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Abstract: Nowadays, most of the deep learning coal gangue identification methods need to be
performed on high-performance CPU or GPU hardware devices, which are inconvenient to use
in complex underground coal mine environments due to their high power consumption, huge
size, and significant heat generation. Aiming to resolve these problems, this paper proposes a coal
gangue identification method based on YOLOv4-tiny and deploys it on the low-power hardware
platform FPGA. First, the YOLOv4-tiny model is well trained on the computer platform, and the
computation of the model is reduced through the 16-bit fixed-point quantization and the integration
of a BN layer and convolution layer. Second, convolution and pooling IP kernels are designed
on the FPGA platform to accelerate the computation of convolution and pooling, in which three
optimization methods, including input and output channel parallelism, pipeline, and ping-pong
operation, are used. Finally, the FPGA hardware system design of the whole algorithm is completed.
The experimental results of the self-made coal gangue data set indicate that the precision of the
algorithm proposed in this paper for coal gangue recognition on the FPGA platform are slightly
lower than those of CPU and GPU, and the mAP value is 96.56%; the recognition speed of each
image is 0.376 s, which is between those of CPU and GPU; the hardware power consumption of the
FPGA platform is only 2.86 W; and the energy efficiency ratio is 10.42 and 3.47 times that of CPU and
GPU, respectively.

Keywords: coal gangue recognition; deep learning; FPGA; convolution; pooling; IP kernel designing

1. Introduction

Gangue is a kind of main solid waste produced in the coal mining process. If it is
not treated before coal combustion, the calorific value of coal is reduced, and the emission
of harmful substances increases. Therefore, it is very important to identify and sort coal
gangue cleanly and efficiently. Coal gangue sorting methods that are commonly used in
the early stage include the ray method [1–3], impact crush method [4–6], laser method [7],
and infrared thermal wave detection [8], etc., most of which are complicated in principle,
expensive, and risky. Coal gangue recognition methods that are based on image processing
are relatively novel with simple recognition steps, relatively cheap equipment, and high
security; hence, they are currently the mainstream methods for coal gangue recognition.
Such methods can mainly be divided into traditional image analysis methods and deep
learning image processing methods.

Sun [9] adopted the morphological principle to identify the areas of interest on the
surface of coal and gangue to extract texture and trace features and establish a coal and
gangue classifier. Hobson [10] distinguished coal gangue by the texture features of images
and analyzed the coal gangue texture using the gray-level co-occurrence matrix (GLCM).
Ma [11] proposed a coal gangue image recognition method based on wavelet transform
(WT), which adopted the embedded zero tree wavelets encoding (EZWE) algorithm to
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transmit the bit stream of coal gangue images, and the wavelet moment to extract the
features of coal gangue images. Song [12] designed an online automatic coal gangue sorting
system based on an improved BP algorithm and ARM by utilizing the BP neural network’s
advantages of parallel computation, nonlinear mapping, and self-adaptation, and the
ARM microcontroller’s characteristics of high performance, small volume, low power
consumption, and low cost. Compared with traditional image analysis algorithms, the
deep learning algorithm can automatically learn the features of coal gangue images, with
higher recognition accuracy and recognition speed. Li [13] designed a CG-RPN network
to determine the target areas of coal and gangue, and then constructed a convolutional
neural network for coal and gangue identification. Zhang [14] improved the one-stage
object detection algorithm SSD by replacing its backbone network with MobileNet to
identify coal gangue images with the improved SSD algorithm. Alfarzaeai [15] designed
a new convolutional neural network model to recognize coal gangue thermal images.
Eshaq [16] also detected coal gangue infrared thermal images, and found that the detection
results of the ResNet-18 and DenseNet-201 algorithms were the best after comparing the
detection performance of multiple common deep learning algorithms. Pan. H [17] added
spatial pyramid pooling, the attention mechanism module, and dilated convolution to
the YOLOv3-tiny algorithm to identify coal gangue, which speeded up the identification
while ensuring the accuracy. Gui [18] applied the more advanced YOLOv5 target detection
algorithm and added an attention mechanism module to the original algorithm, which
improved the coal gangue recognition accuracy. Deep learning features a large number
of network layers and parameters and complex models. Currently, most of the deep
learning acceleration tools are high-performance CPU or GPU devices with high power
consumption, a large volume, and significant heat generation. This it difficult for them
to be utilized in the complex underground environment of coal mines. However, as a
new tool for deep learning algorithm implementation and acceleration, FPGA has many
advantages, including a strong parallel computing capability, low power consumption, and
small size [19–22]. Li [23] deployed the improved YOLO network algorithm on ZYNQ and
used two optimization methods: fixed-point quantization and Relu function instead of the
leaky function, which reduced the amount of network computing and saved FPGA chip
resources. Wei [24] proposed a YOLO hardware accelerator based on the ARM + FPGA
architecture. ARM and FPGA exchange data through the AXI bus. Yu [25] proposed an
FPGA architecture consisting of three pipelining stages, each corresponding to a layer
of the YOLOv3-tiny network. Li [26] used 16-bit fixed-point quantization and network
pruning methods in the process of mapping YOLOv4-tiny to FPGA, which reduced the
computational complexity and prevented the network from overfitting.

