simplify the analysis. To facilitate the calculation and analysis, we
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introduce the dimensionless parameters: radius ratio λ = a/b, r = r/b, T = T/Te,
q = qb/kTe, h = hb/k, βm = βmb, and ω = ωb2/ψ. Here, T is the dimensionless
temperature filed, q is the dimensionless heat flux, h is the dimensionless heat transfer
coefficient, βm is the dimensionless air damping, and ω is the dimensionless rolling angular
velocity. In the steady-state rolling, the temperature field distribution in the rod cross-
section can be expressed by following the previous work as [17,63,64]

T(r, θ) = (πh + qθ0)
∞
∑

m=1

R0(λ,h,r)
F0(λ,h)

+2q
∞
∑

n=1

∞
∑

m=1

Rn(λ,h,r)
Fn(λ,h)

sin nθ0
n

cos nθ+ηn(λ,h,ω)sin nθ

1+µ2
n(λ,h,ω)

(1)

where Rn

(
λ, h, r

)
, Fn

(
λ, h
)
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(
λ, h, ω

)
= ωn/β

2
m

(
λ, h
)

are given by

Rn

(
λ, h, r

)
= Ln Jn

(
βmr

)
−VnYn

(
βmr

)
(2)

Fn

(
λ, h
)
= Be

(
λ, h
)
−

Bi

(
λ, h
)

V2
n

K2
n

(3)

where Be

(
λ, h
)

and Bi

(
λ, h
)

are given by

Bi

(
λ, h
)
= β

2
m

(
λ, h
)
−
( n

λ

)2
(4)

Be

(
λ, h
)
= h

2
+ β

2
m

(
λ, h
)
− n2 (5)

with βm

(
λ, h
)

being the positive root of the following characteristic equation [64]

KnLn −VnWn = 0 (6)

in which Kn, Ln, Vn and Wn are [64]

Kn =
n
λ

Jn
(

βmλ
)
− βm Jn+1

(
βmλ

)
(7)

Ln =
(

n + h
)

Yn
(

βm
)
− βmYn+1

(
βm
)

(8)

Vn =
(

n + h
)

Jn
(

βm
)
− βm Jn+1

(
βm
)

(9)

Wn =
n
λ

Yn
(

βmλ
)
− βmYn+1

(
βmλ

)
(10)

with Jn being the first-class Bessel functions, and Yn the second-class Bessel functions.
From the accessible experiments [14,42], the typical values of material properties and

geometrical parameters available for the experiments are presented in Table 1, and the
estimates of dimensionless parameters are listed in Table 2. The deformation of the thick-
walled cylindrical rod for the given parameters in this paper is small. Figure 2a–d shows
the temperature fields on the cross section of a thick-walled cylindrical rod in steady-state
rolling for different combinations of rolling angular velocity ω and heat flux q. We set
h = 0.3, λ = 0.3, and θ0 = 0.2. For a given heat flux q, the temperature difference in the
rod cross-section increases and then decreases with the increase in rolling angular velocity
ω, and the temperature field tends to be uniform. In contrast, for a given rolling angular
velocity ω, the temperature difference in the rod cross-section increases with the increase in
heat flux q, and the non-uniformity of the temperature field increases.
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Table 1. Material properties and geometric parameters.

Parameter Definition Value Unit

Te
External environment

temperature 10 ◦C

a Internal radius 0∼10−3 m
b External radius 10−3 m
h Heat transfer coefficient 5∼10 W/m2/◦C
ψ Thermal diffusion coefficient 1.2× 10−6 m2/s
k Heat conduction coefficient 0.05∼0.1 W/m/◦C
q Heat flux 0 ∼ 35× 103 W/m2

ω Rolling angular velocity 0∼4π s−1

L Rod length 0.2 m
CT Thermal expansion coefficient 5× 10−4 1/◦C
E Elastic modulus of the material 5 MPa
ρ Mass density 1.3× 103 kg/m3

g Gravitational acceleration 10 m/s2

Cf Sliding friction coefficient 0.1∼0.5

Table 2. Dimensionless parameters.

