
Citation: Liu, P.; Wei, Z.; Yu, C; Chen,

S. HybriDC: A Resource-Efficient

CPU-FPGA Heterogeneous

Acceleration System for Lossless Data

Compression. Micromachines 2022, 13,

2029. https://doi.org/10.3390/

mi13112029

Academic Editor: Xiaokun Yang

Received: 10 October 2022

Accepted: 16 November 2022

Published: 19 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

HybriDC: A Resource-Efficient CPU-FPGA Heterogeneous
Acceleration System for Lossless Data Compression
Puguang Liu, Ziling Wei, Chuan Yu and Shuhui Chen *

College of Computer Science and Technology, National University of Defense Technology,
Changsha 410073, China
* Correspondence: shchen@nudt.edu.cn

Abstract: Lossless data compression is a crucial and computing-intensive application in data-centric
scenarios. To reduce the CPU overhead, FPGA-based accelerators have been proposed to offload com-
pression workloads. However, most existing schemes have the problem of an imbalanced resource
utilization and a poor practicability. In this paper, we propose HybriDC, an adaptive resource-efficient
CPU-FPGA heterogeneous acceleration system for lossless data compression. Leveraging comple-
mentary advantages of the heterogeneous architecture, HybriDC provides a universal end-to-end
compression acceleration framework with application compatibility and performance scalability. To
optimize the hardware compression kernel design, we build a performance–resource model of the
compression algorithm taking into account the design goal, compression performance, available
resources, etc. According to the deduced resource-balanced design principle, the compression al-
gorithm parameters are fine-tuned, which reduces 32% of the block RAM usage of the LZ4 kernel.
In the parallel compression kernel implementation, a memory-efficient parallel hash table with an
extra checksum is proposed, which supports parallel processing and improves the compression ratio
without extra memory. We develop an LZ4-based HybriDC system prototype and evaluate it in
detail. Our LZ4 compression kernel achieves state-of-the-art memory efficiency, 2.5–4× better than
existing designs with comparable compression ratios. The evaluation of total resource utilization and
end-to-end throughput demonstrates the excellent scalability of HybriDC. In power efficiency, the
four-kernel HybriDC prototype achieves a threefold advantage over the standard LZ4 algorithm.

Keywords: lossless data compression; CPU-FPGA heterogeneous acceleration; resource efficiency;
performance modeling; LZ4

1. Introduction

Nowadays, data are rapidly generated all the time. Large volumes of data bring
significant overheads in data transmission, storage, and processing. As an effective way
to reduce the data size, lossless data compression has been widely applied in data-centric
scenarios [1–3]. However, for any lossless data compression algorithm, its throughput,
compression ratio, and computing overhead must be traded off against one another. High-
throughput algorithms will inevitably demand heavy computing overhead. There is a
growing interest in offloading the computing-intensive workload to a field-programmable
gate array (FPGA) [4–7]. Compared to CPU-based designs [3,8], FPGA accelerators can
achieve higher throughput by better parallel pipeline processing. Thanks to reconfigurabil-
ity, FPGA-based designs are more adaptable than the ASIC-based designs [9,10], which can
save much time and investment cost. As a possible trend beyond Moore’s law, the CPU-
FPGA heterogeneous architecture has become attractive in computing acceleration for its
flexibility and potential performance [11–13].

Prior studies proposed many FPGA-based acceleration designs for lossless data com-
pression [14–17]. These designs aimed to realize a high-throughput hardware compres-
sion kernel. However, the hardware resource usage and the design practicability were

Micromachines 2022, 13, 2029. https://doi.org/10.3390/mi13112029 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13112029
https://doi.org/10.3390/mi13112029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13112029
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13112029?type=check_update&version=1

Micromachines 2022, 13, 2029 2 of 19

sometimes ignored. The main on-chip resources of FPGAs include lookup tables (LUTs),
flip-flops (FFs), and block RAMs. These resources are distributed in fixed numbers and
proportions on the FPGA chip. As shown in Table 1, most data compression accelera-
tion designs have the problem of an imbalanced resource utilization. The block RAM is
consumed much more than other resources. The most-consumed resource becomes the
bottleneck of throughput enhancement as in the wooden barrel theory. Some designs
choose to modify the original compression format to facilitate hardware design [15]. In
addition, most existing studies only focus on designing acceleration kernels but ignore
supporting software. These drawbacks will directly degrade the design practicability.
Moreover, in practical applications, various scenarios may demand different algorithms,
compression performance, resource usage, processing modes, etc.

Table 1. Utilization proportions of various resources in different compression accelerators. The
consumption proportion of the block RAM is significantly larger than those of other resources in
most schemes.

Scheme FPGA Chip 1 LUT FF Block RAM

Bartik’s [14] XC7A100T (63,400, 126,800, 135) 1.21% 0.30% 12.59%
MLZ4C [15] XC7K325T (203,800, 407,600, 445) 0.28% 0.23% 15.51%
Benes’ [16] XCKU040 (242,400, 484,800, 600) 5.81% 0.58% 13.67%
Ledwon’s [17] XCVU3P (394,080, 788,160, 720) 17.54% 6.31% 36.18%
HybriDC kernel 10AX048H2 (367,180, 734,360, 1431) 3.36% 0.56% 5.1%

1 The numbers of available LUTs, FFs, and block RAMs in FPGA chips are given in brackets.

To overcome the above challenges, in this paper, we propose HybriDC, an adaptive
resource-efficient CPU-FPGA heterogeneous acceleration system for lossless data com-
pression. HybriDC provides a universal end-to-end compression acceleration framework
for various compression methods. In HybriDC, an algorithm fine-tuning method based
on performance–resource modeling is proposed to optimize the hardware compression
kernel design. To improve the resource efficiency of compression kernels, a novel memory-
efficient parallel hash table with an extra checksum is proposed in HybriDC. In particular,
we develop an end-to-end compression system prototype of HybriDC based on the LZ4
compression algorithm [18]. The design goal of this system prototype is to achieve the
highest throughput with the given available resources, while ensuring the compression
ratio is better than that of compression software. The HybriDC system is adaptable to most
compression algorithms and not limited to LZ4. In summary, our contributions include the
following:

• We present a universal end-to-end compression acceleration framework in HybriDC.
It defines how to assign the compression workloads to the CPU-FPGA heterogeneous
platform. The proposed heterogeneous architecture ensures application compatibility
and performance scalability.

• By a hardware–software codesign, we build a performance–resource model of the com-
pression algorithm concerning the design goal, compression performance, hardware
resources, etc. Based on the model, we deduce the resource-balanced design principle
and fine-tune the compression kernel parameters. As a result, the block RAM usage of
the LZ4 kernel is reduced by 32%.

• According to the resource-balanced principle, we use less-consumed logic resources to
increase the degree of parallelism of the compression kernel. In particular, we propose
a memory-efficient parallel hash table enhanced with a checksum, which can improve
the bandwidth and compression ratio without extra memory overhead.

• We develop an end-to-end compression system prototype of HybriDC and evaluate
it in detail. Compared to previous designs with comparable compression ratios, our
compression kernel achieves a 2.5–4× improvement in memory efficiency. Based
on balanced resource utilization, the system prototype obtains a good performance

Micromachines 2022, 13, 2029 3 of 19

scalability. The four-kernel system prototype achieves a threefold increase in power
efficiency over standard software.

The remainder of this paper is organized as follows. Section 2 presents the heteroge-
neous compression acceleration framework of HybriDC. Section 3 introduces the algorithm
fine-tuning method based on performance–resource modeling. The hardware compression
kernel design of HybriDC is exhibited in Section 4. The evaluation results of HybriDC
are reported in Section 5. Section 6 reviews related work. Our conclusions are drawn in
Section 7.

