
Citation: Fang, J.; Kong, H.; Yang, H.;

Xu, Y.; Cai, M. A Heterogeneity-

Aware Replacement Policy for the

Partitioned Cache on Asymmetric

Multi-Core Architectures.

Micromachines 2022, 13, 2014.

https://doi.org/10.3390/mi13112014

Academic Editor: Muhammad

Rashid

Received: 24 September 2022

Accepted: 13 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A Heterogeneity-Aware Replacement Policy for the Partitioned
Cache on Asymmetric Multi-Core Architectures
Juan Fang * , Han Kong, Huijing Yang, Yixiang Xu and Min Cai

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
* Correspondence: fangjuan@bjut.edu.cn; Tel.: +86-139-1129-6256

Abstract: In an asymmetric multi-core architecture, multiple heterogeneous cores share the last-
level cache (LLC). Due to the different memory access requirements among heterogeneous cores,
the LLC competition is more intense. In the current work, we propose a heterogeneity-aware
replacement policy for the partitioned cache (HAPC), which reduces the mutual interference between
cores through cache partitioning, and tracks the shared reuse state of each cache block within the
partition at runtime to guide the replacement policy to keep cache blocks shared by multiple cores in
multithreaded programs. In the process of updating the reuse state, considering the difference of
memory accesses to LLC by heterogeneous cores, the cache replacement policy tends to keep cache
blocks required by big cores, to better improve the LLC access efficiency of big cores. Compared with
LRU and the SRCP, which are the state-of-the-art cache replacement algorithms, the performance of
big cores can be significantly improved by HAPC when running multithreaded programs, while the
impact on little cores is almost negligible, thus improving the overall performance of the system.

Keywords: asymmetric multi-core; last-level cache; replacement policy; heterogeneity-aware

1. Introduction

The power density problem in processors is the main reason for the arrival of the multi-
core era. Further increasing the clock frequency by increasing the density of transistors
will lead to difficult chip heat dissipation problems, which makes it very difficult to
improve the performance of a single processor. It is almost impossible to improve the
overall performance of a computer system by increasing the performance of a single thread,
but only through parallelization [1,2]. Herein, multi-core processes are increasingly used in
computer systems.

Modern computer systems are more diverse than ever, ranging in size from hand-
held embedded machines to large cloud computing centers. In terms of utilization, those
computer systems exhibit intermittent inactivity, and peak resource demandsa huge dif-
ference [3–6]. To meet the growing demand for computer systems, the future computer
system needs to have higher scalability, and the heterogeneous multi-core system is the
key technology. In particular, a single ISA asymmetric multi-core processor (AMP), also
known as a heterogeneous multi-core processor (HMP), uses heterogeneity as a first prin-
ciple. The processor uses different types of cores, and each type of core has a different
microarchitecture design [7,8]. For example, some cores in the processor are designed
with sequential pipelines, and some are designed out of order; some cores are in MT
(multithread) mode, and some are in ST (single-thread) mode; some cores support large
cache structures, and some cores support small cache structures. It can be optimized for
power/performance or different application domains, or can take advantage of instruction-
level parallelism (ILP), thread-level parallelism (TLP), or memory-level parallelism (MLP).
Therefore, asymmetric multi-core processors are easier to adapt to diversity and are ex-
pected to play a role in a wide range of usage scenarios [3]. The processors share the
same instruction set architecture and it can be decided at runtime by the operating system

Micromachines 2022, 13, 2014. https://doi.org/10.3390/mi13112014 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/13112014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-4542-8727
https://doi.org/10.3390/13112014
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13112014?type=check_update&version=1

Micromachines 2022, 13, 2014 2 of 14

which task/thread is mapped to which core. As a result, asymmetric multi-core processors
can both accommodate the diversity of core microarchitecture designs and leverage load
balancing for fine-grained control over performance and power consumption.

However, in multi-core systems, including symmetric multi-core processors (SMP)
and AMP systems, concurrently running threads compete with each other for shared
resources. Threads may be slower than when running individually and monopolizing
shared resources such as shared cache, and memory bandwidth. In the AMP system,
the problem of contention for shared resources is more serious [9,10]. Since the high-
performance cores cannot respond faster from the shared resources, their performance
cannot be effectively improved. The effectiveness of the AMP system is not fully utilized,
and the use of high-performance cores is reduced. Therefore, if contention for shared
resources in an AMP system is not effectively managed, it may degrade the performance of
individual threads (especially those running on high-performance cores) and the overall
system [11–13]. Furthermore, in the AMP system, the memory access streams of different
threads are interleaved and interfere with each other in the shared last-level cache (LLC). In-
terthread interference destroys the original spatial locality of a single thread, thus seriously
degrading the system performance. As the number of cores on a chip in an AMP continues
to increase, the contention and interference for limited shared memory resources become
more serious, and effective management of shared LLC resources is extremely important
for AMP systems. Cache partitioning reduces intercore interference by dividing the shared
LLC among different cores. However, the current cache partitioning strategies proposed
for SMP are based on the assumption that all cores have the same performance [14,15].
In AMP, it needs to be adjusted according to the performance between different cores in
order to take advantage of the different advantages of asymmetric performance cores.