Coal gangue images mainly contain black and gray tones, and the texture features are
relatively simple and only contain two types of targets. Therefore, the use of lightweight
YOLO series algorithms can not only meet the requirements of the recognition accuracy
but also achieve a faster recognition speed. This paper presents a YOLOv4-tiny-based
coal gangue image recognition method and deploys it on a low-power hardware platform
FPGA. ZYNQ-7020 is used for the FPGA platform, which is a heterogeneous platform
with two parts: ARM and FPGA. The FPGA platform mainly includes convolution and
pooling IP kernels, data input and output circuits for auxiliary computing, and on-chip
cache to complete convolution, pooling, and other computationally intensive tasks. The
ARM side mainly performs tasks with a relatively small amount of computation such
as initialization of each module and image preprocessing, and completes the forward
reasoning of the entire algorithm network by multiplexing convolution and pooling IP
kernels. Because the YOLOv4-tiny algorithm involves a large number of convolution and
pooling computations, the design of convolution and pooling IP kernels is critical in this
study. To speed up the computation, this paper uses several optimization methods during
the hardware deployment. In coal gangue image recognition, compared with GPU and
CPU, the FPGA platform in this paper obtains the highest energy efficiency ratio.
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2. Principle of the YOLOv4-Tiny Algorithm

The YOLO-tiny algorithm is lightweight as it realizes the lightweight of the network by
compressing the network model structure, simplifying feature extraction, and integrating
the algorithm steps. This process may cause a certain loss in the algorithm detection
accuracy but can greatly improve the detection speed. Therefore, the YOLO-tiny algorithm
is very suitable for deployment on embedded devices with insufficient computing power.

After the YOLOv4 algorithm [27] was proposed in 2020, its lightweight version
YOLOv4-tiny [28] was successively proposed. Compared with YOLOv4, YOLOv4-tiny has
a lot of lightweight strategies in the backbone feature extraction network and FPN part and
removes most structures of the algorithm in the deep network, resulting in a parameter
amount of only one-tenth of that of YOLOv4. Figure 1 demonstrates the structure of the
YOLOv4-tiny algorithm, in which the CSPdarknet53 is used as the backbone network for
feature extraction, including only three convolutional layers with a convolution kernel size
of 3 × 3, and a three-layer Resblock_body structure; the FPN part is a bottom-up feature
pyramid structure that uses a single-layer convolution structure to upsample features. This
algorithm only uses the last two Yolo Heads for feature regression to obtain classification
results. Different Yolo Heads can detect targets of different sizes. The target size of coal
gangue is relatively close, so the YOLOv4 tiny algorithm with two Yolo Heads is suitable
for identifying coal gangue.
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Figure 1. YOLOv4-tiny model structure.

DarknetConv2D_BN_Leaky consists of a 3 × 3 convolution, a batch normalization,
and a leaky rule activation function. Figure 2 shows the structure of Resblock_body. Taking
the first Resblock_body as an example, the input feature map size is 104 × 104 and the
number of channels is 64. First, a 3 × 3 standard convolution is used to extract features.
Then, the feature map is divided into two parts for feature extraction: the first part, Part A,
takes half of the original 64 channels, and the second part takes all the original channels.
A 3 × 3 convolution is performed in Part A and the channels are divided into two lines
for operation. One line is performed with the 3 × 3 convolution again while the other line
is not performed. Afterwards, channel stacking is carried out and a 1 × 1 convolution is
performed for feature extraction. Later, all the results of the channels of both parts are
stacked and, finally, a 2 × 2 maximum pooling layer with a step size of 2 is adopted to
reduce the size of the feature map. The final feature map is output to the next stage, with a
size of 52 × 52 and a number of channels of 128.
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3. Optimization Method for Algorithm FPGA Implementation

When deploying complex neural network models to embedded platforms, it is neces-
sary to use some optimization methods because the hardware resources of the embedded
platforms are often limited. First, the computational load of the model is preliminarily
reduced by integrating the computation of the BN layer and convolutional layer on the
trained algorithm model. Second, the 16-bit fixed-point data are considered for the quan-
tification of the model weight because the 32-bit floating-point weight parameters of the
model trained on the computer platform can use many FPGA resources. Finally, as the com-
putation in the YOLOv4-tiny algorithm is mainly for convolution and pooling, this paper
designs convolution and pooling IP kernels to accelerate the algorithm computation. In the
IP kernel design, three optimization methods including pipeline operation optimization,
ping-pong operation, and parallel computation of input and output channels are applied to
improve FPGA resource utilization and the computing efficiency. Detailed descriptions of
these optimization methods are provided in the following sections.