Parameter Definition Expression Value

q Dimensionless heat flux q = qb/kTe 0∼45

h
Dimensionless heat transfer

coefficient h = hb/k 0.1∼0.8

λ Radius ratio λ = a/b 0∼1

ω
Dimensionless rolling

angular velocity ω = ωb2/ψ 0∼10

CT
Dimensionless thermal
expansion coefficient CT = CTTe 5× 10−3

Ω Dimensionless parameter Ω = Cfρgr2/E
(
qCTsin θ0

)2 0∼50

Figure 2e–h depicts the temperature fields on the cross section of a thick-walled cylin-
drical rod in steady-state rolling for different combinations of λ and h. In the computation,
we set ω = 4, q = 35, and θ0 = 0.2. For a given heat transfer coefficient h, along with the
increase in radius ratio λ of the thick-walled cylindrical rod, we witness a slight increase in
the temperature difference on the rod cross-section, and the temperature field tends to be
inhomogeneous. This is because the smaller the radius ratio λ, the more unfavorable the
heat transfer inside the thick-walled cylindrical rod, leading to a decrease in temperature
in the low-temperature area and an increase in temperature in the high-temperature area.
Additionally, for a given radius ratio λ, the temperature difference of the thick-walled cylin-
drical rod cross-section decreases with the increase in heat transfer coefficient h, and the
temperature field tends to be homogeneous. This is mainly owing to the fact that a larger
heat transfer coefficient is conducive to heat transfer, resulting in a decrease in temperature
in the high temperature region of the cross section and an increase in temperature in the
low temperature region, so that the temperature field tends to be homogeneous.
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Figure 2. Temperature fields on the cross section of a thick-walled cylindrical rod in steady-state
rolling for different combinations of rolling angular velocity ω and heat flux q: (a) ω = 4, q = 20,
(b) ω = 8, q = 20, (c) ω = 4, q = 35, (d) ω = 8, q = 35, and different combinations of radius
ratio λ and heat transfer coefficient h: (e) λ = 0.1, h = 0.3, (f) λ = 0.3, h = 0.3, (g) λ = 0.1,
h = 0.6, (h) λ = 0.3, h = 0.6. We set h = 0.3, λ = 0.3, and θ0 = 0.2 in a–d, and ω = 4, q = 35 and
θ0 = 0.2 in e–h. In this case, the rolling velocity of the rod is one of the input parameters. When the
thick-walled cylindrical rod rolls steadily, the non-uniformity of the temperature field on the cross
section decreases with the increase in rolling angular velocity ω and heat transfer coefficient h, and
increases with the increase in heat flux q and radius ratio λ.
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2.2. Driving Moment for the Rolling of the Thick-Walled Cylindrical Rod

In this study, we assume that the thermally induced strain εT is proportional to the
temperature change on the rod cross-section for the purpose of analysis. The thermally
induced strain is given by

εT(r, θ) = CT[T(r, θ)− Te] (11)

where CT is the thermal expansion coefficient of the material. For thermal expansion
material, CT is positive, while for thermal shrinkage material, CT is negative.

Through applying the linear thermoelastic model, we can calculate the thermal stress
σ(r, θ) on the rod cross-section along its normal direction as

σT(r, θ) = EεT(r, θ) (12)

where E is the elastic modulus of the material. The thermal bending moment of the rod
around z-axis on the cross section can be described as

MzT =
∫ b

a

∫ 2π

0
σT(r, θ)rsin θrdrdθ (13)

Considering that the rod can bend freely in the lateral plane, the thermally driven
lateral curvature can be calculated as

κz =
MzT(r, θ)

EI
(14)

During the steady-state rolling of the thick-walled cylindrical rod, the total strain on
the rod cross-section can be expressed as

ε(r, θ) = −κzrsin θ (15)

