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Abstract: This paper presents the design and development of a quad-port smart textile antenna for bio-
healthcare applications. The antenna is designed to operate in the ultra-wideband (UWB) spectrum
(3.1–12 GHz) with an impedance bandwidth of 8.9 GHz. The size of the unit cell and multiple-
input multiple-output (MIMO) antenna are 0.25λ0 × 0.2λ0 × 0.015λ0 and 0.52λ0 × 0.52λ0 × 0.015λ0,
respectively. The antenna has a maximum efficiency of 93% and a peak gain of 4.62 dBi. The
investigation of diversity metrics is performed and the results obtained are found to be ECC < 0.08 and
DG < 9.99 dB. The computed CCL and TARC values are <0.13 bits/s/Hz and <−12 dB, respectively.
The SAR analysis of the antenna shows a value of 0.471 Watt/Kg at 4 GHz, 0.39 Watt/Kg at 7 GHz,
and 0.22 Watt/Kg at 10 GHz.

Keywords: flexible; MIMO antenna; smart apparel; smart textile; UWB; wearable

1. Introduction

Wearable electronics is a rapidly growing field that has piqued consumer interest in
recent years. It has a wide range of applications in sports, military, space, mobile medical
monitoring, and healthcare [1,2]. Wearable antennas are enormously useful in the medical
field, for example by integrating them into garments, patients’ health data such as blood
pressure, heart rate, metabolism, and body temperature can be obtained [3,4]. Smart
textile antennas are becoming more popular due to their low cost, flexibility, and ease of
production. They are comfortable to wear, even when bent [5]. Textile antennas for on-body
applications should be lightweight and flexible. Some of the flexible materials used in
smart clothing include jeans, cotton, polyester, denim, silk, felt, plastics, paper, and Tencel
fabric [6,7]. An e-textile antenna was designed to establish data communication between
a smartphone and a Bluetooth receiver for body area network applications [8]. In [9], a
dual-band EBG integrated monopole antenna with fractal geometry was designed, and a
3 × 3 array was introduced on the backside of the antenna to reduce the specific absorption
rate (SAR). In [10], a polygon-shaped wearable antenna was reported for the 900 MHz and
2400 MHz bands. The antenna was crumpled, bent, and tested for on-body performance.
In [11], a breathable textile antenna operating at 2.45 GHz was presented. The antenna
exhibited flexibility, and a 3D spacer substrate was used to allow the antenna to breathe.
A jean-based textile antenna was designed in [12] for use in wireless communication
applications. The antenna operates at three different frequencies: 2.13 GHz, 4.75 GHz, and
11.495 GHz, making it useful for emergency and monitoring applications.
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The antennas in [13,14] used e-thread and conductive thread as materials. In [15], a
low-cost carbon conductive ink was used on a cotton substrate. In [16], a textile antenna
was used as a moisture sensor. The major drawback of textile materials is their limited
bandwidth, which slows data transmission. In [17], an antenna with an E-shaped slot was
reported to increase bandwidth. It is challenging to design a wideband textile antenna
that is durable and transmits data consistently even when the human body’s posture
changes. Multiple-input multiple-output (MIMO) antennas could be a solution to such
problems [18]. In MIMO antennas, the mutual coupling should be minimized by keeping an
adequate distance between the antenna elements. The goal of MIMO antenna designers is to
develop a compact antenna with high inter-element isolation. In [19], an artificial magnetic
conductor (AMC) was used to achieve high isolation. In [20], the electromagnetic band
gap (EBG) structure was used to achieve high gain and in mitigating the harmful effects of
radiation on the human body. The periodic (AMC/EBG) structures offer wider bandwidth
and reduce unwanted surface waves. However, the addition of periodic structures increases
the design complexity of the antenna.