3.1. Integration of the BN Layer and Convolution Layer

BN (batch normalization) is mainly used to solve the problems of training difficulty
and slow convergence of the deep convolution neural network in the process of network
deepening. The distribution of the input value of the deep neural network before nonlinear
transformation gradually shifts or changes with the increase in the network depth or
during the training process, generally approaching the upper or lower limits of the value
interval of the nonlinear function. This leads to the gradient of a shallow neural network
disappearing in the case of back propagation, and problems such as training difficulties and
slow convergence. Differently, BN forcibly changes the distribution of any input value of
each layer of the neural network into a standard normal distribution with a mean value of
0 and a variance of 1 through certain standardized means. In this case, the activated input
value falls in the area where the nonlinear function is more sensitive to the input value,
and thus, a relatively large gradient can be obtained to avoid the gradient disappearing
and realize acceleration of the training. In a YOLOv4-tiny network, BN layers are set
behind almost every convolution layer, which is beneficial to model training, but on the
other hand, it increases the amount of model computation. Therefore, we propose an
optimization method of integrating the BN layer and convolution layer to reduce the
amount of computation. The integration process of the BN layer and convolution layer is
as follows:

For the convolution layer, the process of convolution is to use the convolution kernel
as a sliding window to perform sliding window computation on the corresponding input
feature map. Thus, the output formula of this process is:

yj
k =

C

∑
i=1

wj
k,j ∗ xj

i + b (1)
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where yj
k is the kth output feature map of the jth layer, wj

k,j is the weight of the ith convolu-

tion kernel of the kth group of convolution kernels in the jth layer, xj
i is the parameter of

the feature map of the ith input channel in the jth feature layer, C is the number of input
channels, and b is the bias.

The mean value and variance formulae of the feature map are:

µ =
1
m

m

∑
i=1

yj
i (2)

δ2 =
1
m

m

∑
i=1

(yj
i − µ)

2
(3)

where yj
k is the kth output feature map of the jth layer, m is the number of all elements of

the feature map, and µ and δ are, respectively, the mean value and the variance of yj
i .

Through the mean value and the variance, the normalization formula of the output
feature map yj

k is obtained as:

ŷj
i =

yj
i − µ√
δ2 + ε

(4)

where ε is a minimal value added to prevent the denominator from being zero.
By introducing the zoom variable γ and the translation variable β, which are obtained

through model training, we can obtain the processed convolution computation formula:

yj
k = γ ∗ ŷj

i + β (5)

The final convolution computation formula can be obtained by synthesizing the
above formulae:

yj
k =

C

∑
i=1

xj
i ×

γ× wj
k,i√

δ2 + ε
+
γ× (b− µ)√

δ2 + ε
+ β (6)

The above process is the integration of the BN layer and convolution layer.

3.2. Sixteen-Bit Fixed-Point Quantization

In hardware design, fixed-point data is common rather than the full precision floating-
point data, and the resource consumption of fixed-point data computing units is less than
that of floating-point data computing units. There are many advantages in the use of fixed-
point quantization of the deep neural network model. First, under the same constraints
of hardware resources, the use of low bit fixed-point data for computing can achieve a
high degree of computation parallelism to realize fast computing. Second, use of the low
bit fixed-point data for computation uses less on-chip storage units. Third, the reduction
in the storage resource consumption also greatly reduces the amount of data accessed
by external DRAMs and their data bandwidth; so, the energy consumption of the entire
hardware system is lowered. Although fixed-point quantization reduces the detection
accuracy of the model to a certain extent, as the deep neural network has strong robustness
regarding the output accuracy, the decline in the model detection accuracy is still within a
reasonable range if the original full-precision floating-point data is replaced with the 16-bit
fixed-point data.

This paper performs the 16-bit fixed-point quantization on the weights, biases, and
parameters in the input and output feature maps of the algorithm model. The highest
bit of the fixed-point quantized data is the sign bit. If the bits of the fractional part are f
bits, the integer part occupies (15-f ) bits, and the quantized 16-bit fixed-point computation
formula is:

D f ixed16 =
15

∑
i=0

Bi × 2− f × 2i, Bi ∈ {0, 1} (7)
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where Bi is the ith bit of the 16-bit fixed-point data.

3.3. Pipeline Operation Optimization

In FPGA, there is a certain delay between the input and output. If the logic between
the input and output is complex, the delay is relatively long. This requires the time interval
between data writing and data reading to be long enough to avoid data reading errors. The
existence of this delay seriously affects the speed of FPGA data processing. The idea of a
pipeline is to divide a complex logical task into successively different parts. Assuming that
a task requires a total of three clock cycles to produce stable results, then the startup interval
between each task is composed of three clock cycles. However, the pipeline operation
converts this task into three steps, and each step requires a clock cycle to produce results.
The output results of the first step are first cached, then used as the input of the second
step, and so on. In this way, the first step can proceed to the next task without waiting for
the completion of the next two steps. Hence, the system becomes faster with a stronger
overall processing capacity.

