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Abstract: Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule
synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the
complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation
methods are limited to research in laboratories with cleanroom facilities and complex instrumentation.
The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic
devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanis-
tically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the
usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus aci-
dophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed
a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that
the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with
more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets
and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe
pump). The rapid prototyping and integration ability of this module with other components or
processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead
emulsions to analyze biological or chemical samples with high throughput and precision.

Keywords: microfluidics; picoliter droplets; rapid prototyping; bead encapsulation; 3D printing

1. Introduction

Droplet microfluidics uses devices with channels dimensions tens or hundreds of
microns wide to generate and manipulate discrete µL or less volumes. Dividing a sample
of interest into fL to µL scale volumes reduces reagent usage, increases the sensitivity
of chemical analyses, and provides enhanced control over reagent delivery, mixing, and
chemical interactions [1]. There are many applications of droplet microfluidics in chem-
istry, biology, and biomedical engineering, such as therapeutic agent delivery, biomedical
imaging, biomolecule synthesis, diagnostic chips, drug discovery, cell culture, biochemical
characterization, and single cell analysis [2]. The implementation of droplet microfluidics
in these applications are accomplished through lab-on-a-chip devices. These lab-on-a-chip
devices may require droplet manipulation processes such as mixing, fission and/or fusion,
sorting, and transportation of droplets [3,4], which can be accomplished via electrowetting,
magnetic actuation, dielectrophoresis, surface acoustic waves, optical methods, or thermal
methods [3–7]. However, due to the complicated processes used to fabricate channels
that are tens or hundreds of microns wide, most droplet microfluidic methods are limited
to research in laboratories with cleanroom facilities and complex instrumentation (e.g.,
photolithography with silicon wafers [8–10] or wet etching [11–13]). The few droplet gener-
ation technologies commercially available for diagnostic use are expensive ($89 k–$100 k
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for an instrument and $24–$240 per disposable cartridge) and not integrated with other
assay steps such as chemical reaction incubation and droplet analysis [14].

To make the droplet generation process simpler, less time-intensive, and less expensive,
many innovative methods have been created. Some researchers have used glass capillaries
to generate pL-scale droplets. For example, Li et al. bonded microscope glass slides to
pulled glass capillaries to generate monodisperse multiple emulsions [15], Gu et al. created
and manipulated pL droplets for single cell assays with a 75 µm fused-silica capillary [16],
and Li et al. used an asymmetrical beveled capillary to generate pL to nL droplets and
execute a digital PCR assay [17]. While the instrumentation costs for these devices are lower
than for photolithography, devices made from glass capillaries are difficult to integrate into
other upstream or downstream modules and not amenable to rapid prototyping due to
the intricate procedures for fabricating capillaries <1 mm in diameter. Other groups rely
on micromachining to generate droplets, such as direct milling of polycarbonate [18,19]
or micromachining in PMMA [20]. These methods have demonstrated consistent and
controllable droplet generation; however, the droplet sizes are large (>1 nL) or when ply-
sized droplets are achieved, a centrifuge is needed to create the droplets in a reaction tube,
which precludes its ability to be integrated into other microfluidic modules [20].

3D printing is now commonly used to create molds for PDMS devices, which elim-
inates the need for cleanroom facilities, photolithography, or etching and enables rapid
prototyping and fabrication [21–24]. Researchers have also used 3D printers to build mono-
lithic devices out of resin for droplet generation, albeit with larger channel dimensions
and therefore larger droplets (>1 nL) [25–31]. Picoliter-scale droplets are important for
several applications, such as increasing the precision, sensitivity and dynamic range of
digital PCR [32], or preventing cross contamination and target dilution in single cell analy-
sis [16,33]. The small channel sizes required for pL-scale droplets are typically fabricated
with complex processes insides a cleanroom, usually photolithography [8–10], and have
not been made with 3D printed molds or 3D printed monolithic devices. The methods
described above have significantly advanced droplet generation for the picoliter scale via
photolithography or glass capillaries, and the nanoliter scale via 3D printing; however,
there remains a need for <100 pL droplet generation from a rapid prototyping method (e.g.,
3D printed molds) that can be easily integrated into other sample preparation, analysis,
and detection modules.