2. Heterogeneous Compression Acceleration Framework

The heterogeneous compression acceleration framework of HybriDC defines how to
assign the end-to-end compression task to the CPU-FPGA heterogeneous platform. In addition,
it provides a scalable heterogeneous architecture for high-performance data compression.

2.1. Compression Task Assignment on Heterogeneous Platforms

Different parts of heterogeneous platforms are good at different workloads. The rea-
sonable compression task assignment can improve the resource efficiency of heterogeneous
platforms. This subsection analyzes the end-to-end lossless data compression workflow
and explains how to assign various compression workloads based on heterogeneous hard-
ware complementarity.

2.1.1. End-to-End Lossless Data Compression Overview

As shown in Figure 1, most lossless data compression methods have the same essential
workflow consisting of three stages. First, raw data are divided into fixed-size blocks, which
can facilitate parallel computing. Then, raw blocks are compressed into compressed blocks
by the compression kernel. The compressed block consists of two parts: the block header,
which records block information such as the compressed block size and the compressed
segments, which are the basic compressed data. Finally, these compressed blocks are
packed in order. A compression header is attached in front of the compressed data, which
contains some key information, such as the compression type and the total compressed size.

Dividing

Data

Compressing

Blocks

Packing

Compressed

Blocks

Raw

Data

Raw

Blocks

Compressed

Blocks

Compressed

Data
Compression

Header

Block

Header

Compressed

Segments

CPU FPGA CPU

Figure 1. The essential workflow of end-to-end lossless data compression, and the heterogeneous
workloads’ assignment strategy of HybriDC.

2.1.2. Workloads Assignment based on Hardware Complementarity

Different parts of the CPU-FPGA heterogeneous platform are highly complementary.
FPGAs contain plenty of programmable computational resources, which can be customized
into high-performance processing units. However, due to the limited on-chip memory size
(usually less than 100 MB), it is hard for FPGAs to implement functions requiring much
memory space. Instead, CPUs are equipped with abundant memory, while they are not
good at parallel fine-grained processing.

Based on hardware complementarity, various workloads of end-to-end data compres-
sion are assigned to the CPU part and the FPGA part in HybriDC. Specifically, the block
compression workload is computing-intensive and parallelizable. Thus, the FPGA is re-

Micromachines 2022, 13, 2029 4 of 19

sponsible for offloading the block compression workload. In addition, dividing raw data
and packing compressed blocks require significant memory space for buffering the raw and
compressed data. Therefore, these two workloads are assigned to the CPU part in HybriDC.

2.2. Scalable Heterogeneous Architecture for High-Performance Data Compression

By a software–hardware codesign, the heterogeneous architecture of HybriDC can
promise application compatibility and performance scalability. As displayed in Figure 2,
the FPGA part and the CPU part are connected by the PCIe interface, which is compatible
with commodity servers. The input data are read from the host memory through PCIe with
direct memory access (DMA). Similarly, the output data are directly written to the host
memory via DMA after being compressed.

Compression kernel

FPGA

In
p

u
t

s
c
h

e
d

u
le

r

Input

buffer

Input

buffer

Input

buffer

Compression kernel

Compression kernel

Output

buffer

Output

buffer

Output

buffer

Data

reshaper

Data

reshaper

Data

reshaper

Data

reshaper

Data

reshaper

Data

reshaper

O
u

tp
u

t
s
c
h

e
d

u
le

r

Data decollator Data packer

Multithreading
Asynchronous

processing

CPU Original-like API

PCIe interface

DMA engine

Figure 2. The architecture of the HybriDC system based on the CPU-FPGA heterogeneous platform.

2.2.1. Software Design

The software program is a vital part of HybriDC. On the one hand, as presented
in Section 2.1.2, software flexibility is an excellent complement to hardware. Specifically,
a data decollator is designed to divide the large-size data into fixed-size blocks. In addition,
a data packer is designed for packing compressed blocks. Importantly, blocks of different
tasks may be out-of-order after hardware processing. To address the challenge, a unique
sequence number is allocated to each block, which will not change in hardware processing.

On the other hand, the HybriDC software architecture can offer compatibility, which
is significant for practical applications. To stay compatible with standard compression soft-
ware, the acceleration API is designed like the original software API. The acceleration API
can be called directly by advanced applications. Moreover, to facilitate high-performance
parallel computing at the software level, the software system is designed to support
asynchronous processing and multithreading, two common data processing modes in
high-performance scenarios.

2.2.2. Hardware Design

As the core of the HybriDC system, the hardware part aims to accelerate the block
compression workload. As shown in Figure 2, the HybriDC hardware architecture can
support scalable multiway parallel block compression.

Compression kernels are the cornerstone of HybriDC hardware. In HybriDC, multiple
compression kernels can execute concurrently to achieve scalable throughput. The maxi-
mum number of compression kernels is determined by available hardware resources and
resource efficiency. Thus, the resource efficiency of HybriDC is important to performance
scalability. The detailed design of the compression kernel is presented in Section 4.

Except for the necessary compression kernel, several components are designed to sup-
port parallel processing of compression kernels, including data schedulers, data reshapers,
and data buffers.

Data schedulers, including an input scheduler and an output scheduler, are designed to
schedule I/O data between the CPU software and compression kernels. Specifically, for each

Micromachines 2022, 13, 2029 5 of 19

raw block from the CPU, the input scheduler allocates it to an idle compression kernel.
In addition, the output scheduler is responsible for aggregating compressed blocks from
different compression kernels. A round-robin scheduling strategy is used for simplicity and
efficiency. Other schedule strategies can also be applied according to different requirements.

Data reshapers are designed to adjust the data flow width. In the hardware design,
the data flow width of the DMA engine differs from that of compression kernels. Through
the data reshaper, the input data width is reshaped to the data width of the output module.

Data buffers can make the HybriDC system smoother. On the one hand, when the
processing pipeline is stalled in some steps, the data buffer is used for storing the temporary
data and adjusting the data flow. On the other hand, the clock frequency of the DMA usually
differs from that of compression kernels. Thus, data buffers based on asynchronous FIFOs
are applied to transfer data across clock domains.

3. Algorithm Fine-Tuning Based on Performance–Resource Modeling

In this section, we review the target compression algorithm first. Then, we explain how
to build the performance–resource model of the compression algorithm. Finally, we present
the algorithm fine-tuning method. Note that the modeling and optimization method can
also be used for other compression algorithms.

3.1. LZ4 Compression Algorithm Review

We choose to base our prototype design on LZ4 as it has been widely used in many
scenarios, such as big data processing and embedded computing [19]. As a variant of the
LZ77 algorithm [20], LZ4 is a dictionary-based compression algorithm [21]. LZ4 realizes
data compression by replacing the repeated data with the index of the same past data. It
consists of five major phases, including Hash Calculation, Hash Table Update, First Match,
Extended Match, and Sequence Encoding (Figure 3).

Start Hash
Calculation

Hash Table
Update First Match

Extended
MatchMatch?Sequence

EncodingFinish?End

Yes
NoYes

No

Match? Yes
No

Figure 3. The LZ4 workflow.

Hash Calculation. In LZ4, data are processed byte by byte. The current 4-byte string,
consisting of the current byte and the following 3 bytes, is considered as the basic input
to be matched. In Hash Calculation, the hash value of the 4-byte string is calculated by a
hash function.

Hash Table Update. LZ4 uses the hash table to look up the repeated data in O(1) time
complexity. As presented in Algorithm 1, indexed by the hash value of the current string,
the candidate address of the possible matched past string is fetched from the hash table.
After that, the address of the current string is stored, substituting the previous one.

