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Abstract: Magnesium-based amorphous alloys have aroused broad interest in being applied in marine
use due to their merits of lightweight and high strength. Yet, the poor corrosion resistance to chloride-
containing seawater has hindered their practical applications. Herein, we propose a new strategy to
improve the chloride corrosion resistance of amorphous Mg65Cu15Ag10Gd10 alloys by engineering
atomic-to-nano scale structural homogeneity, which is implemented by heating the material to the
critical temperature of the liquid–liquid transition. By using various electrochemical, microscopic, and
spectroscopic characterization methods, we reveal that the liquid–liquid transition can rearrange the
local structural units in the amorphous structure, slightly decreasing the alloy structure’s homogeneity,
accelerate the formation of protective passivation film, and, therefore, increase the corrosion resistance.
Our study has demonstrated the strong coupling between an amorphous structure and corrosion
behavior, which is available for optimizing corrosion-resistant alloys.

Keywords: magnesium-based alloy; liquid–liquid phase transition; corrosion resistance; structural
homogeneity

1. Introduction

Magnesium (Mg) alloys are considered one of the most promising lightweight metals
to potentially replace heavier structural materials in the uses of aerospace, marine, and
automobile vehicles [1,2]. However, despite the great prospect, Mg alloys still suffer from a
number of inherent drawbacks, including the strength–corrosion tradeoff [3,4]. In this re-
gard, many efforts have been devoted to employing amorphous Mg alloys for anti-corrosion
uses. Here, an amorphous alloy means that all the metallic atoms in the long range are
arranged randomly in the structure. It is found that amorphous magnesium-based alloys
are attractive for their high mechanical properties [5,6]. In addition, amorphous alloys
also exhibit improved corrosion resistance due to the chemical homogeneity with reduced
crystallographic breaks such as grain boundaries, dislocations, and phase segregations, so
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the chemical attack on those susceptible sites can be largely avoided [7,8]. Nevertheless,
for the Mg-based amorphous alloys in particular, the high reactivity of Mg still makes the
material vulnerable to corrosion failure [9,10]. To further improve the corrosion resistance
of the Mg-based amorphous alloys, previous efforts mainly focus on strategies of surface
modifications [11,12] and on alloying corrosion-resistant elements like Nb [13]. Further-
more, forming a passivation film on the alloy surface is also an effective way to prevent
corrosion [14,15]. Although various progress has been achieved, the critical barrier has not
yet been overcome, which severely hinders the widespread usage of Mg-based amorphous
alloys [16,17]. Therefore, more rational and artful ideas for material design down to the
nanostructural or atomic level are highly desired for improving the corrosion resistance of
the amorphous Mg alloys.

When heating amorphous alloys before melting, typically, several phase transition
processes occur in sequence, including separation into amorphous phases with differ-
ent components [18,19], liquid–liquid phase transition [20,21], and crystallization [22,23].
Among these processes, the liquid–liquid phase transition involves only rearrangement
of local structural units and no component variation in the amorphous alloys without
a long-range order [24,25]. Although local changes in structure and density are subtle
and come with a small amount of heat release, it still makes remarkable differences in
mechanical and functional properties [26,27]. Studies show that the liquid–liquid transition
is closely related to the thermodynamic stability and mechanical properties of Mg-based
amorphous alloys [28]. The thermodynamically-favored local order and loose structure
emerge during the liquid–liquid transition, which benefits higher hardness and modulus
than a completely disordered structure. In addition, Hu et al. [29] reveal that the metastable
state formed during the liquid–liquid transition in (Fe0.72B0.24Nb0.04)95.5Y4.5 amorphous
ribbon could significantly reduce the activation energy and reaction energy barrier of high-
temperature oxidization. More importantly, by using synchrotron small-angle scattering,
our group has demonstrated that the liquid–liquid phase transition can significantly impact
the atomic-to-nano scale homogeneity in the medium-range structure of amorphous Mg
alloys [28], which is strongly related to the corrosion resistance of the material [30–33]. This
motivates us to fundamentally understand the correlation between liquid–liquid transition
and corrosion, improving the corrosion resistance in amorphous Mg-based alloys.