An important area of investigation in droplet microfluidics are methods that en-
capsulate a single bead in a droplet (BiD). These BiD platforms have enabled exciting
advancements in biomedical research and diagnostics, including genome sequencing [34],
enzyme evolution and screening [35,36], detecting rare genetic mutations [37,38] single cell
analysis [39], and molecular diagnostics [40]. While these devices have high throughput
and multiplexing capabilities, they are limited to laboratories with sophisticated instru-
mentation for photolithography and bead encapsulation. Additionally, they have shown
Poisson or better distributions of BiDs for particles with a similar density to water, such as
gel particles [41], polystyrene beads [42–44], agarose beads [39], or biological cells [39,44,45].
Particles with a higher density than water sediment to the bottom before being encapsulated
in droplets and cause the first fraction of droplets to have more than 1 bead per droplet
and the remaining fraction to not have any beads. To use beads of varying densities in BiD
platforms, this sedimentation effect must be overcome.

The purpose of this work is to overcome current limitations of droplet microfluidic
devices by creating a droplet generation device with the following features: (i) a simple and
inexpensive fabrication process that is amenable to rapid prototyping and integration with
other modules, (ii) droplet volumes <100 pL, and (iii) the ability to encapsulate dense beads
in aqueous droplets with a Poisson-like distribution. We found that using 3D printing to
create a mold instead of photolithography or etching is a suitable fabrication method to
accomplish this purpose. Our device generated monodisperse droplets as small as ~48 pL
and we demonstrated the usefulness of this droplet generation technique in biomolecule
detection by quantifying nucleic acids via digital loop-mediated isothermal amplification



Micromachines 2022, 13, 1946 3 of 12

(dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense
bead sedimentation and found that the BiD emulsions created from our device had less than
2% of the droplets populated with more than 1 bead when the average input concentration
was 0.15 beads/droplet, in line with Poisson statistical projections. This study will enable
researchers to create devices that generate pL-scale droplets and encapsulate dense beads
with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid
prototyping and integration ability of this method can accelerate the development of point-
of-care microfluidic devices that generate droplet-bead emulsions and analyze samples
with high throughput and precision.

2. Materials and Methods
2.1. Device Fabrication

3D models of the master molds were designed using SolidWorks CAD software (Dassault
Systems, Velizi-villacoublay, France) to have flow channel dimensions of 100 µm × 100 µm
and inlet/outlet ports of 750 µm (Figure 1A). Stereolithography (SLA) files were prepared
for 3D printing by orienting them at a 45◦ angle and avoiding cups and overhangs in
Form Labs’ Preform software. The models were then printed using the Form3 SLA 3D
printer (Form Labs) in Clear resin (FLGPCL04) at a layer thickness of 25 µm. The printed
master molds were thoroughly cleaned with isopropyl alcohol to remove excess resin, then
UV-cured for 30 min.

Micromachines 2022, 13, x FOR PEER REVIEW 4 of 13 
 

 

 

Figure 1. Microfluidic device design and fabrication. (A) A solid master mold was designed with 

Solidworks CAD software and printed with FormLabs Form3 SLA printer. (B) PDMS device fabri-

cation process. 