Thus, the axial stress on the rod cross-section can be obtained as,

σy(r, θ) = E[ε(r, θ)− εT(r, θ)] (16)

and the direction of the axial stress on the cross-section of the rod is shown in Figure 1d.
The total bending moment of the rod around x-axis on the cross section can be de-

scribed as

Mx =
∫ b

a

∫ 2π

0
σy(r, θ)rcos θrdrdθ (17)

Therefore, the total net moment applied on the thick-walled cylindrical rod can be
expressed as [55]

Mdrive = κz MxL (18)

For the convenience of computational analysis, we introduce CT = CTTe, σ = σ/E,
Mx = Mx/Eb3, Mdrive = Mdrive/Eb2, and κz = κzb. By combining Equations (1) and
(11)–(18), the driving moment of a thick-walled cylindrical rod in a steady rolling process
can be rewritten as

Mdrive =
256πL

(
qCTsin θ0

)2

(1− λ4)

∞

∑
m=1

η1

 P
(

λ, h
)

(
1 + η2

1
)

F1

(
λ, h
)
2

(19)
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The details of the derivation of Equation (19) are given in the Appendix A. In Equation (19),
P
(

λ, h
)

can be expressed as

P
(

λ, h
)
= λ2 J2

(
βmλ

)
Y2
(

βmλ
)

+J2
(

βm
){ βm

2

[
MeijerG

({{
− 1

2

}
, {−1}

}
,
{{
− 1

2 , 1
2

}
,
{
− 3

2 ,−1
}}

, β
2
m
4

)
−λ3MeijerG

({{
− 1

2

}
, {−1}

}
,
{{
− 1

2 , 1
2

}
,
{
− 3

2 ,−1
}}

, β
2
m
4

)]
−Y2

(
βm
)} (20)

with MeijerG
[{
{s1 . . . sn},

{
sn+1 . . . sp

}}
,
{
{t1 . . . tm},

{
sm+1 . . . sq

}}
, z
]

being defined as
the MeijerG function.

Figure 3 reflects the influence of ω and λ of the thick-walled cylindrical rod on the
lateral curvature κz. In the calculation, we set h = 0.3, L = 10, CT = 5× 10−3, q = 30 and
θ0 = 0.2. It is apparent from the diagram that for a given radius ratio λ, the lateral curvature
κz increases first and then decreases with the increasing rolling angular velocity ω. This is
because the inhomogeneity of the steady-state temperature field in the rod cross-section
increases and then decreases with the increase in rolling velocity (as shown in Figure 2).
Meanwhile, the thermal bending moment and the thermally driven lateral curvature are
positively correlated with the inhomogeneity of the temperature field (which can be derived
from Equations (13) and (14)). For a given rolling angular velocity ω, in the process of
enlarging the radius ratio λ, the lateral curvature κz shows a trend of rising first and then
falling. This is because the inhomogeneity of the temperature field in the rod cross-section
increases slightly with the increase in λ (as shown in Figure 2). It is easily concluded from
the figure that under a given rolling angular velocity ω, there is an optimal radius ratio
for the thick-walled cylindrical rod that maximizes the lateral curvature κz. In addition,
it is worth mentioning that the dimensionless heat transfer coefficient h can influence the
lateral curvature κz of the thick-walled cylindrical rod by affecting the temperature field of
the rod cross-section.
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Figure 3. The effects of rolling angular velocity ω and radius ratio λ of the thick-walled cylindrical
rod on the lateral curvature κz. In the computation, we set h = 0.3, L = 10, CT = 5× 10−3, q = 30
and θ0 = 0.2. In this case, the rolling velocity of the rod is one of the output parameters. For a given
angular velocity ω, there exists a radius ratio λ corresponding to an optimal lateral curvature κz.