In this work, by selecting Mg65Cu15Ag10Gd10 amorphous alloy as a model material,
we reveal that the chloride corrosion resistance of Mg-based alloys could be significantly
improved by rearranging the local structural unit in the liquid–liquid transition. By means
of potentiodynamic polarization measurement, electrochemical impedance test, immersion
test, differential scanning calorimetry, high energy X-ray diffractometry, high-resolution
transmission electron microscopy, X-ray photoelectron spectroscopy, and scanning electron
microscopy, it is revealed that structural ordering and heterogeneity during the liquid–
liquid transition accelerate the formation of the passivation film and therefore improve
the corrosion resistance of the Mg-based alloy. This study proves the strong correlation
between an amorphous structure and corrosion behavior and provides a new strategy for
optimizing corrosion-resistance alloys.

2. Experimental Method
2.1. Sample Preparation

The target material studied in this paper was Mg65Cu15Ag10Gd10 amorphous alloy
(by atomic percentage), with the purity of raw materials being 99.95 wt.%. In order to
ensure uniform mixing of each component, the total metal mass was controlled for no more
than 10 g. The surface oxide of raw materials was removed by file and sandpaper, and the
mass error of weighing did not exceed 0.001 g.

The alloy ingot was prepared by induction heating and then vacuum arc melting many
times. The chamber vacuum was below 1 × 10−3 Pa and then filled with high-purity argon
gas at −0.5 Pa as protection. Then, the quartz tube containing the alloy ingot was placed
inside a copper induction coil and electrified by a current of 50 A. Due to the pressure
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difference, the molten alloy ingot was ejected through a 0.9 mm hole onto the rotating
copper roller at a high speed of 60 rps. Eventually, the amorphous ribbons were obtained.
A few of them were heated to the temperature of liquid–liquid transition (i.e., TC) (444 K)
in the oven, hereafter referred to as the Tc-treated samples. The Tc is determined by the
temperature at an abnormal exothermic peak in differential scanning calorimetry (DSC),
which will be discussed later.

2.2. Corrosion Resistance Test

Prior to the corrosion experiments, both as-cast and heated ribbon specimens were
cut to 10 mm × 2 mm, fixed in epoxy resin, polished with 2000 mesh sandpaper, and
then sonicated in acetone, ethanol, and deionized water, respectively. The electrochemical
experiments were carried out using the CHI660E A20146 electrochemistry workstation.
The reference electrode and counter electrode were saturated calomel electrode (SCE) and
Pt, respectively. The potential polarization scanning was started at 150 mV below the open
circuit potential (OCP) at a rate of 0.833 V·s−1 in both 1 mol·L−1 NaCl and 1 mol·L−1 NaOH
solutions. Electrochemical impedance spectroscopy (EIS) was performed at the frequency
ranging from 105 to 10−2 Hz with an amplitude of 5 mV. The solutions of the immersion
test lasting 2 h were 0.01 mol·L−1 NaCl and 0.01 mol·L−1 NaOH.

2.3. Characterization Techniques

A total of 20 mg Mg65Cu15Ag10Gd10 ribbon was used to test the thermophysical
parameters by differential scanning calorimetry (DSC, METTLER TOLEDO) at a heating
rate of 10 K·min−1. The nitrogen flow rate was set to 50 mL·min−1 to isolate oxygen
and prevent drastic oxidation of the sample during the heating process. High-resolution
transmission electron microscopy (HRTEM, FEI TECNAL G2 20), small-angle synchrotron
X-ray scattering (SAXS, Advanced Photon Source of Argonne National Laboratory), and
high energy X-ray diffractometry (HEXRD) were used to probe the alloy microstructure.
The thin region of the HRTEM sample was obtained by etching the amorphous ribbon with
an incident angle of 8◦ and an energy of 8 keV at low temperature of liquid nitrogen for
25 min. The beam size of the synchrotron X-ray (λ = 0.0886 nm) was 0.1 × 0.2 mm and the
SAXS data with Q range from 0.0034 to 0.364. Å−1 was calibrated and corrected by empty
cell scattering, transmission, and detector response using a beamline MATLAB program
package [34]. The incident wavelength of the HEXRD excited by Ag Kα1 was 0.05594 nm
(22 keV), and the scattering angle (2θ) ranged from 5◦ to 20◦. The surface morphology
of the samples was characterized by scanning electron microscopy (SEM, JSM-IT500HR)
with an electron beam voltage of 20 kV. The surface composition and valence state of the
alloy were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific
K-Alpha) with monochromatic Al Kα ray (hv = 1486.6 eV) radiation.