This paper presents the design of an ultra-wideband (UWB) quad-port smart apparel
wearable antenna for bio-healthcare applications. The term “smart” refers to the integration
of antennas into the textile material, which allows it to be used as smart apparel to send
sportspersons’ health conditions, energy metabolism, heart rate, etc. The term “smart”
is coined as a result of the transformation of commonly available textile materials into a
data-transceiving device such as an antenna for effective communication. The proposed
antenna is developed on a polyester substrate to allow easy integration into clothing. The
performance of the antenna is validated through surface current distribution plots. The
unit antenna element is developed into a four-port MIMO antenna that can provide high-
speed reliable data transmission. The diversity characteristics of the MIMO antenna are
computed. The bending analysis is carried out in moderate and severe bending conditions.
The SAR analysis of the antenna is also performed to investigate its effect on the human
body. The proposed antenna could be useful in sports and healthcare applications owing
to its flexibility and wrinkle-resistant behavior.

2. Antenna Design
2.1. Unit Cell Design

Figure 1 displays the unit cell layout of the proposed antenna. The unit cell is designed
on the polyester substrate with dielectric constant and loss tangents of 1.9 and 0.045,
respectively [21]. Polyester is chosen as the substrate material because of its durability,
lightweight, wrinkle resistance, strain resistance, and shape retention properties. The
unit cell occupies a volume of 25 mm × 20 mm × 1.5 mm (0.25λ0 × 0.2λ0 × 0.015λ0),
where λ0 is equivalent to the lowest operating frequency. The proposed antenna operates
in the UWB range (3.1–12 GHz), and a partial ground plane is used to achieve better
impedance matching.
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The lowest operating frequency (flow) of a UWB monopole antenna is calculated using
Equation (1) [22,23]

flow =
7.2(

hm + wm + pg
)
× k

(1)

where hm is the height of the monopole antenna, wm is its width, and pg is the distance
between the monopole radiator and the ground plane, which is 0.4 cm. Here, k is calculated
by taking the root of the effective dielectric constant, and the Equation (1) is rewritten as

flow =
7.2(

1.217π[(rm + lm)] + pg
)
× k

(2)

The expression (hm + wm) is rewritten as 1.217π(rm + lm), which is the perimeter of a
rectangular radiator. The terms rm and lm refer to the semi-width and semi-length of the
monopole antenna.

Figure 2a portrays a rectangular radiator with a modified ground plane (Evolution 1).
In the next stage (Evolution 2), a combination of circular and square rings is loaded in
the center of the radiator (Figure 2b). In the third stage (Evolution 3), the corners of the
radiator are truncated with symmetric semi-circular slots, which improves the impedance
matching. It has a frequency range of 3.1–6.5 GHz (with an impedance bandwidth of
3.4 GHz) and 9–9.8 GHz. In the fourth stage (Evolution 4), the ground plane size is
reduced by 2 mm from the top edge, and 4 mm from the side edge near the feedline, as
shown in Figure 2d, resulting in an impedance bandwidth coverage of 3.1–7.1 GHz and
8.1–10.8 GHz. Additionally, the feedline is modified to a step-shaped geometry to improve
impedance matching. The ground plane is further truncated (6 mm) from the edge to
increase operational bandwidth (Evolution 5), as shown in Figure 2e, resulting in a wider
bandwidth of 8.9 GHz (3.1–12 GHz). Figure 3 shows the reflection coefficient curves of the
evolution stages. The antenna operates at frequencies ranging from 3.1 to 12 GHz.
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Figure 2. Evolution stages of the proposed antenna. (a) Evolution-1, (b) Evolution-2, (c) Evolution-3,
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The performance analysis is carried out by varying the ground plane width (GW) from
18 mm to 13 mm, as shown in Figure 4, and the corresponding S-parameters are shown in
Figure 5. At GW = 18 mm, the entire UWB range is not covered, as there is some impedance
mismatch in the frequency range of 7.3–8.2 GHz. When the GW is reduced to 17 mm, the
proposed antenna covers UWB frequencies from 3.1 GHz to 10.6 GHz with an impedance
bandwidth of 7.5 GHz. When the GW is reduced further, from GW = 16 mm to 14 mm,
the impedance bandwidth on the higher frequency side increases, resulting in a larger
impedance bandwidth of 8.9 GHz (3.1–12 GHz). When the ground plane width is reduced
to 13 mm, the impedance begins to degrade in the 4.2–5.3 GHz frequency range. Therefore,
the ground plane truncation is kept as 14 mm to achieve an impedance bandwidth of
8.9 GHz.
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Figure 4. Parametric analysis of the antenna with varying ground plane width (GW). (a) GW = 18 mm,
(b) GW = 17 mm, (c) GW = 16 mm, (d) GW = 15 mm, (e) 14 mm, (f) 13 mm.
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For a better knowledge of radiation performance, the current distribution of the
antenna is analyzed. Figure 6 depicts the current distribution of the antenna. The current
is highly distributed in the ground plane at 4 GHz. At 10 GHz, the current distribution
is more concentrated in the feedline and close to the semi-circular slot. Figure 7 presents
the reflection coefficient (simulated and measured) plots of the designed antenna. The
simulated impedance bandwidth ranges from 3.1 to 12 GHz, while the measured bandwidth
ranges from 3.07 to 12 GHz.
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2.2. MIMO Antenna Design