2.2. Droplet Generation 

Droplets were generated using the designed flow-focusing PDMS microfluidic de-

vices described above. The oil phase consisted of mineral oil (Sigma Aldrich M3516-1L), 

0.1 wt% Triton X-100 (Fisher Scientific, Waltham, MA, USA), and 3 wt% ABIL EM 90 (Evo-

nik, Essen, Germany), and was pumped at various volumetric flow rates (20, 25, 50, 75, 

100 µL/min). The aqueous phase (DI water) was maintained at a volumetric flow rate of 1 

µL/min. The oil and aqueous phases were pumped to an intersection in the device by 

syringe pumps (KD Scientific, Holliston, MA, USA), at which point droplets were gener-

ated and subsequently collected from the outlet in Eppendorf tubes. A fraction of the 

droplets were imaged using confocal imaging (Leica SP5, Wetzlar, Germany) and the re-

spective planar areas of the droplets were deduced using ImageJ software after segmen-

tation processing. The spherical diameter of each droplet is calculated from the deduced 

area. 

2.3. Droplet Digital Loop-Mediated Isothermal Amplification for DNA Quantification 

Lactobacillius acidophilus (L. acid.) obtained from MicroKwik vials (Carolina Biological 

Supply, Burlington, NC, USA) was cultured in de Man, Rogosa and Sharpe (MRS) agar 

formulated in-house using Millipore-Sigma formulation (CCW4691). The QuickEx-

tractTM one-step DNA extraction kit (Lucigen, Middleton, WI, USA) was used to extract 

DNA from the colonies. Extracted genomic DNA was quantified via absorbance measure-

ments from a Nanodrop One instrument (ThermoFisher Scientific, Waltham, MA, USA) 

and diluted in nuclease-free water to concentrations ranging from 0 to 9.5 × 106 copies/mL. 

LAMP master mix was prepared with final concentrations of 1× isothermal amplifi-

cation buffer (New England Biolabs, NEB), 8 mM of MgSO4 (NEB), 1.4 mM dNTPs (NEB), 

320 U/ mL Bst 2.0 WarmStart polymerase (NEB), primer mix, and 1× SybrGreen (Life Tech-

nologies). The primer mix was designed in-house to target the L. acidophilus 16S rRNA 

gene and consisted of 1.6 µM each of forward inner primer (CTGCACTCAA-

GAAAAACAGTTTCCGAGTCTGATGTGAAAGCCCTC) and backward inner primer 

(AAGAGGAGAGTGGAACTCCATGTGAGACCAGAGAGCCGCCTT), 0.2 µM each of 

forward outer primer (TAAAGCGAGCGCAGGC) and backward outer primer 

(CCTCAGCGTCAGTTGC), 0.4 µM each of forward loop primer (GCAG-

TTCCTCGGTTAAGCC) and backward loop primer (ATGCGTAGATATATGGAA-

GAACACC) (Integrated DNA Technologies, Clarville, IA, USA). L. acid DNA dilutions 

were added to LAMP master mix to yield final concentrations of 0, 1.0·× 107, 2.5·× 107, 5.0 

Figure 1. Microfluidic device design and fabrication. (A) A solid master mold was designed
with Solidworks CAD software and printed with FormLabs Form3 SLA printer. (B) PDMS device
fabrication process.

To make polydimethylsiloxane (PDMS), SYLGARDTM 184 Silicone Elastomer Base
and SYLGARDTM 184 Silicone Elastomer Curing Agent (Dow Corning, Midland, MI,
USA) are combined at 10:1 w/w ratio to make up ~3 gm needed to fill each mold. Prior to
pouring the mixture into the mold, it is degassed in a Cole Parmer Diblock oven at room
temperature until no bubbles can be seen in the PDMS mixture. After filling the molds with
the degassed PDMS, the degassing process is repeated to ensure complete filling of the
corners of the channels before curing at 65 ◦C for 45 min. Once cured, the PDMS is gently
peeled from the master mold and bonded onto glass microscope slides (Amscope BS-72P
100S-22) after surface activation using flame treatment as an alternative to oxygen plasma
bonding [46] (Figure 1B). The device is then placed in an 85 ◦C oven overnight to allow
the PDMS to harden. Next, the devices are examined for binding strength of the PDMS by
gently prying at them. They are also checked for channel dimensions under a microscope.
A ± 10% tolerance is allowed for the channel widths measured from micrographs prior to
the attachment of the flow tubing (Scientific Commodities, Lake Havasu City, AZ, USA,
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BB31695 PE/3). The tubing is attached to the chip by plumbing them into the inlet and
outlet ports, making sure to leave a clearance space between the tubing nozzle and the
slide surface. The tubing is further held in place using cold weld steel-reinforced epoxy (JB
Weld, Marietta, GA, USA).