3. Results and Discussion
3.1. Microstructure and Thermal Analysis

The differential scanning calorimetry (DSC) curve of Mg65Cu15Ag10Gd10 amorphous
alloys (Figure 1a) shows an abnormal exothermic peak that appeared after the glass
transition temperature Tg (422 K) [35]. The corresponding temperature was marked as
TC (444 K), which, according to previous studies, is related to the liquid–liquid phase
transition [28,36]. As the temperature continues to increase, a sharp exothermic peak
starting at 458 K emerges, which can be assigned to the crystallization of the amorphous
material [37]. The width and thickness of the ribbons are 2 mm and 45 µm, respectively
(Figure 1a inset).

From the HRTEM image of the TC-treated sample (Figure 1b), the atoms are arranged
in a maze-like disordered manner, whereas the selected area electron diffraction (SAED)
pattern in the inset shows broad and dispersive rings. The results further demonstrate that
the Mg65Cu15Ag10Gd10 alloys remain the amorphous feature after TC treatment.
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[28]. Copyright 2021, Springer Nature. The inset is the size distribution function based on the SAXS 
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it does not exist in the as-cast sample according to the results of SAXS (Figure 1c), which 
suggests the occurrence of nanoscale heterogeneity different from the amorphous matrix in 
the TC-treated sample [28,38–40]. Furthermore, a spheroid model with polydispersity is em-
ployed to fit the SAXS profile of the TC-treated sample, and the obtained size distribution 
function result is displayed in Figure 1c inset [41,42]. It is seen that the diameter of the sphe-
roidal granular-like structure is around 5.4 nm for the TC-treated sample, verifying that the 
heterogeneous structure exists [43–45]. Further down to the atomic scale, Figure 1d com-
pares the structure factor (S(Q)) patterns as a function of momentum transfer amplitude (Q) 
for both the as-cast and TC-treated alloys. The first S(Q) peak shows a lower peak position 
and a narrower peak width after TC treatment, which indicates that the local order is ex-
tended to the medium range and the atomic packing is less dense than the matrix. The struc-
tural correlation is enhanced from the short to the medium range (~5–10 Å) during this pro-
cess, due to the recombination of the local atomic units [22,46,47]. To summarize, the na-
noscale thermodynamically-favored metastable amorphous heterogeneous region with an 

Figure 1. (a) Differential scanning calorimetry curve of Mg65Cu15Ag10Gd10 amorphous alloy ribbon.
The inset is an optical image of an as-cast sample. (b) High-resolution transmission electron mi-
croscopy of Mg65Cu15Ag10Gd10 TC-treated ribbon. The inset is the selected area electron diffraction
pattern. (c) The SAXS of Mg65Cu15Ag10Gd10 as-cast and TC-treated ribbons. Reproduced with
permission [28]. Copyright 2021, Springer Nature. The inset is the size distribution function based on
the SAXS profiles. (d) The structure factor of Mg65Cu15Ag10Gd10 as-cast and TC-treated ribbons.