Algorithm 1 Hash table update algorithm

Input: current_data: the current data to be matched
Output: candidate_address: the candidate address of past data

// Hash value calculation
hash_value← HashFunction(current_data)
// Hash table lookup
candidate_address← hash_table[hash_value]
// Hash table insert
hash_table[hash_value]← AddressO f (current_data)

Micromachines 2022, 13, 2029 6 of 19

First Match. A possible hash collision (different data maps to the same hash value)
causes a false-positive lookup of the hash table. Thus, in First Match, the specific past string
is read from the past data buffer (called a dictionary) to confirm the match result. If the past
string and the current string match successfully, Extended Match is executed to find a longer
match. Otherwise, the input window slides forward one byte, and the above procedures
repeat.

Extended Match. Through First Match, a preliminary 4-byte match is found. In Extended
Match, bytes following the matched current string and past string are compared to confirm
the maximum match length. After this phase, one round of match searching finishes.

Sequence Encoding. After each round of match searching, a 5-tuple consisting of the
unmatched string, the unmatched length, the matched string, the matched length, and the
address offset between matched current and past strings is obtained. The 5-tuple is encoded
into an LZ4 sequence, which is the basic compressed segment of the LZ4 compression
block. Specifically, the matched string is substituted with the matched length and the
address offset.

To conclude, the LZ4 algorithm stores the addresses of the most recent strings in the
hash table. The matched strings are found via the hash table quickly. After First Match and
Extended Match, repeated data are found and the input data are encoded as LZ4 sequences.
The sequential attribute of the LZ4 compression algorithm makes it suitable for an hardware
implementation on the FPGA.

3.2. Compression Performance Modeling

Original compression algorithm parameters designed for software may not fit the
hardware implementation. Thus, a performance–resource model was built to guide the
compression kernel design. It concerned the compression ratio, throughput, available
hardware resources, the design goal, etc.

3.2.1. Compression Ratio

The compression ratio is calculated by uncompressed size
compressed size . In LZ77-type compression

algorithms, the compression ratio performance is determined by the capability of searching
the repeated data. In LZ4, four parameters are mainly related to the search capability,
including the hash function, the hash table size, the dictionary size, and the maximum
literal size (Table 2a).

For the hash table, hash and SHT influence the probability of a hash collision. As
introduced in Section 3.1, more hash collisions cause more false-positive lookups and
further decrease the compression ratio. The dictionary stores the most recent input data,
whose size (SDICT) constrains the match range. In First Match, the processed unmatched
literals should be stored in a literal buffer until a match is found. SML indicates the
maximum size of the literal buffer. The compression ratio determined by these four
parameters is denoted as CR(SDICT , SML, SHT , hash).

3.2.2. Throughput

In the default LZ4, the input window slides forward one byte in each round of First
Match. To enhance the throughput, the larger slide stride can be set in LZ4 software.
However, the compression ratio will significantly decline since bytes between the two input
windows will be ignored when searching match.

In hardware compression kernel designs, bytes between two input sliding windows
can be processed concurrently [16,22]. Thus, the compression ratio does not lose much by
using parallel processing in the hardware compression kernel. P denotes the degree of
intrakernel parallelism, the average bytes processed per cycle in the compression kernel.
The compression kernel throughput (Tkernel) is calculated by P · f , where f means the

Micromachines 2022, 13, 2029 7 of 19

design frequency. The theoretical end-to-end throughput of the HybriDC system with N
compression kernels can achieve

Tsum = N · P · f . (1)

Table 2. Parameters related to the compression kernel design.

Symbol Definition

(a) Compression algorithm parameters.

SDICT Size of the dictionary
SML Size of the maximum literal
SHT Size of the hash table
hash Hash function

(b) Performance-related parameters.

N Number of integrated compression kernels
P Bytes processed per cycle in one compression kernel

Tkernel Throughput of one compression kernel
Tsum End-to-end throughput of HybriDC

(c) Hardware resource parameters.

FFavl Total number of available FFs
LUTavl Total number of available LUTs

RAMavl Total capacity of available block RAMs
FFkernel Number of FFs used in one compression kernel

LUTkernel Number of LUTs used in one compression kernel
RAMkernel Block RAMs used in one compression kernel

3.2.3. Hardware Resource Usage

The hardware compression kernel consumes various on-chip resources (Table 2c),
including LUTs, FFs, block RAMs, etc.

LUTs are mainly used to construct the combinational logic circuit. FFs can buffer data
in the clocked sequential circuit design. In the compression kernel design, increasing P
notably complexifies the hardware design and raises the LUT usage (LUTkernel) and the FF
usage (FFkernel). We denote LUTkernel and FFkernel as functions of P:{

LUTkernel = LUT(P),
FFkernel = FF(P).

(2)

Block RAMs are mainly used in implementing large buffers, including the dictio-
nary, hash table, and literal buffer. The block RAM usage can be estimated by related
components’ sizes:

RAMkernel = SDICT + SML + SHT . (3)

Consequently, N compression kernels should consume N · LUTkernel LUTs, N · FFkernel
FFs, and N · RAMkernel block RAMs.

3.2.4. Optimization Model Formulation

For the HybriDC system prototype, its design goal was to maximize the compression
throughput. Design variables included N, P, SDICT , SML, SHT , and hash. Moreover, there
were two design constraints. First, resources consumed by N compression kernels could
not exceed the available resources (Table 2c). Second, the compression ratio of HybriDC
could not be less than the target value (CR0).

Micromachines 2022, 13, 2029 8 of 19

According to Equations (1)–(3), HybriDC’s performance optimization model can
be obtained as:

argmax
N,P,SDICT ,SML ,SHT ,hash

(N · P · f), (4)

subject to
CR(SDICT , SML, SHT , hash) > CR0,
N · LUT(P) 6 LUTavl ,
N · FF(P) 6 FFavl ,
N · (SDICT + SML + SHT) 6 RAMavl .

(5)

The algorithm parameters fine-tuning strategy was developed based on the perfor-
mance optimization model.

3.3. Algorithm Parameters Fine-Tuning
3.3.1. Resource-Balanced Design Principle

Increasing N and P can improve throughput (Equation (1)) but increases resource
consumption (Equations (2) and (5)). For N compression kernels, the usage of each resource
cannot exceed its total available amount (Equation (5)). Thus, the most-consumed resource
decides the maximum N (Nmax). In other words, Nmax depends on the resource with the
largest consumption proportion, that is

Nmax =

⌊
1

max(PCTLUT , PCTFF, PCTRAM)

⌋
, (6)

where PCT means the resource percentage of one kernel consumption to the total avail-
able amount. Consequently, we derived the resource-balanced design principle from
Equation (6) to improve throughput:

1. Minimizing the usage of the most-consumed resource;
2. Using the less-consumed resources to improve performance.

As presented in Table 1, the consumption of block RAMs is much higher than that of
other resources in existing designs. According to Principle (1), we fine-tuned the algorithm
parameters to decrease the consumption of block RAMs in the HybriDC system design.
Moreover, increasing P increases the logic resource consumption but does not consume
more block RAMs (Section 3.2.3, Equation (2)). Therefore, according to Principle (2), we
increased P by the less-consumed LUTs and FFs in the compression kernel design.

3.3.2. Parameters Fine-Tuning with Compression Ratio Constraint

Memory-related parameters (SDICT , SML, SHT) significantly affect the compression
ratio performance. When fine-tuning these parameters, the compression ratio constraint
must be taken into account (Equation (5)).