Figure 4 illustrates the effects of the rolling angular velocity ω and the radius ratio λ
of the thick-walled cylindrical rod on the driving moment Mdrive. In the computation, we
set: h = 0.3, L = 10, CT = 5× 10−3, q = 30 and θ0 = 0.2. As can be seen from the figure,



Micromachines 2022, 13, 2035 9 of 17

for a given radius ratio λ, the driving moment Mdrive increases and then decreases with the
increase in rolling angular velocity ω. This is because the inhomogeneity of the temperature
field of the rod cross-section increases and then decreases as the angular velocity increases,
as shown in Figure 2, which ultimately leads to an increase and then a decrease in the
driving moment Mdrive. For a given rolling angular velocity ω, the driving moment Mdrive
first increases and then decreases with the increase in radius ratio λ. This is because the
temperature field in the rod cross-section becomes more nonuniform as the radius ratio λ
grows larger. At a smaller radius ratio, the increased driving moment Mdrive due to the
increase in temperature field inhomogeneity is large enough to compensate for the loss of
driving moment Mdrive due to the reduction in the rod cross-section. For a given rolling
angular velocity ω, there exists an optimal radius ratio of the thick-walled cylindrical rod
corresponding to a maximum driving moment. However, we have to note that the actual
maximum rolling angular velocity is dependent on the competition between the driving
moment and the friction moment.
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Figure 4. The effects of rolling angular velocity ω and radius ratio of the thick-walled cylindrical
rod λ on the driving moment Mdrive. In the computation, we set: h = 0.3, L = 10, CT = 5× 10−3,
q = 30 and θ0 = 0.2. In this case, the rolling velocity of the rod is one of the output parameters. For a
given angular velocity ω, there exists an optimal radius ratio λ corresponding to a maximum driving
moment Mdrive.

3. Self-Rolling of the Thick-Walled Cylindrical Rod on a Hot Plate

Considering the driving moment in Equation (19), the equilibrium equation during
steady rolling of the thick-walled cylindrical rod is further derived in this section. Then, the
effects of radius ratio, thermal expansion coefficient, heat flux, contact angle, heat transfer
coefficient and sliding friction coefficient on the rolling angular velocity of the thick-walled
cylindrical rod are studied in detail, and the critical value for triggering the self-sustained
rolling is found. Furthermore, the dependence of the energy efficiency on the radius ratio
is also investigated.

3.1. Equilibrium Equations

During the steady rolling, the surface of the thick-walled cylindrical rod is also sub-
jected to sliding friction between the rod and the hot plate. The magnitude of the friction
force on the thick-walled cylindrical rod can be expressed as

Ff = Cfρgπ
(

b2 − a2
)

L (21)
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where Cf denotes the sliding friction coefficient between the rod and the hot plate, and
g is the gravitational acceleration. Moreover, the friction moment on the thick-walled
cylindrical rod can be expressed as

Mf = Ffb (22)

During the steady-state rolling, the driving moment is equal to the friction moment.
By combining Equations (19) and (22) and separating the fixed parameters, we can derive
the equilibrium equation for the steady-state rolling as

Cfρgb

E
(
qCTsin θ0

)2 = F
(

λ, h, ω
)

(23)

where

F
(

λ, h, ω
)
=

256
(1− λ2)(1− λ4)

∞

∑
m=1

η1

[
P
(

βm
)(

1 + η2
1
)

F1
(

βm
)]2

(24)

It can be observed from Equation (23) that although there are many parameters related
to the angular velocity ω, including Cf, ρ, b, E, q, CT, θ0, and h, we only need to analyze
the effects of three parameters, namely radius ratio λ, heat-transfer coefficient h and
dimensionless parameter Ω = Cfρgr2/E

(
qCT sin θ0

)2, on the rolling angular velocity ω.