To maximize the efficiency of the AMP system, we propose a heterogeneous-aware
partitioned cache replacement policy framework (HAPC). HAPC considers cache block
reuse during cache replacement and avoids the need for core interference. The key idea
of HAPC is to analyze the memory access characteristics of cores and threads at runtime,
and guide the replacement policy by sensing the LLC requirements of heterogeneous cores.
In general, this paper makes the following contributions:

• We propose a heterogeneous-aware partitioned cache replacement policy, which
reduces intercore interference and improves the efficiency of data usage in partitioned
LLC in an asymmetric multi-core architecture.

• We design a reuse count table (RCT) for the historical reuse information of each cache
block in LLC, and update the value inthe RCT according to the memory access charac-
teristics of big cores and little cores, which can be further used in cache replacement
decisions.

• Finally, we evaluate HAPC in detail with PARSEC 3.0 using the gem5 simulator.
On average, HAPC improves the performance of big cores by 4.57% and 2.44% over
LRU and SRCP, respectively. HPAC can provide effective performance improvement
relative to the traditional replacement policies in various workloads and system
configurations.

The second part of this paper presents the basic background and related work.
Section 3 explains our HAPC framework. The fourth part introduces the experimental
method and analyzes the experimental results. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Asymmetric Multi-Core Architecture

As the heterogeneity of AMP increases, the complexity of AMP management rises
exponentially. For this reason, traditional SMP optimization techniques may not work
well in AMP, so new techniques are needed to manage AMP. In recent years, many related
technologies have been proposed to meet the needs of AMP management [16].

Zhao et al. [17] divides asymmetric multi-core processors into performance asymmetric
multi-core processors, functional asymmetric multi-core processors, and dynamic multi-

Micromachines 2022, 13, 2014 3 of 14

core processors, based on the differences in microarchitecture of different cores, from the
aspects of instruction-level architecture, pipeline differences, and cache system differences.
Among those processors, the performance asymmetric multi-core processor generally
integrates a big core with high performance and high power consumption, and a little
core with low power consumption and low performance in one processor chip to provide
services for applications with different requirements. The ARM big.LITTLE big and little
core architecture is the most successful commercial asymmetric multi-core architecture
design. It integrates high-performance processors and low-power processors through
SoC design, such as Samsung Exynos 9 series processors [18]. The processor has two
clusters: a big core cluster and a little core cluster. The big core cluster uses the Cortex
A15 with higher performance, the little core cluster uses the Cortex A7 with lower power
consumption, and the L2 Cache is shared within the cluster. This heterogeneous design of
high performance combined with low-power CPU cores can provide high-performance
processing power at significantly lower average power consumption.

The optimization goal under the asymmetric multi-core architecture is that the collabo-
rative computing cores can work better when running different programs, so as to improve
the overall performance. To fully realize the potential of AMP, it is necessary to solve the
challenges of complex architecture design, including task division, task mapping, data
communication, data parallelism, etc., between heterogeneous cores [19–21]. Liu et al. [22]
analyzed that the complexity of scheduling on AMP grows exponentially with the increase
of core types and the number of applications. Jia et al. [23] proposed a dynamic resource
partitioning method for a single ISA heterogeneous multi-core. This method divides shared
resources according to the requirements of two threads for shared resources and the per-
formance of the running core, which is very effective in improving the throughput and
fairness of a single ISA asymmetric multi-core system.

2.2. Shared Last-Level Cache Management Policies

A shared last-level cache means that multiple threads can share some data, reduce com-
munication delay, reduce redundant backup of data, and improve cache space utilization.
However, contention between threads for limited cache space will also lead to an increase
in the cache miss rate, which affects the throughput and fairness of the system. In order to
reduce the impact of competing for cache space between threads, the optimal cache block
can be reserved by designing a reasonable cache replacement policy. Another intuitive idea
is to partition the cache and avoid interthread interference by explicitly allocating cache
space to each core.

The cache partitioning technique divides and distributes the entire LLC space to each
core, and ensures that each core fully occupies the allocated area, thereby intentionally
eliminating interference between applications and alleviating cache space imbalance be-
tween applications. Cache partitioning combines the isolation of private caches and the
high capacity of shared caches, and is suitable for a wide range of application scenarios.
Qureshi et al. proposed a utility-based cache partitioning (UCP) [24] method to minimize
the total number of misses incurred by all applications in the workload on the shared
last-level cache. Huang et al. [25] proposed a low-power shared cache partitioning method
with combined linear and exponential curve fitting considering the characteristics between
cache miss rate and cache size. Pons et al. [26] analyzed LLC behaviors detrimental to cache
performance, data reuse, and cache occupancy, and based on these behaviors, a critical
phase-aware partitioning approach (CPA) was proposed, which achieves IPC-preserving
by efficiently utilizing LLC space while reducing turnaround time.