Take the pipeline instruction optimization structure shown in Figure 3 as an example.
When the pipeline operation is not used for optimization, a task needs to perform three
loops and each loop contains three steps. Thus, each loop will take three clock cycles in
total, and the task needs to take nine clock cycles to be completed. However, if pipeline
instructions are used, only five clock cycles are needed to complete a task.
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Figure 3. Pipeline instruction optimization structure.

3.4. Ping-Pong Operation

“Ping-pong operation” is to continuously send the buffered data stream to the data
processing unit through the input selection unit and the output selection unit. Therefore, it
is very suitable for pipelining data processing. The ping-pong operation can reduce the
delay caused by the data input and enable the low-speed module to process high-speed
data streams.

Two types of data processing are shown in Figure 4. When there is no ping-pong
operation in data processing, as shown in Figure 4a, it is assumed that two processing
modules perform data reading and writing on the data cache module at the same clock
frequency. If there is only one data cache module, as the computation processing module
cannot simultaneously perform data reading and writing, one computation processing
module is always idle. When the ping-pong operation is taken in data processing, as shown
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in Figure 4b, two data cache modules are deployed between two computation processing
modules: module A first writes data into one of the data cache modules, and then module
B reads the data from this data cache module and module A simultaneously writes data
into the other data cache module. In this way, the two computation processing modules
can work together to read and write data alternately.
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3.5. Parallelism of Input and Output Channels

In convolutional neural networks, the input feature graph of each convolution layer
usually contains multiple channels so that each set of involved convolution kernels has
the same number of channels as the input. Moreover, the data operation between different
channels is independent of each other. Therefore, the computation of the input feature
graphs of different channels and that of the corresponding convolution kernels can be
designed in parallel.

A parallel design consumes a large amount of FPGA resources. If the FPGA resources
are sufficient, all input channels and output channels can be simultaneously calculated
in parallel so that the convolution computation only consumes one convolution kernel
and one feature graph to compute the convolution of the whole layer. However, FPGA
resources are often limited. To shorten the computing time, it is necessary to make full use
of the FPGA resources to allow more input and output channels to be computed in parallel.
Figure 5 illustrates the parallel computation of the input and output channels, in which
there are N input channels and M output channels, and Tn input channels and Tm output
channels are computed in parallel. The process of a parallel computation is as follows:

Operation 1: Tn input channels in a group of N convolution kernels are computed in
the form of a sliding window in parallel with Tn input channels in N input feature maps.
All results of the computation form an output feature map.

Operation 2: Tm groups of convolution kernels perform Operation 1 at the same time
so that Tm output feature graphs can be obtained.

When designing a convolution IP kernel with parallel computation of Tn input chan-
nels and Tm output channels, it needs to be multiplexed (MN)/(TnTm) times to compute a
complete one-layer convolution. Therefore, the multiplexing times of the IP kernel should
be reduced to shorten the computing time, that is, to increase the number of input and
output channels for parallel computation as much as possible.
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4. FPGA Implementation of the YOLOv4-Tiny Algorithm
4.1. IP Kernel Design of the Algorithm Acceleration Module

The computation in the YOLOv4-tiny algorithm is mainly composed of convolution
and pooling computation that exceeds 90% of the computation amount of the total net-
work, in which convolution computation accounts for the main part. Therefore, in the
FPGA implementation of the algorithm, the key lies in the design of the IP kernels for the
computation of convolution and pooling. This section introduces the design of convolution
and pooling IP kernels using codes and structure diagrams. During the design of the
convolution IP kernel, I/O channel parallelism, pipeline, and ping-pong operation are
used for optimization. Compared with convolution computing, pooling computing is
relatively simple. Therefore, to reduce the FPGA resource consumption, only the pipeline
optimization method is used for the design of the pooling IP kernel.

4.1.1. Design of Convolution IP kernel

The key to designing the convolution IP kernel is to design a convolution operator.
The YOLOv4-tiny algorithm contains 3 × 3 convolutions and 1 × 1 convolutions. Taking
the design of the 3 × 3 convolution operator as an example, as shown in Figure 6, the input
image is a h × h matrix, and the convolution weight is a 3 × 3 matrix. The weight matrix
is convolved with the data matrix at the corresponding position of the input image in the
form of a sliding window. Computation of the 3 × 3 convolution is completed by a dot
product processing elements PE. Codes are used to describe the implementation of the
convolution operator in detail.

Generally, the input and output of a convolution layer are composed of multiple
two-dimensional feature maps. Figure 7 shows the computation process of a convolution
layer with N input channels and M output channels. The size of each output feature map is
R × C. The weight parameter is composed of multiple convolution kernels, each with a
size of K and number of N ×M.