The developed MIMO antenna layout is displayed in Figure 8, where four-unit cells are
duplicated and arranged in an orthogonal pattern. The spacing between the antenna elements
is kept as 0.97λ0. The MIMO antenna occupies a volume of 51 mm × 51 mm × 1.5 mm
(0.52λ0 × 0.52λ0 × 0.015λ0), where λ0 is the wavelength corresponding to the lowest
operating frequency. The prototype is fabricated on the polyester substrate, as depicted in
Figure 9, and the S-parameter results are measured using Anritsu MS203C Vector Network
Analyzer (VNA).
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3. Discussion of the Findings
3.1. Scattering Parameters

The simulated and measured scattering parameter results are displayed in
Figures 10 and 11. It can be noticed that the reflection coefficients of Antenna-1 and
Antenna-3 are identical, and the reflection coefficients of Antenna-2 and Antenna-4 are
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also matching, which is due to the orthogonal placement of the unit cells. The simulated
S-parameter has an impedance bandwidth of 8.9 GHz (3.1–12 GHz), while the measured
S-parameter has an impedance bandwidth of 9.08 GHz (2.2–11.28 GHz). The simulated
and measured results both cover the entire UWB range.
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The mutual coupling characteristics of the measured results are lower than the
simulated results. The mutual coupling may be reduced as a result of environmental
changes [24,25]. In the proposed antenna, an isolation of greater than 17 dB is obtained
over the entire UWB range.

3.2. Radiation Characteristics

The designed MIMO antenna is tested in an anechoic chamber with a standard horn
antenna as the reference antenna on the transmitter side and the proposed antenna as
the test antenna on the receiver side. The radiation pattern and gain are measured in an
anechoic chamber. When port-1 is excited, the remaining ports (2, 3, and 4) are terminated
with 50-ohm impedance, and vice versa.
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The Friis transmission equation is used to calculate the gain

Pr

Pt
= GtGr

(
λ

4πd

)2
(3)

where

Pt is the power delivered by the transmitting antenna, and Pr is the power available at the
receiving antenna.
Gt is the transmitter antenna gain, and Gr is the receiver antenna gain.
λ is the wavelength, and d is the distance between the transmitter and receiver.