2.2. Droplet Generation

Droplets were generated using the designed flow-focusing PDMS microfluidic devices
described above. The oil phase consisted of mineral oil (Sigma Aldrich M3516-1L), 0.1 wt%
Triton X-100 (Fisher Scientific, Waltham, MA, USA), and 3 wt% ABIL EM 90 (Evonik, Essen,
Germany), and was pumped at various volumetric flow rates (20, 25, 50, 75, 100 µL/min).
The aqueous phase (DI water) was maintained at a volumetric flow rate of 1 µL/min. The
oil and aqueous phases were pumped to an intersection in the device by syringe pumps (KD
Scientific, Holliston, MA, USA), at which point droplets were generated and subsequently
collected from the outlet in Eppendorf tubes. A fraction of the droplets were imaged using
confocal imaging (Leica SP5, Wetzlar, Germany) and the respective planar areas of the
droplets were deduced using ImageJ software after segmentation processing. The spherical
diameter of each droplet is calculated from the deduced area.

2.3. Droplet Digital Loop-Mediated Isothermal Amplification for DNA Quantification

Lactobacillius acidophilus (L. acid.) obtained from MicroKwik vials (Carolina Biological
Supply, Burlington, NC, USA) was cultured in de Man, Rogosa and Sharpe (MRS) agar
formulated in-house using Millipore-Sigma formulation (CCW4691). The QuickExtractTM
one-step DNA extraction kit (Lucigen, Middleton, WI, USA) was used to extract DNA from
the colonies. Extracted genomic DNA was quantified via absorbance measurements from a
Nanodrop One instrument (ThermoFisher Scientific, Waltham, MA, USA) and diluted in
nuclease-free water to concentrations ranging from 0 to 9.5 × 106 copies/mL.

LAMP master mix was prepared with final concentrations of 1× isothermal ampli-
fication buffer (New England Biolabs, NEB), 8 mM of MgSO4 (NEB), 1.4 mM dNTPs
(NEB), 320 U/ mL Bst 2.0 WarmStart polymerase (NEB), primer mix, and 1× SybrGreen
(Life Technologies). The primer mix was designed in-house to target the L. acidophilus
16S rRNA gene and consisted of 1.6 µM each of forward inner primer (CTGCACTCAA-
GAAAAACAGTTTCCGAGTCTGATGTGAAAGCCCTC) and backward inner primer (AA-
GAGGAGAGTGGAACTCCATGTGAGACCAGAGAGCCGCCTT), 0.2µM each of forward outer
primer (TAAAGCGAGCGCAGGC) and backward outer primer (CCTCAGCGTCAGTTGC),
0.4 µM each of forward loop primer (GCAGTTCCTCGGTTAAGCC) and backward loop
primer (ATGCGTAGATATATGGAAGAACACC) (Integrated DNA Technologies, Clarville,
IA, USA). L. acid DNA dilutions were added to LAMP master mix to yield final concen-
trations of 0, 1.0·× 107, 2.5·× 107, 5.0 × 107, 4.0·× 108 DNA copies/mL (quantified by
Nanoquant absorbance measurements). Four replicates of each dilution (10 uL/well) were
amplified at 68 ◦C for 60 min using a LightCycler®96 Instrument (Roche, Basel, Switzerland)
as positive controls.