The output of the computation of a convolution layer can be expressed as:

f m_out_bu f f [m][r][c] =
N−1
∑

n=0

K−1
∑

kr=0

K−1
∑

kc=0
wt_bu f f [m][n][kr][kc]

× f m_in_bu f f [n][S× r + kr][S× c + kc]
(8)

where f m_out_bu f f represents the elements in the rth row and the cth column of the mth
output feature map, wt_bu f f refers to the elements in the krth row and the kcth column of
the convolution kernel that corresponds to the output feature map m and the input feature
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map n, f m_in_bu f f represents the elements in the S× r + krth row and the S× c + kcth
column of the input feature map n, and S stands for the step size of the convolution.
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To implement the above formula with code, we need six layers of embedded for loop,
that is the processing elements PE. Here, pseudo codes as Algorithm 1 are adopted for a
clear description.

Two optimization methods, pipeline and parallel computation of the input and output
channels, are added to the above codes. Pipeline optimization is carried out with the
PIPELINE instruction. PIPELINE means reducing the startup interval of a function or
loop by allowing concurrent execution of operations. The default startup interval is 1,
which means that the system processes a new input every clock cycle. After using the
PIPELINE instruction, the computation rate is greatly increased. The parallel computation
of the input and output channels requires the use of the UNROLL command to unroll the
input feature map channel and output feature map channel in parallel. UNROLL means
unrolling the loop to create multiple independent operations. The use of this command
in a design creates multiple copies of the loop, which allows some or all loop iterations
to occur in parallel. In the above codes, Tn channels in the total N input channels and
Tm channels in the total M output channels are unrolled. Tn and Tm can be flexibly
configured according to the FPGA hardware resources and network scale. In our design,
the maximum values of Tn and Tm can be taken as 4 and 32. Before using the UNROLL
command, the input and output feature map arrays need to be split. The command used
is ARRAY_PARTITION, which means dividing an array into smaller arrays or individual
elements. It is necessary to unroll the input feature map array fm_in_buff and the output
feature map array fm_out_buff in the first dimension and unroll the weight parameter
array wt_buff in the first and second dimensions.
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Algorithm 1. Computation of Convolution Layer

Input: fm_in_buff[n][S*r+kr][ S*c+kc] //Input feature map array
wt_buff[m][n][kr][kc] //Weight parameter array

K, R, C, Tn, Tm //Size of convolution kernel; row and column of output feature
map; unfolded input and output channel numbers
Output: fm_out_buff[m][r][c] //Output feature map array
Algorithm:
#pragma HLS ARRAY_PARTITION variable=wt_buff complete dim=1
#pragma HLS ARRAY_PARTITION variable=wt_buff complete dim=2
#pragma HLS ARRAY_PARTITION variable=fm_out_buff complete dim=1
#pragma HLS ARRAY_PARTITION variable=fm_in_buff complete dim=1
for(kr=0; kr<K; kr++) //Periodically traverse the rows of convolution kernel
for(kc=0; kc<K; kc++) //Periodically traverse the columns of convolution kernel
for(r=0; r<R; r++) //Periodically traverse the rows of output feature map
for(c=0; c<C; c++) //Periodically traverse the columns of output feature map
#pragma HLS PIPELINE II=1
for(mm=0; m<Tm; m++) //Periodically traverse the rows of input feature map
#pragma HLS UNROLL
for(nn=0; n<Tn; n++) //Periodically traverse the columns of input feature map
#pragma HLS UNROLL
fm_out_buff[m][r][c]+=fm_in_buff[n][r*S+kr][c*S+kc]*wt_buff[m][n][kr][kc];

A complete convolution layer computation structure is shown in Figure 8. In the
convolution IP kernel design in this paper, parallel and cyclic unrolling is performed
on Tn input channels and Tm output channels, and pipeline optimization is taken for
the intermediate computing processing unit PE. Moreover, the convolution IP kernel is
also optimized from the aspect of the access and store efficiency. Two input feature map
data buffers, In_Buffer0 and In_Buffer1, are set between the input feature map and the
processing unit PE; two weight parameter input buffers, Wt_Buffer0 and Wt_Buffer1, are
set between the weight data and the PE; two output feature map data buffers, Out_Buffer0
and Out_Buffer1, are set between the PE and the output feature map. The ping-pong
operation enables each module to work at the same time and perform read and write
operations alternately, which greatly improves the processing speed of the system.
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4.1.2. Design of Pooling IP kernel

Pooling computation is a very important step in the convolution neural network,
and its main function is to reduce dimensionality, remove redundant information, and
compress feature maps. Compared with the convolution layer, the pooling layer has no
weight parameter and a smaller computation amount. Thus, the design of the pooling
IP kernel is simpler than that of the convolution IP kernel. General pooling computation
includes average pooling and maximum pooling. The latter is used in the YOLOv4-tiny
algorithm. Similar to convolution, pooling is also used in the form of a sliding window
to obtain the maximum value from the corresponding positions in the feature maps, and
all the maximum values form a new output feature map. In the design of the pooling IP
kernel in this paper, the size of the pooling kernel is 2 × 2 and the step size is 2, which can
reduce the size of the input feature map to half of the original.