Cache replacement policies mainly use the principle of locality to reduce intra-application
interference on single-core systems. Besides traditional replacement policies (such as FIFO,
MRU, LFU, and LRU), many high-performance replacement policies have been proposed
to apply to shared LLC [27–29]. Ref. [29] learns from Belady’s optimal solution for past
references to predict the caching behavior of future references, but it is not designed for
asymmetric multi-core architecture. Those policies consider the workload characteristics

Micromachines 2022, 13, 2014 4 of 14

of individual applications and dynamically select a policy suitable for each application to
reduce the intra-application interference of each application, but the replacement policy
cannot fundamentally eliminate the interapplication interference on the shared LLC [30].
A sharing and reuse-aware partition cache replacement policy [31] is proposed to track all
accesses to cache blocks in the local core and global check partitions for partition cache
maintenance, which can be further used for cache replacement decisions to prevent the evic-
tion of cache blocks shared by multithreaded programs across multiple cores, minimizing
intercore interference. Refs. [32,33] are priority-aware scheduling that propose fine-grained
application characterizations to improve the performance (IPC) of prioritized applications
executing under shared-resource contention. Those methods focus on minimizing con-
tention on both the main-memory bandwidth and the LLC by monitoring the pressure that
each application inflicts on these resources. Ref. [34] find that smart cache replacement
reduces the burden on software to provide intelligent scheduling decisions. Herein, these
priority-aware scheduling and HAPC combined can together improve performance.

As mentioned above, effective cache partitioning and cache replacement policies are
the keys to improving the efficiency of shared last-level cache usage. However, the last-level
cache management technology for multithreaded programs under asymmetric multi-core
architecture has not been studied. In this paper, we propose a heterogeneous-aware
partition cache replacement policy, which can sense the difference in memory access
characteristics of heterogeneous cores and the reusability of cache blocks to meet the needs
of heterogeneous cores for LLC.

3. Heterogeneity-Aware Replacement Policy for the Partitioned Cache

In this paper, we design a heterogeneity-aware replacement policy (HAPC) for the
partitioned LLC in asymmetric multi-core processors. We first briefly describe the data
reuse for multithread programs and the interference of memory access in asymmetric
multi-core processors, which are closely related to LLC utilization. Then, we describe the
implementation steps of HAPC in detail. By tracking the reuse status of cache blocks and
distinguishing the memory accesses between big cores and little cores, HAPC can reduce
the interference between cores and improve system performance.

3.1. Data Reuse for Multithreaded Programs

The advantage of a multi-core system is that multiple cores can run programs in paral-
lel, including multiprocess programs and multithreaded programs. The main difference
between multiprocess and multithreaded applications is that data between processes are
independent of each other, and a cache block can only be accessed by one core. There are
shared data between multiple threads of the same process, and memory access requests
from multiple cores may hit the same cache block. Data in a multithreaded application can
be private or shared by different threads. If different threads share the same cache block, it
is called constructive sharing. If one thread evicts the cache block used by another thread
during cache replacement, it is called destructive sharing [31].

In the cache partitioning scheme in this paper, this work adopts a static partitioning
method based on way partitioning, which divides each way of the shared LLC equally
among all cores. This approach is coarse-grained and easy to implement, but also wastes
LLC space if underutilized. Cache partitioning can effectively avoid interference between
cores in multiprocess applications because there is only constructive sharing in multiprocess
programs. However, for multithreaded programs, cache partitioning can only solve the
intercore interference caused by constructive sharing, and cannot effectively deal with
destructive sharing. This is because the replacement policy of the cache partition only
considers the impact on the LRU stack when the memory access request of the core hits,
and may evict the cache blocks shared by multiple cores in the partition. Data sharing
becomes a problem that needs to be solved efficiently because each thread executing on
a different processor will have a copy of the same data or instructions. Therefore, it is
necessary to record the sharing and reuse information of cache blocks in the partitioned

Micromachines 2022, 13, 2014 5 of 14

cache in response to the above problems, and then guide the replacement policy to improve
the constructive sharing across threads and reduce the interference between cores.

In order to retain the cache blocks shared by multiple cores at the same time in the
cache partition, we maintain a reuse count table (RCT) for LLC, which is used to record
the historical reuse information of each cache block. During the operation of the system,
the value in the RCT is updated according to the memory access request of each core,
and the selection of the evicted cache block is guided when the cache replacement policy
occurs. Assuming that during the running of a multithreaded program, shared data is
loaded by a core into a cache block within a cache partition, then the core is called the
local core of the cache block, and other cores are called the shared core of the cache block.
The RCT of a cache block contains two items, which are used as indicators of the local reuse
characteristics and shared reuse characteristics of the cache line:

• LC (local count): LC is used to record the reuse count caused by the local core fetch
request hitting the cache block.

• SC (share count): SC is used to record the reuse count caused by the shared core
memory fetch request hitting the cache block.

Initially, the LC and SC counters in the RCT are set to 0. The cache controller updates
the content of the RCT. When a cache hit occurs, the cache controller compares the source
of the memory access request with the cache block ownership to determine whether it is
LC reuse or SC reuse. When a cache miss occurs, the controller uses the reuse information
recorded in the RCT to select an eviction block for the replacement policy.

3.2. Memory Access Disturbance in Asymmetric Multi-core Processor

When the core accesses the shared LLC, it will be mapped to the corresponding cache
line according to the request address, and regardless of the cache partition mapped to any
core, it can be accessed to complete a cache hit. Once the corresponding cache block cannot
be found, a cache miss occurs, and a cache replacement policy needs to be implemented to
find the cache block in the core cache partition for eviction and load a new cache block into
the LLC. The LRU replacement policy only considers the recent access information of the
data block, regardless of the access frequency of the data block and the source of the access
request. LRU cannot distinguish the shared cache blocks of multiple cores, and cannot
classify the reuse information of the cache blocks accessed by the heterogeneous cores.
When a multithreaded program is running with a working set larger than the cache capacity,
the cache will thrash, which will cause system performance to degrade.