The directivity is calculated using Equation (4) [26]

D =
41, 253
θE θH

(4)

where θE and θH are the half-power beam widths obtained in the E and H planes, respectively.
The measured radiation efficiency is calculated using Equation (5)

η =
G
D

(5)

where G is the gain, D is the directivity, and η is the efficiency of the antenna.
Figure 12 presents the simulated and measured gain and efficiency plots of the MIMO

antenna. The simulated gain at 3 GHz, 6 GHz, and 10 GHz is 2.2 dBi, 3.32 dBi, and 4.82 dBi,
respectively. Whereas, the measured gain values are 2 dBi, 4 dBi, and 4.7 dBi at 3 GHz,
6 GHz, and 10 GHz, respectively. The proposed antenna has a maximum efficiency of 92%.
The radiation patterns can be seen in E-plane (elevation plane) and H-plane (azimuth plane)
as depicted in Figure 13. When the polarization of the proposed antenna and the reference
(Horn) antenna are the same, the co-polarization pattern is depicted. When the polarization
of the antennas differs, a cross-polarization pattern is observed. The simulation results are
plotted for the free-space and on-body conditions. The designed antenna is fabricated and
measured in free space. When compared to the free space results, the on-body radiation
patterns are suppressed due to the effects of the human body.
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4. Diversity Performance

The diversity metrics of the developed antenna are investigated for far-field conditions.
The calculated envelope correlation coefficient (ECC) and diversity gain (DG) of the MIMO
antenna are depicted in Figure 14. ECC denotes the closeness of adjacent antenna unit
cells [27], which can be evaluated using Equation (6). The practical limit of the ECC is less
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than 0.5. The ECC value in Figure 14 shows a low correlation between two neighboring
antenna elements due to the adequate spacing of 7 mm (0.97λ0) between them. The spacing
between the antenna elements results in a good isolation of >17 dB. As a result, the ECC
plots show low correlation values.

ECC =
|
s
[
→
F1(θ, ϕ)·

→
F2(θ, ϕ)]dΩ|2

s
|
→
F1(θ, ϕ)|2dΩ

s
|
→
F2(θ, ϕ)|2 dΩ

(6)

where F1 and F2 are the radiated fields and the notations θ, ϕ are the elevation (vary from 0
to π) and azimuth angles (vary from 0 to 2π). The phase values of the radiation patterns
are determined by using angles (θ, ϕ). Equation (6) is derived from Equation (7).

ECCi, j =

∣∣∣∣∣∣∣∣
∫ π

0

∫ 2π
0

(
XPR· Eθi·E∗θ j· Pθ + XPR· Eϕi·E∗ϕj· Pϕ

)
sin(θ) dθ dϕ√

∏k=i,j
∫ π

0

∫ 2π
0

(
XPR· Eθi·E∗θ j· Pθ + XPR· Eϕi·E∗ϕj· Pϕ

)
sin(θ) dθ dϕ

∣∣∣∣∣∣∣∣
2

(7)

where XPR denotes the cross-polarization ratio between vertical (PV) and horizontal power
(PH) components. The variables i and j represent port numbers. The field components in the
elevation and azimuth directions are denoted by Eθi, E∗θ j, Eϕi, E∗ϕj. The power distribution
in the elevation and azimuthal directions is denoted by Pθ and Pϕ.
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Figure 14. ECC and diversity gain plots of the MIMO antenna.

The terms
∫ π

0

∫ 2π
0 Pθ · sin(θ) dθ dϕ = 1 and

∫ π
0

∫ 2π
0 Pϕ· sin(ϕ) dθ dϕ = 1 are the normal-

ized power. In Equation (6), the terms XPR· Eθi·E∗θ j· Pθ and XPR· Eϕi·E∗ϕj· Pϕ are related to
→
Fi(θ, ϕ), where the term

∫ π
0

∫ 2π
0 sin(θ) dθ dϕ is represented by the solid angle dΩ.

The DG illustrates how well a signal is conveyed while experiencing the least amount
of data loss [28], which is based on the ECC value and can be obtained by using Equation (8).
The DG should be >9 dB. As ECC values decrease, the resulting DG becomes more con-
trasting. The ECC and DG of the proposed antenna are satisfactory.