To analyze the impact of changing parameters, we adjusted each parameter individu-
ally and observed the compression ratio changes by a software simulation. For example,
when analyzing SHT , the value of SHT changed from 2 KB to 64 KB while the other pa-
rameters kept their default values. The default values of (SDICT , SML, SHT) were (64 KB,
64 KB, 16 KB). The results tested with the Silesia compression corpus [23] are illustrated
in Figure 4. The compression ratio increased with SDICT and SHT , while the growth trend
slowed down. Differently, the compression ratio barely changed when SML exceeded 2 KB,
since a large-size literal was rare in most data.

Micromachines 2022, 13, 2029 9 of 19

1.953

1.886

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Co
m

pr
es

sio
n

ra
tio

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68
Size (KB)

Dictionary
Hash table
Max literal
Standard LZ4
SAX hash

Figure 4. The compression ratio performance with different algorithm parameters.

Based on the experimental results, we could reasonably fine-tune the algorithm pa-
rameters. To save block RAMs, SML was set to 2 KB in the compression kernel. A 2 KB
buffer consumes just one block RAM in common FPGAs (one Intel M20K BlockRAM or one
Xilinx 18K BRAM). Considering the compression ratio constraint, SDICT was set to 64 KB,
the default size in LZ4 software. The compression ratio may slightly decline due to the
parallelization of the compression kernel. Thus, we increased SHT to 32 KB, compensating
for the compression ratio loss.

In addition to memory-related parameters, the hash function also affects the compres-
sion ratio. We analyzed two hash function candidates, including the Fibonacci hash and
the shift-and-xor (SAX) hash. The Fibonacci hash is the default hash function in LZ4. It
generates the hash value by selecting partial bits from the product of the 32-bit input string
and a 32-bit Fibonacci number. The SAX hash performs two bitwise operations, SHIFT
and XOR, on the input data to obtain the hash value [24]. According to our evaluation,
the Fibonacci hash (the standard LZ4) performed better than the SAX hash (Figure 4). Thus,
the Fibonacci hash was chosen in the compression kernel design.

In conclusion, based on the performance–resource model, the algorithm parameters were
fine-tuned for the hardware design. When meeting the compression ratio constraint, the block
RAM usage of the LZ4 compression kernel could be reduced from 64 + 64 + 16 = 144 KB
to 64 + 32 + 2 = 98 KB (32% decrease). The HybriDC design thus became more resource-
efficient. Due to less block RAM usage, the maximum kernel number increased (Equation (6)).
Thus, the HybriDC design could achieve a higher throughput (Equation (1)).

4. Hardware Compression Kernel Design

In HybriDC, the compression kernel was implemented to support intrakernel par-
allel processing. According to the resource-balanced design principle, LUTs and FFs are
used more and the block RAM usage does not increase. In this section, we propose the
detailed architecture of the parallel compression kernel (Figure 5). Furthermore, we in-
troduce the memory-efficient parallel hash table design, which is the core module of the
compression kernel.

4.1. Compression Kernel Architecture

The HybriDC compression kernel consists of several modules. All modules are tailored
to support multibyte parallel processing.

A. The input parallelization module. The input is parallelized to P input strings in this
module. As shown in the top left corner of Figure 5, P input strings are constructed from
P + 3 bytes. In each new cycle, the processing window slides forward P bytes, and the new
P input strings are generated.

B. The hashing module. In each cycle, the hashing module receives P strings from the
input parallelization module and outputs their hash values to the next module. In this
module, DSPs are used to implement the P-way Fibonacci hash calculation.

Micromachines 2022, 13, 2029 10 of 19

a b c d e f g h i j k

a b c d
b c d e

c d e f
d e f g

e f g h
f g h i

P bytes

P × 4 bytes

current
input string

DSP

DSP

DSP

P × 4
bytes

P × P × 16 bits

hash table
addresses

Priority
selection

input buffer
addresses

P × 16 bits

selected
address

16 bits

Dictionary

Max prefix
match

past input
string

first match
result

Refining
mechanism

extened
match result

current
input string

Address
accumulator

first match
result

extended
match
address

16 bits

Dictionary

Max prefix
match

past input
string

Refining
mechanism

extened
match result

current
input string

FSM

Literals
buffer

Match
infomation

buffer

Literal
length
buffer

match result Sequence
encoder

LZ4
sequence

Selective forwarding

Checksum
calculation

P × 4 bytes

P × 16 bits

hash table
addresses

input
strings

block
RAM

block
RAM

block
RAM

P × 4 bits checksum

block
RAM

input buffer
addresses

P × 16 bits

Multi-ports hash table

Input
parallelization Hashing Hash table

update
First

match
Extended

match
Sequence
encoding

Dictionary

Input Output

Figure 5. The workflow of the HybriDC compression kernel and the specific architecture of each module.

C. The hash table update module. In this module, a parallel hash table supporting
updating P records concurrently was implemented. For P hash values, P corresponding
dictionary addresses are output in each cycle. In addition, for each record in the hash
table, a checksum was implemented by idle block RAM space. The extra checksum reduces
the number of false-positive lookups and improves the compression ratio indirectly. The
details of the parallel hash table design are explained in Section 4.2.

D. The dictionary. As mentioned in Section 3.2, the dictionary stores the most recent
input data. When receiving the read requests with addresses from two match modules, the
dictionary returns the corresponding past input data. To avoid a possible access collision,
the dictionary processes one read request in each cycle.

E. The first match module. The current and past strings are compared to confirm the
match result in this module. Due to the read request limitation, just one candidate address
can be processed in the dictionary. To find the longest match, the earliest candidate (the
input string near the beginning) among P possible match candidates is selected. The P-byte
past string reads from the dictionary and the P-byte current string are compared by the
longest prefix match. Supposing the match length is l bytes, there are three possible match
results, defined as failed match (l < 4), partial match (4 6 l < P), and complete match (l = P).

A failed match means this P-byte input string is unmatched. A partial match means that
a matched string is found, but the last several bytes of the input string are unmatched. This
match round is over with a partial match. A complete match means that a longer matched
string can be found by the extended match.

F. The extended match module. When the match result in the last cycle is a complete
match, the extended match module is used. Similarly, the P-byte past string reads from the
dictionary are compared with the current string by the longest prefix match. The results
can be classified into partial match (l < P) and complete match (l = P). When obtaining a
complete match, the extended match will work continuously in next cycle. If the result is a
partial match, this match round finishes.

G. The output encoding module. Once a match round has finished, a set of compression
information is generated, including the unmatched string, the unmatched length, and match
information (length and offset). The output encoding module encodes the information into
sequences. Specifically, different pieces of information are processed in order. Thus, a finite
state machine (FSM) was designed to control these steps in this module.

H. The match-refining mechanism. As mentioned in Section 3.2.2, some data may miss
the matching process caused by the sliding input window. For example, assume that

Micromachines 2022, 13, 2029 11 of 19

in an 8-byte processing window “abcdefgh”, the substring “abcd” is matched. If the
processing window slides forward 8 bytes in the next cycle, the string “efgh” will be
skipped and considered as an unmatched string. Nevertheless, the unmatched bytes “efgh”
may be matched with other past strings. To address the problem, we propose a match-
refining mechanism for finer-grained processing. If the last match result was a partial match,
the processing window begins after the last matched byte. In the previous example, the next
8-byte processing window will follow “abcd” and should be “efghxxxx”. Thanks to the
refining mechanism, the compression ratio performance improves significantly. Naturally,
the actual degree of intrakernel parallelism of the compression kernel is less than P since
the sliding step is less than P.