Generally speaking, in the performance asymmetric multi-core architecture, the cores
are divided into two types: big cores and little cores. The two types of cores design are
positioned differently. The big core has higher performance, and the little core has poor per-
formance but has higher memory access latency tolerance and lower power consumption.
This heterogeneous design of high-performance combined with low-power CPU cores can
provide high-performance processing capabilities with significantly lower average power
consumption, but there are great differences in memory access characteristics between
different types of cores. In order to more intuitively show the difference in memory access
between big and little cores, we counted the number of LLC accesses of big and little cores
when running parsec multithreaded applications, as shown in Figure 1.

It can be clearly seen from the figure that the number of LLC accesses of the big
core is significantly higher than the number of LLC accesses of the little core. This is
because the frequency and pipeline depth of the big core are higher than those of the
little core. As a result, the memory access requirements of different performance cores
are different, and the impact of cache access on other cores in the system is also different.
Therefore, when managing LLC, it is necessary to take into account the differences between
asymmetric cores to make adjustments. When the memory access request of big cores
increases, the cache blocks required by high-performance cores should be reserved as much
as possible to ensure that the high-performance core can give full play to the advantages of
its microarchitecture design, and improve the overall performance of the system.

Micromachines 2022, 13, 2014 6 of 14

0

2

4

6

8

10

12

14

N
u
m

b
er

s
o

f
M

em
o

ry
 A

cc
es

se
s

o
f

L
L
（

1
e6

)

big core little core

Figure 1. Difference in the number of LLC accesses between big and little cores.

3.3. Heterogeneous-Aware Partition Cache Replacement Policy

In the heterogeneous-aware partition cache replacement policy (HAPC), the reuse
counting table (RCT) tracks the reuse status of cache blocks according to the access fre-
quency of cache blocks. If the access frequency is high, the cache block reuse count is
increased, and the cache block has a higher priority to be kept in the LLC; otherwise,
the cache block has a lower priority. For the replacement policy, the cache block that has
not been accessed relatively recently is selected from the lower priority blocks for eviction.
The RCT further classifies the sources of memory access requests, and distinguishes mem-
ory requests from the local core and the shared core. The LC counter in the RCT is used to
record the reuse of the cache block by the local core. The larger the LC counter, the more
times the cache block is reused within the core and has a better locality. The SC counter in
the RCT is used to record the reuse of the cache block by the shared core, and marks the
cache block shared by multiple cores. If the SC value of the cache block is high, it means
that the cache block has high shared reuse characteristics.

Figure 2 shows a high-level overview of the proposed heterogeneous aware partition
cache replacement policy. HAPC uses a reuse count table (RCT). An RCT is maintained
to keep track of the accesses made to each cache block for every partition and find a
replacement block according to the values contained in it. The RCT contains LC and SC,
as mentioned in Section 3.1.

The LC and SC of the RCT counter are initially set to 0. The cache controller updates
the RCT value according to the process shown in Algorithm 1 when processing the LLC
memory access request, and guides the cache replacement policy according to the change
of the RCT value. When a cache hit occurs, the cache controller judges the source of the
memory access request, differentiates between big and little cores, and controls the LC
and SC counters to increase different reuse weights. On a cache miss, the value of the
counter present in the RCT is used to find the evicted cache block. At the same time, the LC
and SC counter values of the remaining blocks in the cache partition will be decremented
by 1, ensuring that the priority of the cache block that will not be accessed again will
decrease over time, and will eventually be selected and expelled by the replacement policy;
otherwise, it may be long-term retention, causing cache pollution. For a newly inserted
cache block, its LC is set to the average value of the LC values of other cache blocks except
the evicted cache block in the cache partition.

Micromachines 2022, 13, 2014 7 of 14

Cache Controller

L
as

t
L

ev
el

 C
ac

h
e

Cache Controller

L
as

t
L

ev
el

 C
ac

h
e

N ways in the LLC

big core 0

D I

big core 0

D I

big core m

D I

big core m

D I

little core n

D I

little core n

D I

little core 0

D I

little core 0

D I

big core 0

big core m

little core 0

little core n

RCT
LC SC

Cache Controller

L
as

t
L

ev
el

 C
ac

h
e

N ways in the LLC

big core 0

D I

big core m

D I

little core n

D I

little core 0

D I

big core 0

big core m

little core 0

little core n

RCT
LC SC

Figure 2. Overview of the HAPC.

Algorithm 1: RCT update.
Input: The memory request issued by the core Req; Mapping of LLC ways and

divided cores (Map[x] = c represents that the Xth way of LLC is divided to
the core c); RCT table, representing reuse information for each cache line;
Reuse weights for different cores (weight_big, weight_little).