The LAMP mix + L. acid DNA samples were infused into a droplet generation device
as described in “Droplet Generation”, with oil flow rate 75 µL/min and aqueous flow rate
1 µL/min. Droplets from the microfluidic devices were collected in amber SepCap vials
(Thermoscientific, Waltham, MA, USA C4015-99) and incubated at 68◦C for 60 min using
a Multi-Therm shaker (Benchmark Scientific, Sayreville, NJ, USA). After incubation, the
droplets were imaged using a Leica SP5 confocal microscope, and images were analyzed
with Image J to determine the relative fluorescence intensity (RFI) of each droplet. A
threshold was determined by computing µNTC + 3·σNTC, where µNTC is the mean and
σNTC is the standard deviation of the RFI of the 0 cop/mL sample droplets. Droplets with
RFI greater than the threshold were classified as positive while the droplets less than or
equal to the threshold are classified as negative. One can then use Poisson statistics with the
number of positive and negative droplets to calculate a concentration for each sample [47].
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2.4. Bead Mixer

A blind hole with a diameter of about 9 mm was drilled into the side of a 3 mL plastic
syringe (CareTouch, Westminster, CO, USA) at the 0.5 mL mark. A small DC motor with
a plastic impeller which was originally designed for a bead-beating sample preparation
device (Claremont Bio 01.340.48 OmniLyse®Kit) was retrieved and carefully positioned
into the syringe through the blind hole. The motor with the impeller was affixed to the
syringe with cold weld steel-reinforced epoxy (JB Weld, Marietta, GA, USA) such that the
blind hole was completely sealed and airtight. The epoxy was allowed to set for 48 to 72 h.
The impeller mixer was powered by a 1.5 V DC power supply (SI, Figure S1).

2.5. Bead-in-Droplet Emulsions

Hard shell Polymethyl Methacrylate (PMMA) beads (PolyAn Microshperes Po-105 00 020
and Alpha Nanotech colloidal PMMA) of 20 µm in diameter were used in the bead encap-
sulation experiment. A mixture of the beads and 0.1 %v/v Tween 20 in nuclease-free water
at working concentrations of 0.15, 0.2 and 0.3 beads/droplet (λ) were used as the dispersed
phase for the experiments. A mixture of mineral oil (Sigma Aldrich-M3516-1L), 0.1 wt%
Triton X-100 (Fisher Scientific, Waltham, MA, USA) and 3 wt% ABIL EM 90 (Evonik, Essen,
Germany) was used as the continuous phase. The dispersed phase (bead suspension) was
aspirated into a modified syringe and loaded onto a syringe pump (KD Scientific, Holliston,
MA, USA, KDS100). A 1.5 V DC power supply was connected to the mixer to keep the
beads solution homogenous. The continuous phase was put into a 10 mL plastic syringe
(CareTouch, Westminster, CO, USA) and loaded onto a syringe pump. The continuous and
dispersed phases were introduced into the droplet generation device using syringe pumps
at flow rates of 30 µL/min and 1–7 µL/min, respectively. A period of about 5 min was
allowed for the cartridge to be primed and for the droplet generation to be stabilized. The
droplets were collected from the cartridge into 1 mL amber SepCap vials (Thermoscientific,
Waltham, MA, USA, C4015-99). The excess oil from the continuous phase was poured
off and the droplets were put onto a microscope slide and mounted onto a microscope
(Omax microscope 3152102) for imaging. Micrographs of the droplets were taken using the
Amscope microscope camera md35 and Amsocpe software version 4.

2.6. Image Analysis

The images were opened in Image J. The scale was set according to the scale bar on the
images and the unit was set to µm. The images were converted to 8-bit gray scale images
and speckles and noise were filtered from the images. The threshold of the images was
adjusted to convert them to binary images. The images were converted to mask to invert
the black to white, making the droplets appear white. The droplets were then analyzed to
calculate the area of each droplet. The diameter and volume of each droplet were calculated
from the area of the droplets. The droplets containing beads were manually counted and
the number of beads in each droplet was recorded. The data were compiled in Excel
(Microsoft Office) and parsed into Python 3.0 for further analysis and visual presentation.