3.2. Angular Velocity of the Self-Rolling of Thick-Walled Cylindrical Rod

Figure 5 shows the effect of dimensionless parameter Ω on the rolling angular velocity
ω of the thick-walled cylindrical rod for different radius ratios λ. In the computation,
we set h = 0.3. As can be seen from the diagram, there is a critical Ωcrit for maintain-
ing the steady-state rolling of the thick-walled cylindrical rod, and Ωcrit increases with
the increase in radius ratio λ. Obviously, the static state of the thick-walled cylindrical
rod is always a steady state. When Ω increases to a critical value, the rod has another
high-velocity steady state. Between static state and high velocity state, the rod has an
intermediate velocity state, which is an unstable state because a perturbation of increasing
(decreasing) the speed of the rod increases (decreases) its driving moment, leading to fur-
ther increase or decrease in the rolling speed of the rod [55]. From Equations (21)–(23) and
Ω = Cfρgr2/E

(
qCT sin θ0

)2, it can been seen that the dimensionless parameter Ω increases
as the friction moment Mf increases or as the driving moment Mdrive decreases, so that the
rolling angular velocity decreases.

Taking Ω = Cfρgr2/E
(
qCT sin θ0

)2 into consideration, we can also conclude that the
rolling angular velocity ω will increase with the increases in heat flux q, contact angle θ0,
thermal expansion coefficient CT, external radius b, and elastic modulus of the material E,
and that conversely, it will decrease with increases in sliding friction coefficient Cf and mass
density ρ. The effects of these parameters on the rolling angular velocity of the thick-walled
cylindrical rod are consistent with that of the solid rod on a hot plate [7,55].

Figure 6 presents the effect of heat transfer coefficient h on the rolling angular velocity
ω of the thick-walled cylindrical rod for different radius ratios λ. In the computation, we
set Ω = 4. As observed from the plots, there is a critical heat transfer coefficient hcrit for
keeping the steady rolling of the thick-walled cylindrical rod, and hcrit increases with the
increase in radius ratio λ. It is obvious that the static state of the thick-walled cylindrical
rod is always a stable state. When the heat transfer coefficient h approaches the critical
value, the rod presents another high-velocity steady state. Between the static state and
high velocity, the rod has an intermediate rolling velocity, behaving as an unstable state.
When the thick-walled cylindrical rod is rolling at a high velocity, under the given radius
ratio λ, the increase in heat transfer coefficient h causes the rolling angular velocity ω to
increase first and then decrease. It is well understood from a physical point of view that
for a smaller heat transfer coefficient h, the inhomogeneity of the steady-state temperature
field in the rod cross-section increases with the increase in heat transfer coefficient h.
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Figure 5. The effect of dimensionless parameter Ω on the rolling angular velocity ω of the thick-
walled cylindrical rod for h = 0.3. The rolling angular velocity ω decreases with the increase in Ω.
There is a critical Ωcrit for maintaining the steady-state rolling of the thick-walled cylindrical rod, and
Ωcrit increases with the increase in radius ratio λ.
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Figure 6. The effect of heat transfer coefficient h on the rolling angular velocity ω of the thick-walled
cylindrical rod for Ω = 4. The rolling angular velocity ω increases first and then decreases with
the increase in heat transfer coefficient h. There is a critical transfer coefficient hcrit for keeping
the steady-state rolling of the thick-walled cylindrical rod, and hcrit increases with the increase in
radius ratio λ.

When the heat transfer coefficient h is large, the inhomogeneity of the steady-state
temperature field decreases with the increase in heat transfer coefficient h. For a given
heat transfer coefficient h, the rolling angular velocity ω increases with the increase in
radius ratio λ. This is because when the radius ratio λ increases, the heat transfer inside
the thick-walled cylindrical rod is more favorable, and in turn the rolling angular velocity
ω is greater. For a larger heat transfer coefficient h, the temperature difference on the rod
cross-section decreases with the increase in heat transfer coefficient h, and the temperature
field tends to be homogeneous.