Figure 9 shows the structure of the pooling computation. The 2 × 2 pooling kernel
expressed by a red frame slides on the feature map and takes the four data of the corre-
sponding windows as four inputs for pairwise comparison. In this way, two maximum
values, Max1 and Max2, are obtained. Then, the final maximum value can be acquired
by comparing Max1 and Max2. In the design of the pooling IP kernel, the pseudo codes
adopted are shown as Algorithm 2. Because the pooling computation is relatively simple,
only the pipeline optimization is adopted in this design.

Algorithm 2. Pooling Layer Computation

Input: fm_in_buff[Tn][Tr*2][Tc*2] //Input feature map array
Output: fm_out_buff[Tn][Tr][Tc] //Output feature map array
Algorithm:
for(unsigned short n=0;n<Tn;n++)//Periodically traverse channels of the input feature map
for(unsigned short i=0;i<Tr;i++)// Periodically traverse rows of the input feature map
for(unsigned short j=0;j<Tc;j++)// Periodically traverse columns of the input feature map
#pragma HLS PIPELINE
tmp1=fm_in_buff[n][i*2][j*2];
tmp2=fm_in_buff[n][i*2][j*2+1];
tmp3=fm_in_buff[n][i*2+1][j*2];
tmp4=fm_in_buff[n][i*2+1][j*2+1];
max1=(tmp1>tmp2)?tmp1:tmp2;
max2=(tmp3>tmp4)?tmp3:tmp4;
max=(max1>max2)?max1:max2;
fm_out_buff[n][i][j]=max;
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4.2. FPGA Hardware System Implementation of the YOLOv4-Tiny Algorithm

The system hardware platform is ZYNQ-7020, which adopts the ARM + FPGA hetero-
geneous computing framework. The overall system structure for the FPGA implementation
of the proposed algorithm in this paper is shown in Figure 10, among which the FPGA
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platform mainly includes convolution, pooling acceleration circuits, data input and output
circuits for auxiliary computing, and on-chip cache to complete the parallel computing of
the convolution layer and pooling layer; the ARM terminal mainly carries out the work
with less computation, such as the initialization of each module, image preprocessing, up-
per sampling layer, YOLO detection post-processing, and completes the forward reasoning
of the entire algorithm network by reusing convolution and pooling IP kernels; BRAM is
an FPGA on-chip storage device, which is responsible for storing input and output data;
the DDR controller is responsible for controlling the data interaction between the external
memory DDR and the AXI bus interface, and storing all interaction data and the final
computation results of the algorithm network. Because the weight of the trained algorithm
model and the to-be-detected input coal gangue image occupy a large space, it is necessary
to use SD cards as the initial storage device, and then read through the DDR later.
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The convolution computing unit mainly completes the computation of the convolution
and leaky ReLU activation function in the algorithm while the pooling computing unit
mainly completes the maximum pooling operation. BRAM interacts with the off-chip DDR
through the AXI bus, reads the input data on the off-chip storage required for computation,
saves the results to the output cache, and then writes them back to the off-chip DDR
through the data output module and the AXI bus. The pooling computing unit and the
convolutional computing unit utilize the input and weight buffers through time division
multiplexing, thus greatly saving on chip storage resources. The operation scheduling of
all modules in the FPGA part is configured by the control register.

5. Experiments and Discussion
5.1. Experimental Environment

Table 1 shows the experimental environment of the proposed algorithm on the com-
puter platform and FPGA platform.

Table 1. Environmental environment.

Environment Description

Windows10 Operating system
Intel core i5-10200H Processor CPU

NVIDIA GeForce RTX2060(6G) Video card GPU
DDR4 16G Memory
Python 3.7 Python version

Tensorflow 2.4.0 Deep learning frame
ZYNQ-7020 FPGA platform
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5.2. Computer Platform Experiment and Discussion
5.2.1. Coal Gangue Data Set

There is no open coal gangue data set due to little existing research on deep learning
recognition of coal gangue images. Several coal and gangue blocks were collected from
coal preparation plants and pictures of them on a background of a mining conveyor belt
obtained using traditional cameras. In total, 3852 coal gangue images were obtained and
some sample images are shown in Figure 11. In the deep learning training, the detection
effect after training usually favors the category with a large number of samples. Therefore,
to ensure the balance of the samples, we selected basically the same quantities of coal and
gangue for our experiments. To facilitate the training of the network model, the sample
images were uniformly cut into 416 × 416 squares.
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5.2.2. Algorithm Model Training and Results

In the model training, the training set and verification sets were divided by 8 to 2.
The training set included 3082 images and the verification set included 770 images. The
training adopted the method of cosine annealing, with a maximum learning rate of 0.02
and a minimum learning rate of 0.0002. The training epoch was set to 100.

Figure 12 shows the training epoch–loss curve, from which it can be known that the
loss drops sharply in the first 10 epochs, slows down afterwards, and tends to be smooth
after 80 epochs. Finally, the loss is about 2.4, indicating that the Loss convergence of the
proposed algorithm is fast with a good training effect.
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After the training, the weight parameters of the trained algorithm model were saved
to the SD card for further FPGA platform experiments.