3. Results and Discussion
3.1. Picoliter-Scale Droplet Generation

The physics of droplet generation via flow focusing has been well documented with
theory and experiments showing an inverse logarithmic relationship between Capillary
number (Ca = µave(2Qo + Qw)/σhw) and non-dimensionalized droplet diameter, Dd/Dh,
where µave is the average viscosity of the two fluids, Qo is the oil flow rate, Qw is the water
flow rate, σ is the surface tension, h is the channel height, w is the channel width, Dd is the di-
ameter of the droplet, and Dh is the hydraulic diameter of the channel, 2hw/(h + w) [48,49].
These flow focusing studies demonstrate that <100 pL droplets can theoretically be gener-
ated with Ca > 0.001 (faster flow rates (Qo,Qw) relative to channel dimensions (h,w)) and
144 µm > Dh > 39 µm, or with Ca < 0.001 (slower flow rates (Qo,Qw) relative to channel
dimensions (h,w)) and 14 µm < Dh < 39 µm [48] (SI, Section S2). Experimentally, the
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authors test devices with maximum channel heights of 27 µm [48] or widths of 71 µm [49].
In these studies and others [8–13], pL droplets are generated by using small channel widths
(<100 µm) facilitated by photolithographic processes in cleanrooms. As our objective was
to develop a device that generates pL droplets without complex fabrication processes, we
were limited to the channel widths 100 µm or greater that an SLA 3D printer is capable of
printing in a mold. Therefore, our device design would need to be in the Ca > 0.001 regime
with faster flow rates relative to channel dimensions.

With the limits on our device’s physical features established, we 3D printed a mold
and made a PDMS cast of 100 µm channel width and 100 µm channel height without a
cleanroom, photolithography processes, or complex instrumentation (Figure 1). We chose
oil and water flow rates such that the droplet generation device would have Ca � 0.001,
with Qo = 25 to 100 µL/min and Qw = 1 µL/min (SI, Section S2), which resulted in droplets
of diameters 45 to 112 µm (48 to 736 pL) (Figure 2). The droplets generated from this device
are monodisperse (Figure 2B, coefficient of variation (CV) from 2–12%), which is in the
range of droplets generated from other devices [50,51]. As expected, there is an inverse
power relationship between droplet volume and oil flow rate [49], showing that devices
fabricated with 3D printed molds give similar consistency and expected performance at
the picoliter scale as devices made with photolithography in a cleanroom. Because this
device is made from a 3D printed mold, researchers can iterate prototypes rapidly without
undergoing the time and resource-consuming processes of photolithography; additionally,
the droplet generation module can be part of a larger 3D printed mold that includes
modules for executing other upstream or downstream assay processes.
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Figure 2. Picoliter-scale droplet generation. (A) Micrograph of the droplets retrieved from microflu-
idic cartridge outlet. (B) Droplet diameter distribution and CV at each flow condition. (C) The droplet
diameter changes with volumetric flow rate of the oil phase. The volumetric flow rate of the aqueous
phase was kept constant at 1 µL/min.

3.2. Droplet Digital Loop-Mediated Isothermal Amplification

To explore the utility of this droplet generation device in molecular diagnostic applica-
tions, droplet digital loop-mediated isothermal amplification (ddLAMP) was performed to
detect and quantify a DNA target. Digital LAMP is an emerging nucleic acid (NA) ampli-
fication method that can quantify the NA concentration of a sample with high accuracy
and precision, even in the midst of temperature, reaction time, or imaging variance [52].
NA quantification via dLAMP is useful in several applications, such as viral load measure-
ments for HIV [53], hepatitis C virus genotyping [54], and rapid antibiotic susceptibility
testing [55]. Current dLAMP methods partition the sample into pL to nL droplets with mi-
crofluidic devices made using photolithography [56,57], wet etching [52–55], or fused-silica
capillaries [58]. Our droplet generation device made from a 3D printed mold could make
dLAMP more accessible by eliminating the need for complex facilities or instruments and
enabling integration with other amplification or detection modules.