DG =

√
1− |ECC|2 (8)

Channel losses will occur during the correlation of diversity performance. The channel
losses can be estimated through the total active reflection coefficient (TARC), which can be
calculated using Equation (9) [29]. TARC is the ratio of the square root of the sum of total
reflected waves (bi) to the square root of the sum of total incident waves (ai).
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TARC =

√
∑N

i=1|bi|2√
∑N

i=1|ai|2
(9)

For a two-port antenna system, TARC can be calculated using (10)

TARC = Γt
a =

√
(|S11 + S12ejθ |2) + (|S21 + S22ejθ |2)

√
2

(10)

where ejθ = cos θ + j sin θ.
The TARC calculation is obtained by considering θ as 0◦; ejθ = 1.
TARC should be less than −10 dB. Transmission loss is defined as channel capacity

loss (CCL) in high data rate transmission [30,31], which is evaluated using Equation (11).
The CCL value should not be higher than 0.4 bits/s/Hz. The calculated TARC and CCL
results of the designed antenna are plotted in Figures 15 and 16.

CCL = −log2|ψ|R (11)

where |ψ|R is the correlation matrix of the receiving antenna equivalent to
∣∣∣∣ρ11 ρ12
ρ21 ρ22

∣∣∣∣ and

ρ11 =
(

1− |S11|2 − |S12|2
)

, ρ12 = −(S11 ∗S12 + S21 ∗S12)

ρ21 = −(S22 ∗S21 + S12∗S21), ρ22 =
(

1− |S22|2 − |S21|2
)
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5. Bending Analysis

Figures 17 and 18 depict the bending analysis of the antenna at three bending radii
(BR = 25 mm, 20 mm, and 15 mm). The proposed MIMO antenna has a half-width of
25.5 mm. Therefore, 25 mm is chosen as the bending radius, and the bending performance
of the antenna design is evaluated. In Figures 19 and 20, the reflection coefficients and
mutual coupling characteristics are plotted for three bending radii. It is observed that the
proposed antenna works well when bent at 25 mm and 20 mm. The reflection coefficient
values deteriorate when the antenna is bent a further 15 mm. Similarly, the mutual coupling
is increased above −10 dB. Bending analysis reveals that the proposed antenna is flexible
and can bend up to a 20 mm bending radius. The bending angle (θ) of the antenna is
calculated using the following equation [32]

Bending angle (θ) =
ly × 360
r× 2π

(12)

where ly is the length of the antenna in the y-plane and r is the bending radius. The
calculated bending angles are tabulated in Table 1.
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Figure 18. Bending analysis of the prototype antenna (a) BR = 25 mm, (b) BR = 20 mm,
(c) BR = 15 mm.

Table 1. Bending angles at different bending radii.

Bending Radius (BR) Bending Angle (◦)

25 mm 116.94
20 mm 146.2
15 mm 194.9
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Figure 19. Reflection coefficients of the antenna at three bending radii (a) BR = 25 mm,
(b) BR = 20 mm, (c) BR = 15 mm.

Table 1 shows that the proposed MIMO flexible antenna can bend up to a bending
angle of 146.2◦, and the critical bending angle of the proposed antenna is 194.9◦.



Micromachines 2022, 13, 1919 14 of 21

Micromachines 2022, 13, x  15 of 24 
 

 

 
(c) 

Figure 19. Reflection coefficients of the antenna at three bending radii (a) BR = 25 mm, (b) BR = 20 
mm, (c) BR = 15 mm. 

 
(a) 

 
(b) 

-25

-20

-15

-10

-5

0

2 3 4 5 6 7 8 9 10 11 12

Si
i P

ar
am

et
er

s (
dB

) 

Frequency (GHz)

S11 (Sim) S22 (Sim) S33 (Sim)

S44 (Sim)  S11 (Meas)  S22 (Meas)

 S33 (Meas) S44 (Meas)

-60
-50
-40
-30
-20
-10

0

2 3 4 5 6 7 8 9 10 11 12

Si
j P

ar
am

et
er

s (
dB

) 

Frequency (GHz)

S12 (Sim) S13 (Sim) S14 (Sim)

S12 (Meas) S13 (Meas) S14 (Meas)

-50
-40
-30
-20
-10

0

2 3 4 5 6 7 8 9 10 11 12

Si
j P

ar
am

et
er

s (
dB

) 

Frequency (GHz)

S12 (Sim) S13 (Sim) S14 (Sim)

S12 (Meas) S13 (Meas) S14 (Meas)

Micromachines 2022, 13, x  16 of 24 
 

 

 
(c) 

Figure 20. Transmission coefficients of the antenna at three bending radii (a) BR = 25 mm, (b) BR = 
20 mm, (c) BR = 15 mm. 