4.2. Memory-Efficient Parallel Hash Table Design

As mentioned before, the hash table is implemented by block RAMs. In general,
a block RAM has two access ports for reading and writing data. Multiple block RAMs can
be combined into a large storage component (Figure 6a). However, the number of access
ports does not increase for maintaining the data consistency. Thus, this combination of
block RAMs cannot realize a parallel hash table.

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

block
RAM
block
RAM
block
RAM
block
RAM

(a) (b) (c)

Figure 6. Block RAM usage patterns of different hash tables. (a) Normal combination (1 writing port
and 1 reading port), (b) LVT-based hash table (2 writing ports and 3 reading ports), (c) HybriDC hash
table (4 writing ports and 4 reading ports).

Several studies applied the LVT-based multiport memory scheme to implement a
parallel hash table [16,22] (Figure 6b). Nevertheless, this scheme consumes many memory
resources [25]. For instance, to construct a 16 KB hash table with P reading ports and M
writing ports, P×M× 16 KB block RAMs should be used. Obviously, this heavy use of
block RAMs causes a worse imbalanced resource usage.

In HybriDC, we propose a memory-efficient parallel hash table design, which does not
cause extra memory usage. In particular, we use the idle space of block RAMs to implement
a novel checksum design and thus improve the compression ratio.

4.2.1. Multiport Hash Table Implementation

The hash table architecture in HybriDC is described in the middle bottom of Figure 5.
In the HybriDC hash table, each block RAM is instantiated individually, and each access
port can be used concurrently (Figure 6c). Meanwhile, an access forwarding component is
designed to forward multiple access requests to the corresponding block RAMs.

An example of parallel multiple access in our design is shown in Figure 7a. Four access
requests (R0, R1, R2, R3) in channels (C0, C1, C2, C3) are targeted at hash table addresses
(4, 3, 7, 0). Addresses (4, 3, 7, 0) are located in block RAMs (B2, B1, B3, B0). In this case, R0,
R1, R2, and R3 are forwarded to B2, B1, B3, and B0, respectively. Then, B0, B1, B2, and B3
read and update contents at addresses 0, 3, 4, and 7. Finally, results output from addresses
0, 3, 4, and 7 are sent back to the corresponding channels C3, C1, C0, and C2.

Micromachines 2022, 13, 2029 12 of 19

(a) (b)

Figure 7. The access mode of the multiport hash table of HybriDC. (a) Normal parallel access,
(b) access collision.

However, some requests may be targeted on the same block RAM. In this situation,
only one request can be processed (supposing that one block RAM can handle only one
request). As mentioned before, choosing the request of the earliest input string is helpful
to find a longer match. Therefore, the earliest first selection strategy is applied in the
forwarding component to alleviate the effects of access collision. As shown in Figure 7b,
R0 and R1 target the same block RAM B1. The earliest request R0 is processed, and R1
is abandoned.

4.2.2. Checksum Design for Lookup Optimization

The hash table designs of existing studies can be classified into two types: storing
dictionary addresses with or without input strings. Both types waste much storage capacity
due to inadequate block RAM utilization.

Type 1: the hash table stores only dictionary addresses. For the block RAM storage, its width
and depth are fixed. Take the M20K block RAM in Intel FPGAs as an example, its width
is 20 bits, and its depth is 1024. For a 64 KB dictionary, log2(64× 210) = 16 bits addresses
are used as the index and stored in the hash table. Obviously, the 16-bit dictionary address
cannot fill the 20-bit width of block RAMs, i.e., (20 − 16)/20 = 20% storage capacity
is wasted.

Type 2: the hash table stores dictionary addresses and input strings. The hash table lookup
may be a false positive due to the hash collision. Some studies proposed storing the 4-byte
input string with its address in the hash table. By skipping reading data from the dictionary,
this scheme can facilitate the match result verification in the first match phase. In this
scheme, the 48-bit hash table records (16-bit addresses and 32-bit strings) consumes triple
block RAMs. In this case, (60− 48)/60 = 20% storage capacity is wasted.

In HybriDC, we propose a checksum design utilizing the spare space of block RAMs to
filter the false-positive lookup. As shown in Figure 5, a checksum calculation component is
implemented in the hash table update module, which generates a checksum for each input
string. The checksum size equals the width of the spare space of block RAMs. A checksum
and a dictionary address are regarded as a record to be stored in the hash table. Once a hash
table record has been looked up, the new checksum is compared with the fetched checksum.
The failed matching result of the checksum comparison means that this lookup must be
a false positive. Therefore, most false-positive lookups can be filtered by the checksum,
which improves the compression ratio performance indirectly.

5. Evaluation

In this section, we evaluate the performance of HybriDC. As most existing stud-
ies just implemented the compression kernel, we compared the proposed compression
kernel to related studies. Furthermore, we evaluated various aspects of the HybriDC
system prototype.

Micromachines 2022, 13, 2029 13 of 19

5.1. Compression Kernel Evaluation

In this subsection, we evaluate the performance of our compression kernel and ex-
hibit its improvement over other designs. The evaluation criteria include compression
throughput, compression ratio, resource utilization, resource efficiency, etc.

5.1.1. Experimental Setup

We implemented the hardware part of the HybriDC system on a customized accelera-
tion card with an Intel Arria 10 FPGA chip (10AX048H2F34E2SG). The FPGA development
tool was Intel Quartus Prime Professional Edition 18.0. The hardware description language
we used was Verilog. We used ModelSim to simulate the compression process and ob-
tain accurate processing cycles. Then, we multiplied the number of cycles by the clock
frequency to calculate the compression throughput. The Calgary corpus [26] was used
in the compression kernel evaluation. The HybriDC compression kernel performance is
presented in Table 3. Table 4 exhibits the detailed comparison between HybriDC and other
LZ4 accelerators.

Table 3. The compression kernel performance of HybriDC evaluated on the Calgary corpus.

Class RAW Size Compressed Size Compression Throughput
(bytes) (bytes) Ratio (MB/s)

bib 111,261 55,461 2.006 539.94
book1 768,771 503,990 1.525 483.01
book2 610,856 336,337 1.816 509.02
geo 102,400 92,551 1.106 680.17
news 377,109 211,160 1.786 540.26
obj1 21,504 13,152 1.635 636.21
obj2 246,814 121,837 2.026 570.21
paper1 53,161 29,332 1.812 527.34
paper2 82,199 47,829 1.719 506.09
paper3 46,526 28,607 1.626 509.15
paper4 13,286 8533 1.557 543.17
paper5 11,954 7645 1.564 538.95
paper6 38,105 21,082 1.807 533.76
pic 513,216 88,912 5.772 704.43
progc 39,611 21,071 1.880 541.06
progl 71,646 28,599 2.505 571.98
progp 49,379 18,943 2.607 582.99
trans 93,695 31,211 3.002 614.07

Average 180,638.5 92,569.6 1.951 # 562.88
1.951 ≈ 180,638.5/92,569.6. The ratio of average raw size to average compressed size is more reasonable than the
average of all compression ratios.

5.1.2. Compression Ratio

As shown in Table 3, the overall compression ratio of HybriDC was 1.951, which
was higher than 1.928 for the LZ4 algorithm and achieved our compression ratio goal.
The improvement of the compression ratio derived from the hash table size fine-tuning
and the checksum design. Due to data redundancy, the compression ratios were quite
different in various data classes. For example, image data usually contain lots of consecutive
identical values, i.e., redundant data. Thus, the compression ratio of pic was the best in the
Calgary corpus.

Micromachines 2022, 13, 2029 14 of 19

Table 4. The resource utilization and compression performance of different LZ4 acceleration kernels.