We tested the feasibility of encapsulating LAMP reagents with target DNA and primers
into droplets with our device (Materials and Methods). After generation, the droplets
were incubated at 68 ◦C for 60 min for amplification of DNA via LAMP and SybrGreen
fluorescence was measured to indicate the presence or absence of amplification product



Micromachines 2022, 13, 1946 7 of 12

within each droplet (Figure 3A). Five DNA dilutions were tested, and the positive droplet
percentage was plotted against the prediction from Poisson statistics (Figure 3B), assuming
a 10% LAMP efficiency and 300 pL droplet volume (SI, Section S3).
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3.3. Dense Bead-in-Droplet Emulsions

Interest in using microparticles as delivery systems in various technologies has been
widely researched, especially in combination with microdroplets for biological applica-
tions [59–62]. This is due to the high surface-to-volume ratio and the ease of immobilizing
biorecognition molecules on them, as well as the potential for compartmentalized single-
molecule assays [63–65]. Single particle encapsulation in droplets, however, faces two
major challenges: sedimentation due to particle density [62], and mechanistic single parti-
cle encapsulation [41,66].

Particle density poses a challenge when loading microparticles into encapsulation
devices because the higher density particles (>1 gm/mL) sediment in the syringe and
delivery tubing, causing nonhomogeneous distribution of microparticles in droplets (SI,
Figures S1A and S2). This can be solved by the dissipation of the bead density by suspend-
ing them in denser fluids such as glycerol [62]; however, such fluids may not be compatible
with the intended bio-application. For example, glycerol at 50% v/v inhibits NA amplifica-
tion, thereby defeating the purpose of using microbeads for NA applications (SI, Figure S4).
To circumvent this challenge, researchers used gel beads with similar density to water,
which ensured a binary distribution of beads in the droplets [65,67–69]. However, this
method is time-consuming, requiring a particle velocity of ~50 µm/h [41] to achieve single-
particle encapsulation; furthermore, some multiplexed nucleic acid detection methods are
not compatible with beads made in gel form [70–72].

Price et al. presented a potentially simple solution by exploiting the sedimentation
potential of the beads using a hopper system [62]. They, however, showed that it took
0.8 h (17 µm Tetangel resin beads) and 3.8 h (2.8 µm magnetic beads) for bead introduction
before achieving single bead encapsulation. Kim et al. successfully developed a pneumatic
system which is capable of trapping and releasing beads, thus creating a deterministic
encapsulation of a defined number of beads per droplet [62]. This system is not simple to
develop or operate, thus, unfit for low-cost point-of-care devices that can integrate with
other modules.

Our goal was to present a simple, easy-to-fabricate method to encapsulate single dense
beads in droplets that can be used for further downstream analysis. It is important to encap-
sulate single beads as opposed to multiple beads to avoid cross-contamination or confusion
of which target molecule or bead is in the droplet. The idea is to vertically orient the syringe
pump while keeping the beads suspended by mechanical agitation (which prevents loss of
beads due to sedimentation in the flow tubing and in the syringe) (Figure S1B), then pump
the contents directly into the droplet generation cartridge (Figure 1B). Using this principle,
we set up bead encapsulation with the droplet generation device such that λ ≈ 0.15, 0.2 and
0.3 beads/droplet, where λ represents the average number of beads per droplet input into
the device (Figure 4). We observed that our dense bead encapsulation method agreed well
with Poisson predictions (Figure 4B). Importantly, the droplet generation device resulted in
<2% of droplets containing more than 1 bead at λ ≈ 0.15, <4% of droplets containing more
than 1 bead at λ ≈ 0.2, and <6% of droplets containing more than 1 bead at λ ≈ 0.3.
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4. Conclusions