Down to the nanoscale, an interference peak occurs in the TC-treated sample whereas
it does not exist in the as-cast sample according to the results of SAXS (Figure 1c), which
suggests the occurrence of nanoscale heterogeneity different from the amorphous matrix in
the TC-treated sample [28,38–40]. Furthermore, a spheroid model with polydispersity is
employed to fit the SAXS profile of the TC-treated sample, and the obtained size distribution
function result is displayed in Figure 1c inset [41,42]. It is seen that the diameter of the
spheroidal granular-like structure is around 5.4 nm for the TC-treated sample, verifying
that the heterogeneous structure exists [43–45]. Further down to the atomic scale, Figure 1d
compares the structure factor (S(Q)) patterns as a function of momentum transfer amplitude
(Q) for both the as-cast and TC-treated alloys. The first S(Q) peak shows a lower peak
position and a narrower peak width after TC treatment, which indicates that the local order
is extended to the medium range and the atomic packing is less dense than the matrix. The
structural correlation is enhanced from the short to the medium range (~5–10 Å) during
this process, due to the recombination of the local atomic units [22,46,47]. To summarize,
the nanoscale thermodynamically-favored metastable amorphous heterogeneous region
with an average diameter of 5.4 nm is uniformly distributed in the amorphous alloy matrix.
In each heterogeneous region, the degree of the atomic order is extended to the medium
range (~5–10 Å). The heterogeneity in the atomic-to-nano scale stands for the liquid–liquid
transition and the strong connection between abnormal exothermic peak at TC and liquid–
liquid transition is consistent with our previous studies [28,48,49].
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3.2. Analysis of Potentiodynamic Corrosion Behavior

Figure 2a shows the potentiodynamic polarization curves of the Mg65Cu15Ag10Gd10
as-cast and TC-treated samples in 1 mol·L−1 NaCl solution, showing an active dissolu-
tion process through anodic polarization. By using the Tafel epitaxial method, the self-
corrosion potential of the as-cast and TC-treated samples were −1.14 V and −1.11 V, respec-
tively, and the corresponding self-corrosion current densities were 1.1 × 10−3 A·cm−2 and
5.3 × 10−4 A·cm−2, respectively. The higher corrosion potential and lower corrosion
current of the TC-treated sample indicate that the chemical stability in the NaCl solution
is enhanced after the TC heat treatment. Figure 2a inset shows the curve of open circuit
potential of the as-cast and TC-treated samples as a function of immersion time in 1 mol·L−1

NaCl electrolyte. In the first 100 s, the OCP of the amorphous ribbons changes rapidly
to positive, indicating that their stability increases due to the construction of the surface
film. Subsequently, the OCP curves of these two samples gradually become stable, with
a slight fluctuation in a certain potential, which is attributed to the loss and regrowth of
the passivation layer on the surface. During the last 300 s immersion, the OCP of the
TC-treated sample is higher than that of the as-cast sample, indicating that a better defense
and stability layer is formed on the surface of the TC-treated sample.
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Figure 2. (a) Potentiodynamic polarization curves of as-cast and TC-treated samples in 1 M NaCl
solution. The inset is their open circuit potential (V vs. SCE) curves dependent on the immersion time.
(b) Potentiodynamic polarization curves of as-cast and TC-treated samples in 1 M NaOH solution.
The inset enlarges the breakdown potential with the same coordinate units. (c) Nyquist curves of
as-cast and TC-treated samples in 1 M NaCl solution. (d) Nyquist curves of as-cast and TC-treated
samples in 1 M NaOH solution.

Figure 2b shows the potentiodynamic polarization curves of the as-cast and TC-treated
Mg65Cu15Ag10Gd10 samples in 1 mol·L−1 NaOH solution, both of which exhibit good chemi-
cal stability with a corrosion current of about 1 × 10−5 A·cm−2 and a corrosion potential of
−1.13 V. A spontaneous passivation occurs for both of the materials with a low passivation
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current density of about 3 × 10−4 A·cm−2. Although both the materials show a wide passiva-
tion zone (−1.10~−0.98 V for the as-cast sample vs. −1.10~−0.90 V for the TC-treated sample),
the passivation film breakdown potential of the TC-treated sample is slightly higher, indicating
that the passivation film of the TC-treated sample is more stable [50]. When applying the
potential to above −0.90 V, the passivation films of these two samples are transpassively
dissolved, and accordingly, the corrosion current density increases [51]. All the above re-
sults indicate that the Mg65Cu15Ag10Gd10 amorphous alloy system shows better corrosion
resistance after TC treatment in both NaCl and NaOH solutions.