Scheme FPGA Chip LUTs FFs Block RAM Compression Throughput RAM Efficiency
(Kbits) 1 Ratio 2 (MB/s) 3 (Kbits/(MB/s))

Bartik’s [14] XC7A100T 764 375 612 ↓6.2% 146 4.192
Benes’ [16] XCKU040 14,076 2803 2952 ↓37.6% 760 3.884
MLZ4C [15] XC7K325T 573 937 2484 ↑2.3% 240 10.350
Xilinx [11] XCU200 3000 3500 1908 ↑1.4% 290 6.579
HybriDC 10AX048H2 12,336 4081 1460 ↑1.2% 562.88 2.594

1 The block RAM used in Xilinx FPGA-based schemes was BRAM with 36 Kbits of capacity, while that used in
HybriDC was Intel’s M20K with 20 Kbits of capacity. Here, we converted the number of BRAMs and M20Ks
into a specific capacity to compare the on-chip memory usage. 2 These schemes’ compression ratios were
evaluated on different datasets. For fairness, the percentage of relative difference between the hardware designs’
compression ratios and the compression ratio of standard LZ4 software was used as the evaluation criteria. Since
the compression ratio of Bartik’s scheme was not disclosed, Bartik’s compression ratio was estimated based on
its hash table size (4 KB) and the relationship between the compression ratio and the hash table size (Figure 4).
3 Bartik’s throughput was not presented in their paper. We estimated it by their design clock frequency (146 MHz).

5.1.3. Compression Throughput

In our prototype, the degree of intrakernel parallelism P was set to eight. The clock
frequency of the compression kernel was 100 MHz. The theoretical throughput could
achieve up to 8× 100 = 800 MB/s. The actual throughput performance was different
on various data because of the match-refining mechanism (Table 3). As mentioned in
Section 4.1, once a partial match happens, the processing sliding window should slow
down to check the unmatched data of the last cycle. Thus, the throughput decreases with
the frequency of partial matches. Instead, the throughput increases if failed matches and
complete matches happen more frequently. For instance, geo had a low compression ratio
but a high throughput, since most match results were failed matches when compressing geo.
Similarly, pic with a high compression ratio had the highest throughput due to massive
complete matches.

5.1.4. Compression Performance Comparison

Compared to other designs, our design achieved the highest throughput with no
reduction in the compression ratio. As shown in Table 4, the average throughput of the
HybriDC kernel was up to 562.88 MB/s, which was better than the previous designs
with comparable compression ratios. With the advantage of design frequency, Benes’
scheme obtained a higher throughput than that of the HybriDC kernel. However, its
compression ratio performance was reduced a lot because of its small hash table size.
In many scenarios (such as data storage), a better compression ratio can decrease the
data size more, which is more important than throughput performance. HybriDC could
provide a high throughput and maintain the compression ratio performance. In conclusion,
the compression performance of HybriDC was more balanced and desirable.

5.1.5. Resource Utilization Efficiency

As mentioned before, performance scalability benefits from balanced resource utiliza-
tion. Since the block RAM is the most-consumed resource, memory efficiency was used to
measure resource utilization efficiency. Its value was calculated by block RAM size

throughput .
As shown in Table 4, HybriDC achieved state-of-the-art memory efficiency while

maintaining an adequate compression ratio. In other words, given the same memory
resources, HybriDC could obtain the highest throughput. Compared to MLZ4C and Xilinx,
two designs with comparable compression ratios, the memory efficiency of HybriDC was
4× and 2.5× better, respectively. Based on its good memory efficiency and balanced
resource utilization, the HybriDC system could integrate more compression kernels and
gain higher throughput performance.

Micromachines 2022, 13, 2029 15 of 19

5.2. HybriDC System Performance

The HybriDC system prototype integrates multiple compression kernels to provide
more throughput. In this subsection, we report on the performance of this system proto-
type. The end-to-end throughput, resource utilization, and power efficiency are evaluated.
The multikernel scalability of HybriDC is discussed primarily.

5.2.1. Experimental Setup

The HybriDC prototype consisted of the FPGA card and the CPU host. In the FPGA
part, multiple compression kernels were integrated. The host was equipped with an Intel
Core i5-7500 CPU @ 3.4 GHz with 6 MB of L3 cache and 4GB memory, running CentOS
Linux 7 with kernel 3.10. The FPGA card and the host connected by the PCIe 3.0 x4 interface.
We use three standard compression benchmark datasets to evaluate the HybriDC system,
including the Calgary corpus, the Canterbury corpus [27], and the Silesia corpus.

5.2.2. End-to-End System Throughput

We evaluated the end-to-end throughput of the HybriDC system in the asynchronous
processing mode. Specifically, test data were continuously sent from the host to the acceler-
ator for compression. When data sending began and data receiving ended, the precise time
was recorded on the host side. Then, the end-to-end throughput was calculated with the
processing time and the data size. We changed the number of compression kernels from
one to four to evaluate the performance scalability of HybriDC.

As shown in Figure 8, with four kernels, the maximum end-to-end throughput of
HybriDC could achieve about 2.7 GB/s (ptt5). It is worth noting that the end-to-end
throughput of the HybriDC system increased linearly with the number of kernels. In other
words, with enough hardware resources, the throughput of the HybriDC system could be
expanded easily by increasing the number of compression kernels.

0

500

1000

1500

2000

2500

3000

Th
ro

u
gh

p
u

t
(M

B
/s

)

1 kernel 2 kernel 3 kernel 4 kernel

Figure 8. The end-to-end throughput performance of the HybriDC system with different number of
compression kernels evaluated by the Calgary corpus, the Canterbury corpus, and the Silesia corpus.

5.2.3. FPGA Resource Utilization

The FPGA resource utilization means much to the performance scalability of HybriDC.
As mentioned in Section 2.2.2, except for the compression kernels, peripheral hardware
components were implemented in the HybriDC hardware system and consumed some extra
resources. The DMA data mover was not related to the number of kernels, whose resource
consumption was nearly constant. Table 5 shows the FPGA resource utilization comparison
between the single compression kernel and the entire system prototype integrated with four
kernels (excluding the DMA data mover). The main consumed extra resource was the block
RAM, which was mainly used by the peripheral data buffer. As a whole, the additional
resource consumption was acceptable for scaling throughput performance. The four-kernel
system prototype consumed less than 50% of the FPGA resources. As indicated in our
further experiments, the HybriDC system could integrate at least eight compression kernels
on the evaluated FPGA chip.

Micromachines 2022, 13, 2029 16 of 19

Table 5. The FPGA resource utilization comparison between the HybriDC system and the single
HybriDC compression kernel.

Design ALMs 1 LUTs FFs M20K Block RAMs DSPs 2

HybriDC system (4 kernels) 34,507.8 52,955 19,157 526 64
Single kernel 7930.3 12336 4081 73 16

Ratio 4.35 4.29 4.69 7.21 4
1 ALM: adaptive logic module. ALM is the basic building block in Intel FPGAs. 2 DSP: digital signal processor.
In our design, DSPs were used to perform the hash calculation.

5.2.4. Power Efficiency

Power efficiency is a vital performance requirement in many application scenarios,
including data centers, mobile computing, etc. Compared with LZ4 software, HybriDC
required some additional FPGA power but less CPU power. Importantly, HybriDC brought
a significant performance improvement. As shown in Table 6, the FPGA power was only
6.14 W while HybriDC could provide more than three times the throughput of LZ4 software.
As a result, the four-kernel HybriDC prototype achieved about three times more power
efficiency than LZ4 software.

Table 6. The power efficiency comparison between the HybriDC system and LZ4 software.