Output: Updated RCT table
1 if Req hits cache line then
2 if core ∈ big cores then
3 LC = LC + weight_big;
4 SC = SC + weight_big;
5 end
6 if core ∈ big cores then
7 LC = LC + weight_little;
8 SC = SC + weight_little;
9 end

10 end
11 if Req cache misses then

/* Select the eviction block in the cache partition and execute
the replacement policy */

12 for cache line ∈ core do
13 victim = LRU(min(LC) and min(SC));
14 end

/* Insert new data into the cache line and update the
corresponding RCT table */

15 for cache line ∈ core do
16 LC = average(LC ∈ core);
17 SC = 0;
18 end

/* Update other cache blocks in the cache partition */
19 for cache line ∈ core do
20 LC = LC – 1;
21 SC = SC – 1.;
22 end
23 end

Micromachines 2022, 13, 2014 8 of 14

In the heterogeneous-aware partition cache replacement policy, the maintenance of
the reuse count table needs to be aware of the memory access behavior characteristics of
the heterogeneous cores under the asymmetric multi-core architecture. During program
execution, one must monitor the performance indicators of big cores, and dynamically
adjust the RCT reuse weights (weight_big, and weight_little) to ensure that cache blocks
reused by big cores have higher priority. The larger the value of weight_big is relative
to weight_little, the larger the increase in the reuse count in the RCT table when the
big core access hits, and the cache block is not easy to evict in the replacement policy.
The index of performance judgment is based on the memory access hit rate of the big core.
During runtime, the running status of the application is regularly monitored. After a fixed
tick interval, the memory access hit rate of the big core is calculated, and then the reuse
weight is reset. The specific process is as follows:

(1) Set weight_big and weight_little to 1.
(2) Calculate the hit rate of the big cores in this interval, and increase the weight_big of

the next interval by 1 until the weight_big increases to the threshold (the number of
big cores).

(3) Calculate the hit rate of the big core in the next interval and compare it with the hit
rate of this interval. If the hit rate increases, go to (2); otherwise, go to (1).

4. Experiments
4.1. Experimental Setup

The experiment uses the gem5 simulator [35] to simulate the ARM big.LITTLE ar-
chitecture. We use the gem5 full-system simulator to evaluate the heterogeneity-aware
replacement policy for the partitioned cache that we proposed. The Ruby memory sub-
system in gem5 implements a detailed simulation model, which provides a variety of
replacement policies and consistent protocol implementations. The topology structure
is built, and the memory access request is forwarded and processed in the DMA and
cache controller configuration. The experiment simulates the DIE model of 2 big cores +
2 little cores as an asymmetric multi-core environment, and uses the full system mode to
simulate. Both the big cores and the little cores use the ARM O3 CPU type, and the core
microarchitecture configuration is shown in Table 1. Each core has its own L1 cache and L2
cache, and the L3 cache is shared between two DIEs. The overall structure of the system is
shown in Figure 3.

Table 1. Baseline configuration.

Core Big Core Little Core

ISA ARMv8 (64 bit) ARMv8 (64 bit)
Frequency 2.0 Hz 1.4 Hz

Pipeline Out-of-order Out-of-order
Issue width 6 4
Fetch width 16 4

Pipeline stages Big core Little core
L1 cache (I & D) 32 KB/2-way 32 KB/2-way

L2 cache 128 KB/2-way 128 KB/2-way
LLC 1 MB–8 MB/16-way

We evaluate HAPC on the parsec 3.0 [36] benchmark suite, as the benchmark suit has
many multithreaded applications. The parsec hook functions also define a region of interest
(ROI) for each benchmark. This code region is the part of the benchmark which performs
the “interesting” computations. We take the average of all ROIs’ results in each benchmark
as the final experimental result. We compare HAPC with the existing cache replacement
policy LRU and the sharing and reuse-aware cache replacement policy (SRCP).

Micromachines 2022, 13, 2014 9 of 14

big

core0

big

core0

big

core1

big

core1

L1L1 L1L1

L2L2 L2L2

‘big’DIE

big

core0

big

core1

L1 L1

L2 L2

‘big’DIE

little

core2

little

core2

little

core3

little

core3

L1L1 L1L1

L2L2 L2L2

‘LITTLE’DIE

little

core2

little

core3

L1 L1

L2 L2

‘LITTLE’DIE

Ruby network

Shared LLC

big

core0

big

core1

L1 L1

L2 L2

‘big’DIE

little

core2

little

core3

L1 L1

L2 L2

‘LITTLE’DIE

Ruby network

Shared LLC

Figure 3. System architecture of experiment.

A way to core mapping table is established for LLC in gem5 to implement static
partitioning based on way partition. We create an RCT table for the LLC to record the reuse
status of each cache line, triggering an update of the RCT table entry when a memory access
request hits a cache line. When the memory access request misses, the cache controller first
filters the cache lines with low reuse characteristics from the RCT table according to the
reuse information, and then sends them to the cache replacement policy for LRU to find
the eviction block.

4.2. Results

We first evaluate the performance of the heterogeneous-aware partitioned cache
replacement policy, comparing it with the traditional cache replacement policy LRU,
and the sharing and reuse-aware cache replacement policy (SRCP). Figures 4 and 5 show
the performance improvement on average for big cores and little cores, respectively.
The heterogeneous-aware partition cache replacement policy provides the best perfor-
mance on average among all parsec sim_small benchmarks. Compared with LRU, HAPC
improves the performance of big cores by 4.57% on average, while the performance of little
cores decreases by only 0.04% on average, and the decline has little effect on the overall
performance. Compared with SRCP, the big core performance of HAPC is improved by
an average of 2.44%. Applications such as feeret and streamcluster, which are interthread
communication intensive, show more significant improvement in performance than LRU
and SRCP approaches. Fluidanimate and swaption are memory nonintensive applications;
threads in those applications run in parallel and do not coordinate much, so HPAC shows
negligible performance improvement compared to LRU. Applications such as blacksc-
holes and canneals are benefited by HAPCdue to decreased intercore interference in an
asymmetric multi-core architecture.