Figure 2c,d show the EIS fitting circuits in 1 mol·L−1 NaCl and 1 mol·L−1 NaOH
solutions, respectively. The fitted circuit elements include solution resistance (R1), charge
transfer resistance (R2), and constant phase element (Q), and the fitted results are shown in
Table 1. After TC treatment, the corrosion behavior does not change compared with the
as-cast one, and all the EIS curves in NaCl and NaOH solutions show a single capacitive
arc with one time constant [52]. From the fitting results, the R2 values of the TC-treated
samples are higher than those of the as-cast samples in both NaCl and NaOH solutions.
The larger R2 is inclined towards a higher corrosion potential, lower corrosion current, and
higher passivation film breakdown potential, which is consistent with the potentiodynamic
polarization results (Figure 2a,b) [53].

Table 1. EIS fitting parameters of as-cast and TC-treated samples of all the same size in 1 M NaCl and
NaOH solutions.

Q (µs0/Ω) α R1 (Ω·cm2) R2 (Ω·cm2)

as-cast in 1 M NaCl 421.1 0.56 2.77 24.00
TC-treated in 1 M NaCl 1000.0 1.00 3.70 56.06

as-cast in 1 M NaOH 545.1 0.65 2.51 81.72
TC-treated in 1 M NaOH 77.99 0.77 2.45 84.24

3.3. Analysis of Immersion Corrosion Behavior

Figure 3 shows the SEM images of the as-cast and TC-treated Mg65Cu15Ag10Gd10 metal
glass ribbons soaked in 0.01 mol·L−1 NaCl and 0.01 mol·L−1 NaOH solutions for 2 h. The
passivation films of the as-cast ribbon in 0.01 mol·L−1 NaCl show local corrosion and cracks
(arrows in Figure 3a), which are largely inhibited in the TC-treated sample (Figure 3b). The
higher corrosion resistance of the TC-treated sample also verifies the experimental results of
potentiodynamic polarization curves and EIS. Analogously, the corrosion resistance of the
TC-treated Mg65Cu15Ag10Gd10 ribbon in 0.01 mol·L−1 NaOH solution is a little better than
that of the as-cast sample, which is inferred by the disappearing pits after the TC treatment.

In order to better understand the chemical stability of the Mg65Cu15Ag10Gd10 amorphous
alloys, XPS measurements were performed on the as-cast and TC-treated ribbons immersed
in 0.01 M NaCl and 0.01 M NaOH for 2 h (Figure 4a,b). The relevant elemental content
obtained from XPS is displayed in Table 2. For the as-cast samples, the Ag content is lower
than the designed composition, which is related to the highest antioxidative activities of Ag [54].
Remarkably, the Mg content is much higher than the designed ratio, indicating the passivation
film on the surface of the ribbon is dominated by MgO. When subjected to the TC treatment,
the Mg content on the surface of the TC-treated sample relative to the as-cast sample decreases
remarkably in NaCl. This phenomenon firmly validates the improved corrosion to NaCl for the
TC-treated alloy. For the samples in NaOH, the Mg content of the TC-treated sample is similar
to that of the as-cast sample. This is because of the higher corrosion resistance of the prepared
alloy in NaOH. Chloride ions are highly corrosive because they, with a small radius and strong
permeability, could penetrate the relatively loose passivation film into the matrix and act as ionic
conductors to accelerate the anodic polarization corrosion of alloy [55]. Figure 4c,d show the
corresponding high-resolution Mg 1 s spectra. The peak located at 1303.57 eV corresponds to Mg
metal [56], whereas the peak at 1304.36 eV can be assigned to Mg2+ [57]. A lower Mg2+ content
is detected in the TC-treated sample by comparing the XPS spectra of NaCl-soaked ribbons,
indicating that the TC heat treatment could effectively protect Mg from oxidation corrosion.