Scheme Power (W) Throughput Efficiency
CPU 1 FPGA Total (MB/s) 2 (MB/s per W)

HybriDC (4 kernels) 0.5× 11.88 6.14 12.08 2356.65 195.09
LZ4 [18] 11.88 0 11.88 780 65.66

Ratio - - 1.02 3.02 2.97
1 The LZ4 benchmark test used one core of an i7-9700K CPU (eight cores, 95 W power) while HybriDC used about
0.5 identical cores. 2 The throughput was calculated on the Silesia corpus.

In addition, we could further improve the power efficiency of HybriDC by integrating
more kernels. In practice, the overall power efficiency increases with FPGA resource
utilization. The HybriDC system integrated with eight kernels is expected to realize a
power efficiency four times greater than that of LZ4 software.

6. Related Work
6.1. LZ4 Acceleration

The LZ4 algorithm was proposed by Yann Collet in 2011. After that, several works
have reported on the FPGA-based LZ4 compression acceleration [11,14–16,22]. In 2015, Bar-
tik et al. first tried using an FPGA to implement LZ4 for 4K transmission compression [14].
This design could process one byte per cycle. The design reduced the hash table size
from 4096 records to 1024 records to save memory resources. However, this modification
significantly degraded its compression ratio. In 2019, Bartik et al. improved their work
and proposed an optimized match search unit (MSU) to support parallel processing [16,22].
Nevertheless, its memory cost increased exponentially with the number of parallel access
ports [25]. To improve the design clock frequency, Liu et al. modified the original LZ4 algo-
rithm and proposed MLZ4 [15]. Their design relied on a new compression format to reduce
the literal buffer size and stabilize the output delay. The modified compression format was
a double-edged sword since it was incompatible with the original LZ4 software program.
High-level synthesis (HLS) is an emerging technology that enables the use of high-level
programming languages (e.g., C/C++, Python, et al.) to perform hardware design [28,29].
Xilinx used its HLS tool to implement the LZ4 acceleration [11]. However, the lack of
elaborate optimization made this design cost significant memory resources. In addition, its
acceleration kernel throughput was just one byte per cycle without intrakernel parallelism.

Micromachines 2022, 13, 2029 17 of 19

In summary, existing studies come short in terms of memory efficiency and compatibil-
ity. By comparison, the HybriDC system provides a compatible heterogeneous compression
acceleration framework and realizes a good memory-efficient compression kernel.

6.2. Other Lossless Data Compression Acceleration

Besides LZ4, many studies have tried to accelerate other lossless data compression
methods, such as gzip, Xpress9, Deflate, and bzip2 [17,24,30,31]. Abdelfattah et al. proposed
using the OpenCL HLS tool to design a gzip accelerator [24]. Via OpenCL, this work was
completed in just one month. However, its block RAM usage was significantly more
than that of the Verilog-based competition. Kim et al. presented a heterogeneous Xpress9
compressor with scalable performance under a heavily multithreaded environment [30].
Since the complex match selection logic of Xpress9 hindered the pipeline, the compressor’s
throughput was relatively low. In 2020, Ledwon et al. applied the Xilinx HLS tool to
implement a high-throughput Deflate compressor [17]. Due to the low data dependency
of Deflate, this design achieved a throughput of 4 GB/s with a 250 MHz clock frequency
and a degree of intrakernel parallelism of 16. Qiao et al. designed a Burrows–Wheeler
transform (BWT) accelerator for bzip2 [31]. It supported a compression block size of up to
500 KB, which could bring an outstanding compression ratio performance. Nevertheless,
similar to the bzip2 software program, its throughput was relatively low.

In conclusion, these designs based on various algorithms and tools achieved differ-
ent compression performance values. As an adaptive compression acceleration solution,
HybriDC can be used to improve these designs further.

7. Conclusions

Lossless data compression is widely applied in various data-centric scenarios while
bringing a huge CPU overhead. In this paper, HybriDC, an adaptive resource-efficient
CPU-FPGA heterogeneous acceleration system was proposed to accelerate compression
workloads. HybriDC provides a compatible end-to-end compression acceleration frame-
work. The proposed LZ4 compression kernel demonstrated a state-of-the-art memory
efficiency at a comparable compression ratio. The results of the prototype evaluation
showed the desirable performance scalability of HybriDC. Moreover, HybriDC obtained
much better power efficiency than other compression software.

There are several opportunities to improve this work in the future. Since the match-
refining mechanism brings data dependency, the clock frequency of the current design
is limited. Therefore, optimizing the match-refining mechanism can improve the clock
frequency further. Moreover, the block RAM is still the most-consumed resource in our
prototype design. It is worth increasing the degree of intrakernel parallelism by using the
less-consumed resources.

Author Contributions: Conceptualization, P.L. and S.C.; methodology, P.L.; software, P.L.; validation,
P.L., Z.W., and C.Y.; formal analysis, P.L.; investigation, P.L.; resources, S.C.; data curation, P.L.
and S.C.; writing—original draft preparation, P.L.; writing—review and editing, Z.W. and C.Y.;
visualization, P.L.; supervision, S.C.; project administration, S.C.; funding acquisition, S.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant
62002374, Grant 62202486, Grant 61972412, Grant U22B2005, and Grant 12102468.

Data Availability Statement: The data used in this study are available in [23,26,27].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kavitha, P. A Survey on Lossless and Lossy Data Compression Methods. Int. J. Comput. Sci. Eng. Technol. (IJCSET) 2016,

7, 110–114.
2. Jia, Y.; Shao, Z.; Chen, F. SlimCache: An Efficient Data Compression Scheme for Flash-Based Key-Value Caching. ACM Trans.

Storage 2020, 16, 1–34. https://doi.org/10.1145/3383124.

Micromachines 2022, 13, 2029 18 of 19

3. Ferraro Petrillo, U.; Palini, F.; Cattaneo, G.; Giancarlo, R. FASTA/Q data compressors for MapReduce-Hadoop genomics: Space
and time savings made easy. BMC Bioinform. 2021, 22, 144. https://doi.org/10.1186/s12859-021-04063-1.

4. Agostini, M.; O’Brien, F.; Abdelrahman, T. Balancing Graph Processing Workloads Using Work Stealing on Heteroge-
neous CPU-FPGA Systems. In Proceedings of the 49th International Conference on Parallel Processing—ICPP, ICPP
’20, Edmonton, AB, Canada, 17–20 August 2020; Association for Computing Machinery: New York, NY, USA, 2020.
https://doi.org/10.1145/3404397.3404433.

5. Sun, X.; Xue, C.J.; Yu, J.; Kuo, T.W.; Liu, X. Accelerating data filtering for database using FPGA. J. Syst. Archit. 2021, 114, 101908.
https://doi.org/https://doi.org/10.1016/j.sysarc.2020.101908.

6. Fang, J.; Mulder, Y.T.; Hidders, J.; Lee, J.; Hofstee, H.P. In-memory database acceleration on FPGAs: A survey. VLDB J. 2020,
29, 33–59.

7. Samardzic, N.; Qiao, W.; Aggarwal, V.; Chang, M.C.F.; Cong, J. Bonsai: High-Performance Adaptive Merge Tree Sorting. In
Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Virtual Event, 30
May–3 June 2020; pp. 282–294. https://doi.org/10.1109/ISCA45697.2020.00033.

8. Jiang, H.; Lin, S.J. A Rolling Hash Algorithm and the Implementation to LZ4 Data Compression. IEEE Access 2020, 8, 35529–35534.
https://doi.org/10.1109/ACCESS.2020.2974489.