Micromachines 2022, 13, 2014 10 of 14

Figure 4. Speedup over baseline LRU of big cores.

Figure 5. Speedup over baseline LRU of little cores.

We believe that this is because the LRU and SRCP policies lack awareness of the
memory access behavior of heterogeneous cores and do not share resource tilt for big
cores. HAPC dynamically adjusts the growth weight of RCT at runtime to ensure that the
reuse of big cores has a higher weight, which improves the performance of big cores in an
asymmetric multi-core architecture. As a result, HAPC improves the overall performance
of asymmetric multi-core systems.

Figure 6 shows the improvement of LLC hit rate of big cores under each configuration.
Compared with LRU, HAPC improves the LLC hit rate of big cores by 2.79% on average,
and compared with SRCP, HAPC improves the performance of big cores by 1.18% on
average. This shows that the use efficiency of the big core for LLC has been improved,
which is an important reason for the performance improvement. In summary, by sensing
the memory access characteristics of heterogeneous cores, HAPC can effectively retain the
shared cache blocks accessed by big cores, improve the LLC hit rate and IPC of big cores,
and ultimately improve the overall performance of asymmetric multi-core systems.

Micromachines 2022, 13, 2014 11 of 14

Figure 6. Improvement of hit rate over baseline LRU.

5. Discussion
5.1. Effect of HAPC on the Parsec Sim_Medium Program

We also evaluated HAPC on the parsec sim_medium benchmarks in gem5 and ob-
served that it provides similar performance to that realized on the sim_small benchmarks.
Sim_medium benchmarks are medium-scale experiments, while sim_small benchmarks
are small-scale experiments. Figure 7 shows the IPC speedup over the baseline of each
replacement policy. HAPC provides the best average performance across all configurations.
On average, using the heterogeneous-aware partitioned cache replacement policy results in
a 3.16% performance benefit compared to LRU, and a 1.75% performance gain compared
to SRCP.

Figure 7. Speedup over baseline LRU.

Figure 8 shows the improvement of LLC hit rate over LRU of each replacement
policy for parsec sim_medium benchmarks. On average, Figure 8 shows that HAPC
achieves an average improvement of LLC hit rate of 3.51%, while SRCP achieves an average
improvement of LLC hit rate of 1.61%. These improvements indicate that HAPC is highly
modular and shows significant performance benefits on test programs of different scales.

Micromachines 2022, 13, 2014 12 of 14

Figure 8. Improvement of hit rate over baseline LRU.

5.2. Overheads of HAPC

The RCT in HAPC uses extra space because it stores extra information for monitoring
the usage of cache blocks in LLC. Each entry of RCT corresponds to one cache block in LLC.
Each entry has 4 bits for LC and 4 bits for SC. A 2 MB LLC has 32 K cache blocks. HPAC
imposes 32 KB storage overhead, and about 1.5% of the LLC size. Overall, HAPC offers a
practical replacement policy for eliminating intercore interference in the shared LLC on an
asymmetric multi-core processor.

5.3. Varying Number of Cores

To realistically model a modern commercial asymmetric multi-core processor, we
simulate an eight-core system with four big cores and four little cores. Figure 9 shows the
performance improvement of big cores in the eight-core system. We make two observations
from Figure 9. First, HAPC consistently outperforms LRU and SRCP in the eight-core
system; HAPC outperforms LRU and SRCP by 5.86% and 3.60%, respectively. Second,
HAPC’s performance improvement over prior replacement policies increases as core count
increases.

Figure 9. Speedup over baseline LRU.

6. Conclusions

With the diversification of computer systems and application requirements, asymmet-
ric multi-core architecture will become the development direction of high-performance
and low-power processors. Under the asymmetric multi-core architecture, we propose
a heterogeneous-aware partition cache (HAPC) replacement policy. HAPC dynamically
adjusts the reuse weight of cache blocks by sensing the difference in memory access char-
acteristics of heterogeneous cores, reducing the interference of little cores on the memory

Micromachines 2022, 13, 2014 13 of 14

access behavior of big cores, thereby ensuring that cache blocks reused by big cores are not
easily evicted in the replacement policy. The experimental evaluation shows that HAPC is
superior to the traditional LRU replacement policy and the sharing and reuse-aware SRCP
replacement policy. HAPC can better play the high-performance advantages of the big
cores under the asymmetric multi-core architecture without affecting the performance of
the little cores, improving the use efficiency of LLC and improving the overall performance
of the system.

In the context of a multi-core processor, dynamic cache partitioning is also an effective
method that has been used to manage shared cache. The replacement policy we proposed
focuses on static cache partitioning; however, the same can be implemented for dynamic
partitioning. In our future work, we will explore the heterogeneous-aware partition cache
replacement policy on top of dynamic partitioning.

Author Contributions: Conceptualization, J.F. and H.K.; methodology, H.K.; software, H.K.; valida-
tion, J.F., H.K., and H.Y.; formal analysis, H.K.; investigation, H.K.; resources, H.K.; data curation,
H.K. and H.Y.; writing—original draft preparation, H.K.; writing—review and editing, H.K. and H.Y.;
visualization, H.K.; supervision, H.K. and M.C.; project administration, H.K. and Y.X.; funding
acquisition, J.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Beijing Natural Science Foundation (4192007) and the National
Natural Science Foundation of China (61202076).