In this paper, the precision rate precision (P), recall rate recall (R), average precision
(AP), and average precision mean (mAP) are used as the recognition accuracy indicators of
the algorithm. The (P–R) curve of the YOLOv4-tiny algorithm in this paper under the coal
gangue data set is shown in Figure 13, including (a) the (P–R) curve of coal and (b) the P–R
curve of gangue. The area between the bottom of the curve and the top of the X-axis is the
average recognition precision of the target category. It can be seen from Figure 13 that the
average precision of coal and gangue detection is 97.94% and 97.26%, respectively, and an
average accuracy mean (mAP) of coal and gangue detection of 97.60% is calculated. This
indicates high recognition precision.
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5.3. FPGA Platform Experiment and Discussion
5.3.1. FPGA Resource Utilization

The FPGA experimental platform in this paper is ZYNQ-7020, as shown in Figure 14.
The platform resources include 53,200 LUTs, 17,400 LUTRAMs, 106,400 FFs, 140 BRAMs,
220 digital signal processors, and 32 global clocks BUFG.
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Table 2 shows the utilization the of FPGA resources in this paper. The higher the
resource utilization rate, the better the performance of FPGA, and the better the design.
The utilization rates of LUT and BRAM are high as they are storage resources while those
of LUTRAM, FF, and BUFG, lookup table storage units, triggers, and dedicated clocks,
respectively, are relatively low. DSP is the main computing resource to complete the
addition and multiplication operations, of which the utilization rate is up to 98%. This
indicates that this paper makes full use of FPGA resources and improves the parallelism of
the computation as much as possible.

Table 2. Utilization of FPGA resources.

Resource Utilization Available Utilization Rate %

LUT 41,953 53,200 78.86
LUTRAM 7414 17,400 42.61

FF 47,652 106,400 44.79
BRAM 96 140 68.57

DSP 216 220 98.18
BUFG 1 32 3.13

5.3.2. Power Consumption and Performance Analysis

The ZYNQ processor reads the algorithm model weight parameter file in the SD card
and the coal gangue image to be detected to complete image recognition. A large number
of coal gangue images are tested, and the mAP of coal gangue and the average calculation
time of each image are calculated.

For embedded systems, power consumption is an important indicator for ensuring
stable and reliable operation of the system. The overall power consumption of the FPGA
hardware system in this experiment was 2.86 W.

To verify the performance of the algorithm in this paper on the FPGA platform, ex-
periments were also carried out on the CPU and GPU platforms for comparison. The
CPU model is Intel core i5-10200H, and the GPU model is GeForce RTX2060. The perfor-
mance comparison results of the algorithm on different platforms obtained through the
experiments are shown in Table 3.
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Table 3. Performance comparison results of the algorithm on the FPGA, CPU, and GPU platforms.

Experimental
Platform CPU GPU FPGA

Data precision 32-bit 32-bit 16-bit
Computing time per

image/s 0.495 0.065 0.376

Average precision
mean (mAP) 97.60% 97.60% 96.35%

GOPS 14.04 106.92 9.24
Power/w 45 115 2.86

Energy efficiency
ratio (GOPs/w) 0.31 0.93 3.23

It takes 0.376 s to recognize a coal gangue image on the FPGA platform, which is
between those on CPU and GPU. Since the data precision of both CPU and GPU is 32-bit,
their average precision means the coal and gangue image recognition is the same. Due to the
16-bit fixed-point quantization, the average precision mean of the FPGA platform decreases
slightly by 1.25%, which is within a reasonable range. The computing performance of the
hardware platform can be measured by the GOPS (giga operation per second) indicator,
which indicates that one billion times of operation can be performed per second. Although
the GOPS of FPGA is lower than those of CPU and GPU, FPGA still achieves the highest
energy efficiency ratio due to its low power consumption, which is 10.42 and 3.47 times
that of CPU and GPU, respectively.

At present, there are many studies on the implementation of YOLO series algorithms
on the FPGA platform. The results of this paper were compared with those of several
literatures, as shown in Table 4. The higher the utilization rate of DSP resources, the better
the FPGA performance. The utilization rate of DSP resources in this paper is the highest,
reaching 98.18%. The utilization rate of DSP resources of Wei [24] is the lowest, less than
half. Compared with Yu [25], this paper has a shorter computing time (latency), lower
power consumption, and higher energy efficiency ratio. The authors of Li [26] also carried
out FPGA implementation of the YOLOv4 tiny algorithm, but it lacks the analysis of GOPS
and has high latency.

Table 4. Performance comparison between this paper and FPGA implementation of other YOLO
series algorithms.