Using design principles from droplet microfluidic device literature, we designed and
developed a microfluidic device fabricated without complex equipment or cleanroom
facilities that can generate sub-100 pL droplets and encapsulate dense beads with a Poisson-
like distribution. Because the device is made from a 3D printed mold, researchers can
iterate prototypes rapidly without undergoing the time and resource-consuming processes
of photolithography; additionally, the droplet generation module can be part of a larger 3D
printed mold that includes modules for executing other upstream or downstream assay
processes, such as sample preparation, NA amplification, or single cell analysis.

While simple instrumentation was used to fabricate the microfluidic device, we still
needed a syringe pump for operation of the device to generate consistent and controlled
droplet sizes. Further improvements need to be made to our design to make it more
amenable to point-of-care settings, such as a pumping lid [73], or other equipment-free
pumping mechanisms [74]. Another limitation is that due to the 3D printer’s minimum
channel dimension (~100 µm), the lowest droplet diameter achieved was 45 µm (48 pL).
Lower sizes could be possible in the future with the next generation of 3D printers that
print channels down to 15 µm [75].

Other microfluidic devices have encapsulated beads in a non-random distribution
and thus have a much higher percentage of droplets with a single bead [41,43], though
the beads in those studies have a similar density to water. While the phenomenon for
the non-random distribution is unexplained, similar designs could potentially be used
with the dense bead mixing method studied here for higher percentages of droplets with
single beads. In its current form, this device enables research and innovation into assays or
methods that need to use beads with a density greater than water and thus overcome the
sedimentation effect, such as PMMA or magnetic beads. Because it can easily be printed
and combined with others as part of a larger device, microfluidic sorting mechanisms can
also be used to concentrate the beads downstream if desired [76].

Future research directions from this work can include: eliminating the need for a
syringe pump for <100 pL droplet generation, adapting the device to other biological
assay applications beyond digital LAMP, beating Poisson encapsulation statistics for dense
beads to reduce the waste of empty droplets, or adapting the BiD method for tagging
multiple biomarkers. Due to the simple instrumentation used, this work enables rapid
prototyping for a variety of biological applications of droplet microfluidic devices and
dense bead encapsulation.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13111946/s1, Section S1: Syringe with mixer to overcome sedi-
mentation effect of dense beads; Section S2: Capillary number calculations for picoliter-scale droplet
generation design; Section S3: Poisson prediction of positive droplet percentage; Section S4: Effect
of Glycerol on LAMP Amplification; Section S5: Pitalls of 3D Printing Fabrication of Microfluidic
Cartridges. Figure S1: (A) Tube connecting syringe containing bead suspension to the droplet gener-
ation cartridge; red arrow shows region of bead sedimentation. (B) Syringe design for mechanical
resuspension and homogenization of dense particles for vertical delivery. The DC motor is powered
using a 3V battery. Figure S2: Without the syringe mixer in Figure S1, bead sedimentation happens in
the syringe and tubing, leading to the encapsulation of multiple beads per droplet. Figure S3: Denser
fluids, such as glycerol, may improve bead buoyancy but it inhibits LAMP amplification (blue trace vs.
red trace). Bead Density = 1.18 g/ cm3, Glycerol Density = 1.26 g/cm3. Figure S4: Microcapillary lines
imprinted by 3D printed mold. This is often due to printer-head misalignment that often occurred
during prolonged prints. Figure S5: Micrograph showing curved vertices imprinted from 3D-printed
mold. Figure S6: Irregularities in chamber dimensions due to myriad factors, including incompletely
cured PDMS and build-up PDMS deposit due to mold reuse. Note that the displayed images contain
channels designed to have widths of 50 and 100 µm. Figure S7: Frosted PDMS molded on improperly
cleaned 3D printed mold. Figure S8: Image of final fabricated PDMS device and 3D printed mold.
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