Figure 7 shows the effect of radius ratios λ on the rolling angular velocity ω of the
thick-walled rod for different heat fluxes q. In the computation, we set h = 0.3. As can be
seen from the diagram, a critical radius ratio λcrit exists to maintain the steady rolling of
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the thick-walled cylindrical rod, and λcrit decreases as the heat flux q increases. It can be
clearly seen that static state of the rod is always a stable state. When the radius ratio λ is
increased towards a critical value, there is another stable state of the rod with high velocity.
Between static and high velocity, there is an intermediate rolling velocity of the rod, which
is an unstable state. For the thick-walled cylindrical rod rolling at high velocity, under a
given heat flux q, the rolling angular velocity ω increases with the increase in radius ratios
λ. This is due to the fact that the larger the radius ratio λ, the more conducive it is to the
heat transfer inside the rod, the larger the rolling angular velocity ω.
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Figure 7. The effect of radius ratio λ on the rolling angular velocity ω of the thick-walled cylindrical
rod for h = 0.3. The rolling angular velocity ω increases with the increase in radius ratio λ. There is a
critical radius ratio λcrit for keeping the steady rolling of the thick-walled cylindrical rod, and λcrit

decreases with the increase in heat flux q.

For a given radius ratio λ, the rolling angular velocity ω increases with the increase
in heat flux q. The reason for this phenomenon is that with the increase in heat flux q,
the temperature difference on the rod cross-section increases, and the non-uniformity of
temperature field on the cross section increases, eventually resulting in the increases in
driving moment Mdrive and rolling angular velocity ω.

3.3. Energy Efficiency of the Self-Rolling Thick-Walled Cylindrical Rod

The self-rolling system studied in this paper has the potential to be applied as a
thermally driven motor or energy harvester. In the above theoretical model, the thick-
walled cylindrical rod compensates the energy dissipated by damping through absorbing
the thermal energy from the environment. If it is used as a thermally driven motor or
energy harvester, we can regard the work performed by the damping force as the effective
work output of the system. In the steady rolling of the thick-walled cylindrical rod, the
input thermal power can be expressed in terms of heat flux density as Pin = 2qθ0Lb
and the effective power of the rod as Pe = Mfω. Combining Equations (21) and (22),
the energy efficiency of a self-rolling thick-walled cylindrical rod is obtained from the
following formula:

η =
Cfρgπ

(
b2 − a2)ω

2qθ0
(25)

It can be clearly seen from Equation (25) that the energy efficiency η is related to
many parameters, including Cf, ρ, b, a, q, and θ0. In the following, we take the combina-
tion of radius ratio λ and dimensionless heat flux q as an example to study the energy
efficiency of the self-rolling thick-walled cylindrical rod. The typical values of parame-
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ters are Te = 10◦C, h = 0.3W/m2/K, q = 20∼ 35kW/m2, k = 0.05W/m/K, b = 10−3m,
θ0 = 0.2, κ = 0.025m−1, g = 10m/s2, ψ = 1.2× 10−6m2/s, E = 5MPa, CT = 5× 10−4/◦C,
ρ = 1.3× 103kg/m3, and Cf = 0.45.

Figure 8 illustrates the dependence of energy efficiency η on the radius ratio λ and
dimensionless heat flux q. The parameters are set: h = 0.3, κz = 0.025, CT = 5× 10−3,
Cf = 0.45 and θ0 = 0.2. The results show that for a stationary thick-walled cylindrical rod,
the energy efficiency of the rod is zero. When the thick-walled cylindrical rod undergoes a
steady-state rolling, for a given heat flux q, the energy efficiency increases first and then
gradually decreases along with the increase in radius ratio. There exists an optimal radius
ratio maximizing the energy efficiency of the rod, and the optimal radius ratio presents
a certain decrease as the heat flux increases. This results from the competition between
the kinetic energy and the heat dissipation, which both increase with the increase in the
radius ratio. Therefore, the radius ratio of the thick-walled cylindrical rod is not as large
as possible. In practical applications, it is necessary to seek a balance between the rolling
angular velocity and the energy efficiency.
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Figure 8. The dependence of energy efficiency η on the radius ratio λ and dimensionless heat flux
q. The parameters are h = 0.3, κz = 0.025, CT = 5× 10−3, Cf = 0.45, and θ0 = 0.2. There exists an
optimal radius ratio that maximizes the energy efficiency of the thick-walled cylindrical rod, and the
optimal radius ratio decreases as the heat flux increases.