9. Hu, X.; Wang, F.; Li, W.; Li, J.; Guan, H. QZFS: QAT Accelerated Compression in File System for Application Agnostic and Cost
Efficient Data Storage. In Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC 19), Renton, WA, USA,
10–12 July 2019; USENIX Association: Renton, WA, 2019; pp. 163–176.

10. Abali, B.; Blaner, B.; Reilly, J.; Klein, M.; Mishra, A.; Agricola, C.B.; Sendir, B.; Buyuktosunoglu, A.; Jacobi, C.; Starke, W.J.; et al.
Data Compression Accelerator on IBM POWER9 and z15 Processors : Industrial Product. In Proceedings of the 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), Virtual Event, 30 May–3 June 2020;
pp. 1–14. https://doi.org/10.1109/ISCA45697.2020.00012.

11. Xilinx. Xilinx LZ4 Streaming Compression. 2022. Available online: https://xilinx.github.io/Vitis_Libraries/data_compression/
2022.1/source/L2/lz4_compress_streaming.html (accessed on 15 November 2022).

12. Gupta, P.K. Xeon+FPGA Platform for the Data Center,. 2015. Available online: https://research.ece.cmu.edu/calcm/carl/lib/
exe/fetch.php?media=carl15-gupta.pdf (accessed on 15 November 2022).

13. Gaide, B.; Gaitonde, D.; Ravishankar, C.; Bauer, T. Xilinx Adaptive Compute Acceleration Platform: VersalTM Architec-
ture. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays; Associa-
tion for Computing Machinery, FPGA ’19, Seaside, CA, USA, 24–26 February 2019; New York, NY, USA, 2019; pp. 84–93.
https://doi.org/10.1145/3289602.3293906.

14. Bartík, M.; Ubik, S.; Kubalik, P. LZ4 compression algorithm on FPGA. In Proceedings of the 2015 IEEE International Conference
on Electronics, Circuits, and Systems (ICECS), Cairo, Egypt, 6–9 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 179–182.

15. Liu, W.; Mei, F.; Wang, C.; O’Neill, M.; Swartzlander, E.E. Data compression device based on modified LZ4 algorithm. IEEE Trans.
Consum. Electron. 2018, 64, 110–117.

16. Beneš, T.; Bartík, M.; Kubalík, P. High Throughput and Low Latency LZ4 Compressor on FPGA. In Proceedings of the 2019
International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 9–11 December 2019; pp. 1–5.
https://doi.org/10.1109/ReConFig48160.2019.8994794.

17. Ledwon, M.; Cockburn, B.F.; Han, J. High-Throughput FPGA-Based Hardware Accelerators for Deflate Compression and
Decompression Using High-Level Synthesis. IEEE Access 2020, 8, 62207–62217. https://doi.org/10.1109/ACCESS.2020.2984191.

18. Collet, Y. LZ4–Extremely Fast Compression. 2022. Available online: https://github.com/lz4/lz4/ (accessed on 15 November
2022).

19. Matsuoka, T. LZ4 Is Used by. 2022. Available online: https://lz4.github.io/lz4/ (accessed on 15 November 2022).
20. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343.
21. Sayood, K. Introduction to Data Compression; Morgan Kaufmann: Burlington, MA, USA, 2017.
22. Bartík, M.; Beneš, T.; Kubalík, P. Design of a High-Throughput Match Search Unit for Lossless Compression Algorithms. In

Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Vegas, NV, USA,
7–9 January 2019; pp. 732–738. https://doi.org/10.1109/CCWC.2019.8666521.

23. Deorowicz, S. Silesia Compression Corpus. 2022. Available online: http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
(accessed on 15 November 2022).

24. Abdelfattah, M.S.; Hagiescu, A.; Singh, D. Gzip on a Chip: High Performance Lossless Data Compression on FPGAs Using
OpenCL. In Proceedings of the International Workshop on OpenCL 2013 & 2014, IWOCL ’14, Atlanta, GA, USA, 12–13 May 2014;
Association for Computing Machinery: New York, NY, USA, 2014. https://doi.org/10.1145/2664666.2664670.

25. LaForest, C.E.; Steffan, J.G. Efficient Multi-Ported Memories for FPGAs. In Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’10, Monterey, CA, USA, 21–23 February 2010; Association
for Computing Machinery: New York, NY, USA, 2010; pp. 41–50. https://doi.org/10.1145/1723112.1723122.

26. Bell, T.; Witten, I.H.; Cleary, J.G. Modeling for text compression. ACM Comput. Surv. (CSUR) 1989, 21, 557–591.
27. Arnold, R.; Bell, T. A corpus for the evaluation of lossless compression algorithms. In Proceedings of the Proceedings DCC’97.

Data Compression Conference, Snowbird, UT, USA, 25–27 March 1997; IEEE: Piscataway, NJ, USA, 1997; pp. 201–210.

https://xilinx.github.io/Vitis_Libraries/data_compression/2022.1/source/L2/lz4_compress_streaming.html
https://xilinx.github.io/Vitis_Libraries/data_compression/2022.1/source/L2/lz4_compress_streaming.html
https://research.ece.cmu.edu/calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://research.ece.cmu.edu/calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://github.com/lz4/lz4/
https://lz4.github.io/lz4/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

Micromachines 2022, 13, 2029 19 of 19

28. Xilinx. Vitis High-Level Synthesis User Guide. 2022. Available online: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
(accessed on 15 November 2022).

29. Intel. Intel FPGA SDK for OpenCL Pro Edition: Getting Started Guide. 2022. Available online: https://www.intel.com/content/
www/us/en/docs/programmable/683188/ (accessed on 15 November 2022).

30. Kim, J.Y.; Hauck, S.; Burger, D. A Scalable Multi-engine Xpress9 Compressor with Asynchronous Data Transfer. In Proceedings
of the 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Boston,
MA, USA, 11–13 May 2014; pp. 161–164. https://doi.org/10.1109/FCCM.2014.49.

31. Qiao, W.; Fang, Z.; Chang, M.C.F.; Cong, J. An FPGA-Based BWT Accelerator for Bzip2 Data Compression. In Proceedings of the
2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), San Diego, CA,
USA, 28 April–1 May 2019; pp. 96–99. https://doi.org/10.1109/FCCM.2019.00023.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://www.intel.com/content/www/us/en/docs/programmable/683188/
https://www.intel.com/content/www/us/en/docs/programmable/683188/

	Introduction
	Heterogeneous Compression Acceleration Framework
	Compression Task Assignment on Heterogeneous Platforms
	End-to-End Lossless Data Compression Overview
	Workloads Assignment based on Hardware Complementarity

	Scalable Heterogeneous Architecture for High-Performance Data Compression
	Software Design
	Hardware Design

	Algorithm Fine-Tuning Based on Performance–Resource Modeling
	LZ4 Compression Algorithm Review
	Compression Performance Modeling
	Compression Ratio
	Throughput
	Hardware Resource Usage
	Optimization Model Formulation

	Algorithm Parameters Fine-Tuning
	Resource-Balanced Design Principle
	Parameters Fine-Tuning with Compression Ratio Constraint

	Hardware Compression Kernel Design
	Compression Kernel Architecture
	Memory-Efficient Parallel Hash Table Design
	Multiport Hash Table Implementation
	Checksum Design for Lookup Optimization

	Evaluation
	Compression Kernel Evaluation
	Experimental Setup
	Compression Ratio
	Compression Throughput
	Compression Performance Comparison
	Resource Utilization Efficiency

	HybriDC System Performance
	Experimental Setup
	End-to-End System Throughput
	FPGA Resource Utilization
	Power Efficiency

	Related Work
	LZ4 Acceleration
	Other Lossless Data Compression Acceleration

	Conclusions
	References