Micromachines 2022, 13, 1992 7 of 11Micromachines 2022, 13, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 3. SEM images of (a) as-cast and (b) TC-treated samples after a 2-h immersion in 0.01 M NaCl 
solution. SEM images of (c) as-cast and (d) TC-treated samples after a 2-h immersion in 0.01 M NaOH 
solution. The red arrows in Figure 3c show the corrosion pits induced by the NaOH solution. 

In order to better understand the chemical stability of the Mg65Cu15Ag10Gd10 amor-
phous alloys, XPS measurements were performed on the as-cast and TC-treated ribbons im-
mersed in 0.01 M NaCl and 0.01 M NaOH for 2 h (Figure 4a,b). The relevant elemental con-
tent obtained from XPS is displayed in Table 2. For the as-cast samples, the Ag content is 
lower than the designed composition, which is related to the highest antioxidative activities 
of Ag [54]. Remarkably, the Mg content is much higher than the designed ratio, indicating 
the passivation film on the surface of the ribbon is dominated by MgO. When subjected to 
the TC treatment, the Mg content on the surface of the TC-treated sample relative to the as-
cast sample decreases remarkably in NaCl. This phenomenon firmly validates the improved 
corrosion to NaCl for the TC-treated alloy. For the samples in NaOH, the Mg content of the 
TC-treated sample is similar to that of the as-cast sample. This is because of the higher cor-
rosion resistance of the prepared alloy in NaOH. Chloride ions are highly corrosive because 
they, with a small radius and strong permeability, could penetrate the relatively loose pas-
sivation film into the matrix and act as ionic conductors to accelerate the anodic polarization 
corrosion of alloy [55]. Figure 4c,d show the corresponding high-resolution Mg 1 s spectra. 
The peak located at 1303.57 eV corresponds to Mg metal [56], whereas the peak at 1304.36 
eV can be assigned to Mg2+ [57]. A lower Mg2+ content is detected in the TC-treated sample 
by comparing the XPS spectra of NaCl-soaked ribbons, indicating that the TC heat treatment 
could effectively protect Mg from oxidation corrosion. 

Figure 3. SEM images of (a) as-cast and (b) TC-treated samples after a 2-h immersion in 0.01 M NaCl
solution. SEM images of (c) as-cast and (d) TC-treated samples after a 2-h immersion in 0.01 M NaOH
solution. The red arrows in Figure 3c show the corrosion pits induced by the NaOH solution.

Micromachines 2022, 13, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. (a) Surface XPS of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaCl 
solution. (b) Surface XPS of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaOH 
solution. (c) Mg 1 s spectra of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaCl 
solution. (d) Mg 1 s spectra of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaOH 
solution. 

Table 2. Atomic ratios of elements on the surfaces of as-cast and TC-treated samples after a 2-h im-
mersion in 0.01 M NaCl and NaOH solutions. 

 Mg Cu Ag Gd O Cl Total 
as-cast in 0.01 M NaCl 13.49 1.32 0.25 0.31 83.02 1.61 100 

TC-treated in 0.01 M NaCl 3.49 0.66 0.33 0.18 93.77 1.57 100 
as-cast in 0.01 M NaOH 8.04 1.54 0.56 0.31 89.55 - 100 

TC-treated in 0.01 M NaOH 11.07 1.14 0.43 0.16 87.20 - 100 

3.4. Discussion 
Replacing Cu in the traditional ternary Mg65Cu25Gd10 amorphous alloy with Ag ele-

ment to form a quaternary Mg65Cu15Ag10Gd10 one was an excellent way to improve corro-
sion resistance because of the higher equilibrium electrode potential of Ag, namely better 
chemical stability, than that of Cu [58]. Our experimental results of electrochemical and 
microscopic tests, as well as XPS, confirm the excellent alkali corrosion resistance of the 
amorphous Mg65Cu15Ag10Gd10 alloy system. 