Table 3 lists the optimal radius ratio, the maximum energy efficiency of the thick-
walled cylindrical rod, the energy efficiency of the solid rod and the energy efficiency
improvement of the thick-walled cylindrical rod for three different heat fluxes q in Figure 8.
As shown in Table 3, q = 30 corresponds to the maximum energy efficiency improvement,
i.e., the increase from 0% to 16.95%. Overall, the results of this study show that, in practical
applications, we can improve energy efficiency by adjusting the radius ratio of thick-walled
cylindrical rod.

Table 3. Energy efficiency improvement of the thick-walled cylindrical rod.

Dimensionless
Heat Flux q

Optimal Radius
Ratio λ

Energy
Efficiency of

Solid Rod

Maximum
Energy

Efficiency

Energy
Efficiency

Improvement

35 0.31 16.4% 17.51% 1.11%
30 0.49 0%(static) 16.95% 16.95%
20 0.73 0%(static) 16.67% 16.67%
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4. Conclusions

The study of self-sustained motion based on thermally responsive polymer materials
has potential applications in soft robot, energy harvesting, etc. In this paper, by establishing
a theoretical model of thermally driven self-sustained rolling of the thick-walled cylindrical
rod, the effects of radius ratio, heat transfer coefficient, heat flux, contact angle, thermal
expansion coefficient, and sliding friction coefficient on the rolling angular velocity of the
thick-walled cylindrical rod were studied in detail. The main conclusions of this paper
are now summarized as follows: (1) Similarly to the solid rod self-rolling on a hot surface,
the thick-walled cylindrical rod has two stable states of static state and high-velocity
rolling state, and one unstable state at intermediate rolling velocity. When the thick-walled
cylindrical rod is in the high-velocity rolling state, the rolling velocity of the rod increases
with the increase in radius ratio, and shows the same increasing trend with the increase
in heat flux. (2) Moreover, the rolling velocity first increases and then decreases with the
increase in heat transfer coefficient. (3) Especially, there exists an optimal radius ratio
that maximizes the thermal conversion efficiency for a given heat flux. To summarize, the
results of this paper are instructive for the application of thick-walled cylindrical rod in the
fields of robot mobility and waste heat harvester.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13112035/s1, Video S1: Self-sustained rolling of a nylon fiber
on a hot surface.
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Appendix A

By substituting Equations (1), (11) and (12) into Equation (13), we have

Mz =
∫ b

a

∫ 2π

0

ε− CT


(πh + qθ0)

∞
∑

m=1

R0(λ,h,r)
F0(λ,h)

+2q
∞
∑

n=1

∞
∑

m=1

Rn(λ,h,r)
Fn(λ,h)

sin nθ0
n

cos nθ+ηn(λ,h,ω) sin nθ

1+µ2
n(λ,h,ω)


r sin θrdrdθ (A1)

After simplifying Equation (A1), the total bending moment of the rod around Z-axis
on the cross section is

Mz = 2πq sin θ0CT

∞

∑
m=1

∫ 1

λ

R1(βm, r)
F1(βm)

[
1 + η2

1(βm)
] r2dr (A2)

By combining Equations (A2) and (14), the analytical solution of the thermally driven
lateral curvature can also be expressed as

κz =

2πqsin θ0CT
∞
∑

m=1

∫ 1
λ

R1(βm,r)
F1(βm)[1+η2

1(βm)]
r2dr

EI
(A3)

https://www.mdpi.com/article/10.3390/mi13112035/s1
https://www.mdpi.com/article/10.3390/mi13112035/s1
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Similarly, by substituting Equations (1), (11) and (16) into Equation (17) and simpli-
fying, the analytical solution for the total bending moment of the rod around x-axis can
be obtained as

Mx = 2πqsin θ0CT

∞

∑
m=1

∫ 1

λ

R1(βm, r)
F1(βm)

[
1 + η2

1(βm)
] r2dr (A4)

Equation (19) can be obtained by substituting Equations (A3) and (A4) into Equation (18)
then integrating.
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