Acknowledgments: This work is supported by Beijing Natural Science Foundation (4192007) and
the National Natural Science Foundation of China (61202076), along with other government sponsors.
The authors would like to thank the reviewers for their efforts and for providing helpful suggestions
that led to several important improvements in our work. We would also like to thank all teachers and
students in our laboratory for helpful discussions.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Leiserson, C.E.; Thompson, N.C.; Emer, J.S.; Kuszmaul, B.C.; Lampson, B.W.; Sanchez, D.; Schardl, T.B. There’s

plenty of room at the Top: What will drive computer performance after Moore’s law? Science 2020, 368, eaam9744.
https://doi.org/10.1126/science.aam9744.

2. Kim, C.; Huh, J. Fairness-Oriented OS Scheduling Support for Multi-core Systems. In Proceedings of the 2016 International
Conference on Supercomputing, Istanbul, Turkey, 1–3 June 2016; Association for Computing Machinery: New York, NY, USA,
2016. https://doi.org/10.1145/2925426.2926262.

3. Mittal, S. A Survey of Techniques for Architecting and Managing Asymmetric Multi-core Processors. ACM Comput. Surv. 2016,
48, 1–38. https://doi.org/10.1145/2856125.

4. Souza, J.D.; Becker, P.H.E.; Beck, A.C.S. Improving multitask performance and energy consumption with partial-ISA multi-cores.
J. Parallel Distrib. Comput. 2021, 153, 1–14.

5. Karaoui, M.L.; Carno, A.; Lyerly, R.; Kim, S.H.; Olivier, P.; Min, C.; Ravindran, B. POSTER : Scheduling HPCWorkloads on
Heterogeneous-ISA Architectures. In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming,
New York, United States, 16–20 February 2019; https://doi.org/10.1145/3293883.3295717.

6. Saez, J.C.; Pousa, A.; Giusti, A.D.; Prieto, M. On the Interplay Between Throughput, Fairness and Energy Efficiency on Asymmetric
Multi-core Processors. Comput. J. 2018, 61, 74–94.

7. Saez, J.C.; Pousa, A.; Castro, F.; Chaver, D.; Prieto-Matias, M. Towards completely fair scheduling on asymmetric single-ISA
multi-core processors. J. Parallel Distrib. Comput. 2017, 102, 115–131. https://doi.org/10.1016/j.jpdc.2016.12.011.

8. Garcia-Garcia, A.; Saez, J.C.; Prieto-Matias, M. Contention-aware fair scheduling for asymmetric single-ISA multi-core systems.
IEEE Trans. Comput. 2018, 67, 1703–1719. https://doi.org/10.1109/TC.2018.2836418.

9. Choudhury, A.M.; Nur, K. Qalitative Study of Contention-aware Scheduling Algorithm for Asymmetric Multi-core Processors.
In Proceedings of the International Conference on Computing Advancements, Dhaka, Bangladesh, 10–12 January 2020; pp. 1–6.
https://doi.org/10.1145/3377049.3377135.

10. Del Sozzo, E.; Durelli, G.C.; Trainiti, E.; Miele, A.; Santambrogio, M.D.; Bolchini, C. Workload-aware power optimization strategy
for asymmetric multiprocessors. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 14–18 March 2016; pp. 531–534.

11. Srinivasan, S.; Kurella, N.; Koren, I.; Kundu, S. Exploring heterogeneity within a core for improved power efficiency. IEEE Trans.
Parallel Distrib. Syst. 2015, 27, 1057–1069. https://doi.org/10.1109/TPDS.2015.2430861.

Micromachines 2022, 13, 2014 14 of 14

12. Forbes, E.; Rotenberg, E. Fast register consolidation and migration for heterogeneous multi-core processors. In Proceedings of
the 2016 IEEE 34th International Conference on Computer Design (ICCD), Scottsdale, AZ, USA, 2–5 October 2016; pp. 1–8.

13. Padmanabha, S.; Lukefahr, A.; Das, R.; Mahlke, S.A. DynaMOS: Dynamic schedule migration for heterogeneous cores. In
Proceedings of the 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Waikiki, HI, USA, 5–9
December 2015; pp. 322–333.

14. Selfa, V.; Sahuquillo, J.; Petit, S.; Gomez, M.E. A hardware approach to fairly balance the inter-thread interference in shared
caches. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 3021–3032. https://doi.org/10.1109/TPDS.2017.2713778.

15. Sun, G.; Shen, J.; Veidenbaum, A.V. Combining prefetch control and cache partitioning to improve multi-core performance. In
Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24
May 2019; pp. 953–962. https://doi.org/10.1109/IPDPS.2019.00103.

16. Yu, T.; Zhong, R.; Janjic, V.; Petoumenos, P.; Zhai, J.; Leather, H.; Thomson, J. Collaborative heterogeneity-aware OS scheduler
for asymmetric multi-core processors. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 1224–1237. https://doi.org/10.1109/
TPDS.2020.3045279.

17. Zhao, S.; Hao, C.; Jian, Z.; Li, M. Energy-Efficient Phase-Aware Load Balancing on Asymmetric Multi-core Processors. In
Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10
December 2018; pp. 2575–2579. https://doi.org/10.1109/CompComm.2018.8780697.