YOLO [24] YOLOv3-Tiny [25] YOLOv4-Tiny [26] This Paper

platform ZYNQ Board Zedboard ZYNQ-7020 ZYNQ-7020
Latency/s - 0.532 18.025 0.376
DSP/total 409/900 160/220 149/220 216/220

GOPS - 10.45 - 9.24
Power/w 7.518 3.36 2.384 2.86
GOPs/w - 3.11 - 3.23

The average precision of coal and gangue identification on the computer platforms
CPU and GPU is the same. To compare the coal gangue image recognition results of the
FPGA platform and computer platform, an image of coal gangue blocks, in which coal
and gangue, respectively, account for half, is recognized, and the comparison results are
shown in Figure 15. The upper left corner of the recognition box in the image shows the
type of target identified and the confidence level. The higher the confidence level, the
higher the target recognition precision. It can be seen from the figure that the algorithm
proposed in this paper correctly identifies all coal gangue targets on both the FPGA platform
and the computer platform. Compared with the computer platform, the confidence level
of coal gangue identification on the FPGA platform is slightly lower, but all confidence
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levels are above 0.95, indicating that the FPGA platform can still meet the requirements of
high-precision identification under the condition of low power consumption.

Micromachines 2022, 13, x FOR PEER REVIEW 17 of 19 
 

 

half. Compared with Yu [25], this paper has a shorter computing time (latency), lower 
power consumption, and higher energy efficiency ratio. The authors of Li [26] also carried 
out FPGA implementation of the YOLOv4 tiny algorithm, but it lacks the analysis of GOPS 
and has high latency. 

Table 4. Performance comparison between this paper and FPGA implementation of other YOLO 
series algorithms. 

 YOLO [24] YOLOv3-Tiny [25] YOLOv4-Tiny [26] This Paper 
platform ZYNQ Board Zedboard ZYNQ-7020 ZYNQ-7020 
Latency/s - 0.532 18.025 0.376 
DSP/total 409/900 160/220 149/220 216/220 

GOPS - 10.45 - 9.24 
Power/w 7.518 3.36 2.384 2.86 
GOPs/w - 3.11 - 3.23 

The average precision of coal and gangue identification on the computer platforms 
CPU and GPU is the same. To compare the coal gangue image recognition results of the 
FPGA platform and computer platform, an image of coal gangue blocks, in which coal 
and gangue, respectively, account for half, is recognized, and the comparison results are 
shown in Figure 15. The upper left corner of the recognition box in the image shows the 
type of target identified and the confidence level. The higher the confidence level, the 
higher the target recognition precision. It can be seen from the figure that the algorithm 
proposed in this paper correctly identifies all coal gangue targets on both the FPGA plat-
form and the computer platform. Compared with the computer platform, the confidence 
level of coal gangue identification on the FPGA platform is slightly lower, but all confi-
dence levels are above 0.95, indicating that the FPGA platform can still meet the require-
ments of high-precision identification under the condition of low power consumption. 

  
(a) (b) 

Figure 15. Comparison of the recognition results of coal gangue images on different platforms: (a) 
FPGA platform; (b) computer platform. 

6. Conclusions 
This paper proposes a YOLOv4-tiny-based coal gangue recognition method and used 

it on the low power consumption hardware platform ZYNQ-7020 to realize fast and accu-
rate recognition of coal gangue images. 

Figure 15. Comparison of the recognition results of coal gangue images on different platforms:
(a) FPGA platform; (b) computer platform.

6. Conclusions

This paper proposes a YOLOv4-tiny-based coal gangue recognition method and used it
on the low power consumption hardware platform ZYNQ-7020 to realize fast and accurate
recognition of coal gangue images.

(1) In this paper, the integration of the BN layer and convolution layer, and 16-bit fixed-
point quantization were performed to initially reduce the computational load of the
YOLOv4-tiny model.

(2) In the design of convolution and pooling IP kernels, pipeline and ping-pong opera-
tions were adopted to improve the computing speed of the system. In addition, this
paper adopted parallel computation of the input and output channels to make full
use of the FPGA resources, which accelerated the computation speed.

(3) In the computer platform experiments, the mean average precision (mAP) of coal and
gangue was 97.60%. Due to fixed-point quantization, the mAP value on the FPGA
platform was 1.25% lower than that on the computer platform, and the recognition
time of each image on the FPGA platform was 0.376 s, between that of CPU and GPU.
However, the FPGA power consumption was only 2.86 W, much lower than that of
CPU and GPU. Although GOPS of FPGA was lower than that of CPU and GPU, FPGA
still showed the highest energy efficiency ratio due to its low power consumption,
which was 10.42 and 3.47 times higher than that of CPU and GPU, respectively.

The FPGA chip used in this paper was ZYNQ-7020, which has a cheap price, low
power consumption, and limited resources. If the identification of coal gangue on site is
carried out and the subsequent sorting work is completed, the identification speed needs to
be further improved. Later, we can consider the use of FPGA chips with more resources to
further improve the parallelism of computing and the recognition speed. The work of this
paper has a certain significance to research on the identification and separation equipment
of coal gangue on site.
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