The improvement in chemical stability, i.e., corrosion performance, could be related to 
the thermodynamically-favored change in microstructure brought by the liquid–liquid tran-
sition. During the liquid–liquid phase transition, a medium-range ordered structure shows 
higher thermodynamic stability than the totally disordered structure. So, spontaneously, 
combinations of local atomic units occur, forming nanoscale “medium-range-ordered is-
land” distributed heterogeneously within the amorphous matrix [59–61]. Driven by this 
structural change, the electrochemical reaction of micro galvanic cells formed by the 

Figure 4. (a) Surface XPS of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaCl solution.
(b) Surface XPS of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaOH solution. (c) Mg
1 s spectra of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaCl solution. (d) Mg 1 s
spectra of as-cast and TC-treated samples after a 2-h immersion in 0.01 M NaOH solution.
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Table 2. Atomic ratios of elements on the surfaces of as-cast and TC-treated samples after a 2-h
immersion in 0.01 M NaCl and NaOH solutions.

Mg Cu Ag Gd O Cl Total

as-cast in 0.01 M NaCl 13.49 1.32 0.25 0.31 83.02 1.61 100
TC-treated in 0.01 M NaCl 3.49 0.66 0.33 0.18 93.77 1.57 100

as-cast in 0.01 M NaOH 8.04 1.54 0.56 0.31 89.55 - 100
TC-treated in 0.01 M NaOH 11.07 1.14 0.43 0.16 87.20 - 100

3.4. Discussion

Replacing Cu in the traditional ternary Mg65Cu25Gd10 amorphous alloy with Ag
element to form a quaternary Mg65Cu15Ag10Gd10 one was an excellent way to improve
corrosion resistance because of the higher equilibrium electrode potential of Ag, namely
better chemical stability, than that of Cu [58]. Our experimental results of electrochemical
and microscopic tests, as well as XPS, confirm the excellent alkali corrosion resistance of
the amorphous Mg65Cu15Ag10Gd10 alloy system.

The improvement in chemical stability, i.e., corrosion performance, could be related to
the thermodynamically-favored change in microstructure brought by the liquid–liquid tran-
sition. During the liquid–liquid phase transition, a medium-range ordered structure shows
higher thermodynamic stability than the totally disordered structure. So, spontaneously,
combinations of local atomic units occur, forming nanoscale “medium-range-ordered is-
land” distributed heterogeneously within the amorphous matrix [59–61]. Driven by this
structural change, the electrochemical reaction of micro galvanic cells formed by the fluctu-
ation of surface energy is small in area and large in quantity, so the formation of passivation
film is accelerated. In this micro galvanic cell, the alloy matrix acts as a cathode, whereas
the amorphous heterogeneous structure acts as an anode. The area of the cathode matrix
is much larger than that of the active amorphous heterogeneous structure anode, which
ensures the electrochemical reaction of the passivation film generation at the early stage
of corrosion. To sum up the above, the corrosion is accelerated at the beginning of the
corrosion process in the TC-treated sample. As a result, at the beginning of the corrosion,
the TC-treated sample could evenly form more corrosion products quickly. When the
formation rate of the passivation film is higher than the dissolution rate, compact and
uniform passivation film would be formed to prevent the solution from entering the matrix
and causing further corrosion, meaning that the alloy possesses good chemical stability.
The higher R2 value of the EIS results of the TC-treated sample clearly demonstrates that
the passivation film of the TC-treated sample is not prone to be dissolved. Note that the
liquid–liquid transition does not result in structural incoherence, such as grain boundary
and dislocation, so the TC-treated sample is less likely to corrode by a network [62].

4. Conclusions

This paper reports a new approach to improve the corrosion resistance of a typical Mg-
based amorphous alloy Mg65Cu15Ag10Gd10 of an anomalous exothermic peak by heating
the material to the TC temperature of liquid–liquid transition. During this transition, the
structural homogeneity slightly decreases with the rearrangement of the local structural
units, which accelerates the formation of protective passivation film and therefore increases
the corrosion resistance of the Mg-based alloy. Our present study has initiated a new route to
optimize corrosion resistance by engineering atomic-to-nano scale structural homogeneity,
which could be applied to other amorphous alloy systems with the liquid–liquid phase
transition and hopefully extended to widespread corrosion-resistant alloy research.
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