18. Greenhalgh, P. Big. LITTLE Processing with ARM Cortex-A15 & Cortex-A7: Improving Energy Efficiency in High-Performance Mobile
Platforms; White Paper; ARM Ltd.: Cambridge, UK, 2011.

19. Lee, C.; Ro, W.W. Simultaneous and Speculative Thread Migration for Improving Energy Efficiency of Heterogeneous Core
Architectures. IEEE Trans. Comput. 2018, 67, 498–512. https://doi.org/10.1109/TC.2017.2770126.

20. Boran, N.K.; Rathore, S.; Udeshi, M.; Singh, V. Fine-Grained Scheduling in Heterogeneous-ISA Architectures. IEEE Comput.
Archit. Lett. 2021, 20, 9–12. https://doi.org/10.1109/LCA.2020.3045056.

21. Cho, S.; Chen, H.; Madaminov, S.; Ferdman, M.; Milder, P. Flick: Fast and Lightweight ISA-Crossing Call for Heterogeneous-ISA
Environments. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
Valencia, Spain, 30 May–3 June 2020; pp. 187–198. https://doi.org/10.1109/ISCA45697.2020.00026.

22. Liu, G.; Park, J.; Marculescu, D. Dynamic thread mapping for high-performance, power-efficient heterogeneous many-core
systems. In Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9
October 2013; pp. 54–61. https://doi.org/10.1109/ICCD.2013.6657025.

23. Jia, G.; Han, G.; Jiang, J.; Sun, N.; Wang, K. Dynamic Resource Partitioning for Heterogeneous Multi-Core-Based Cloud
Computing in Smart Cities. IEEE Access 2016, 4, 108–118. https://doi.org/10.1109/ACCESS.2015.2507576.

24. Qureshi, M.K.; Patt, Y.N. Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition
shared caches. In Proceedings of the 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
Orlando, FL, USA, 9–13 December 2006; pp. 423–432.

25. Huang, K.; Wang, K.; Zhang, X.; Yan, X. Curve fitting based shared cache partitioning scheme for energy saving. IEICE Electron.
Express 2018, 15, 20180886. https://doi.org/10.1587/elex.15.20180886.

26. Pons, L.; Sahuquillo, J.; Selfa, V.; Petit, S.; Pons, J. Phase-Aware Cache Partitioning to Target Both Turnaround Time and System
Performance. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2556–2568. https://doi.org/10.1109/TPDS.2020.2996031.

27. Marinakis, T.; Anagnostopoulos, I. Performance and Fairness Improvement on CMPs Considering Bandwidth and Cache
Utilization. IEEE Comput. Archit. Lett. 2019, 18, 1–4. https://doi.org/10.1109/LCA.2019.2944810.

28. Xiong, W.; Katzenbeisser, S.; Szefer, J. Leaking Information Through Cache LRU States in Commercial Processors and Secure
Caches. IEEE Trans. Comput. 2021, 70, 511–523. https://doi.org/10.1109/TC.2021.3059531.

29. Jain, A.; Lin, C. Back to the future: Leveraging Belady’s algorithm for improved cache replacement. In Proceedings of the 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 78–89.
https://doi.org/10.1109/ISCA.2016.17.

30. Sanchez, D.; Kozyrakis, C. Scalable and efficient fine-grained cache partitioning with vantage. IEEE Micro 2012, 32, 26–37.
https://doi.org/10.1109/MM.2012.19.

31. Ghosh, S.N.; Bhargava, L.; Sahula, V. SRCP: Sharing and reuse-aware replacement policy for the partitioned cache in multi-core
systems. Des. Autom. Embed. Syst. 2021, 25, 193–211. https://doi.org/10.1007/s10617-021-09251-z.

32. Kundan, S.; Anagnostopoulos, I. Priority-aware scheduling under shared-resource contention on chip multi-core processors. In
Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5.

33. Kundan, S.; Marinakis, T.; Anagnostopoulos, I.; Kagaris, D. A Pressure-Aware Policy for Contention Minimization on Multi-core
Systems. ACM Trans. Archit. Code Optim. (TACO) 2022, 19, 1–26.

34. Jaleel, A.; Najaf-Abadi, H.H.; Subramaniam, S.; Steely, S.C.; Emer, J. Cruise: Cache replacement and utility-aware scheduling. In
Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating
Systems, London, UK, 3–7 March 2012; pp. 249–260.

35. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.
The gem5 simulator. ACM SIGARCH Comput. Archit. News 2011, 39, 1–7. https://doi.org/10.1145/2024716.2024718.

36. Zhan, X.; Bao, Y.; Bienia, C.; Li, K. PARSEC3. 0: A multi-core benchmark suite with network stacks and SPLASH-2X. ACM
SIGARCH Comput. Archit. News 2017, 44, 1–16. https://doi.org/10.1145/3053277.3053279.

	Introduction
	Related Work
	Asymmetric Multi-Core Architecture
	Shared Last-Level Cache Management Policies

	Heterogeneity-Aware Replacement Policy for the Partitioned Cache
	Data Reuse for Multithreaded Programs
	Memory Access Disturbance in Asymmetric Multi-core Processor
	Heterogeneous-Aware Partition Cache Replacement Policy

	Experiments
	Experimental Setup
	Results

	Discussion
	Effect of HAPC on the Parsec Sim_Medium Program
	Overheads of HAPC
	Varying Number of Cores

	Conclusions
	References