Table 1. Bending angles at different bending radii. 

Bending Radius (BR) Bending Angle (°) 
25 mm 116.94 
20 mm 146.2 
15 mm 194.9 

Table 1 shows that the proposed MIMO flexible antenna can bend up to a bending 
angle of 146.2°, and the critical bending angle of the proposed antenna is 194.9°. 

6. SAR Analysis 
In the realm of wearable technologies, a wearable antenna with lower SAR values is 

important [33]. The proposed antenna is designed for bio-healthcare applications. There-
fore, it is essential to perform SAR analysis to determine the radiation exposure of the 
antenna to the human body. A rectangular human body model with human tissue layers 
is used to simulate the MIMO antenna, as shown in Figure 21a. The proposed antenna is 
simulated for 1 g of tissue by positioning it 5 mm above the quadrilateral (skin, fat, muscle, 
and bone) tissue model. The thickness and electrical behavior of the human body [34] 
tissues are listed in Table 2. The fed input power is 1 W. Figure 21b shows that the SAR 
results of the designed MIMO antenna are within the 1.6 W/Kg limit for all four antenna 
elements, making the proposed antenna suitable for bio-healthcare applications. The SAR 
values obtained from ports-1 and -3 are identical. Similarly, the SAR values obtained from 
ports-2 and -4 are identical. This is because antennas-1 and -3 are vertically oriented, 
whereas antennas-2 and -4 are horizontally oriented. In Figure 21c, the reflection coeffi-
cients of the MIMO antenna are plotted to test the working performance of the antenna 
during SAR analysis. The UWB range is evident in free space, with an impedance band-
width of 9 GHz (3–12 GHz). Due to their similar orientations, ports-1 and -3 have similar 
S-parameter values, and ports-2 and -4 have similar S-parameter values. 

  

-50
-40
-30
-20
-10

0

2 3 4 5 6 7 8 9 10 11 12

Si
j P

ar
am

et
er

s (
dB

) 

Frequency (GHz)

S12 (Sim) S13 (Sim) S14 (Sim)

S12 (Meas) S13 (Meas) S14 (Meas)
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6. SAR Analysis

In the realm of wearable technologies, a wearable antenna with lower SAR values is im-
portant [33]. The proposed antenna is designed for bio-healthcare applications. Therefore,
it is essential to perform SAR analysis to determine the radiation exposure of the antenna
to the human body. A rectangular human body model with human tissue layers is used to
simulate the MIMO antenna, as shown in Figure 21a. The proposed antenna is simulated
for 1 g of tissue by positioning it 5 mm above the quadrilateral (skin, fat, muscle, and bone)
tissue model. The thickness and electrical behavior of the human body [34] tissues are
listed in Table 2. The fed input power is 1 W. Figure 21b shows that the SAR results of



Micromachines 2022, 13, 1919 15 of 21

the designed MIMO antenna are within the 1.6 W/Kg limit for all four antenna elements,
making the proposed antenna suitable for bio-healthcare applications. The SAR values
obtained from ports-1 and -3 are identical. Similarly, the SAR values obtained from ports-2
and -4 are identical. This is because antennas-1 and -3 are vertically oriented, whereas
antennas-2 and -4 are horizontally oriented. In Figure 21c, the reflection coefficients of the
MIMO antenna are plotted to test the working performance of the antenna during SAR
analysis. The UWB range is evident in free space, with an impedance bandwidth of 9 GHz
(3–12 GHz). Due to their similar orientations, ports-1 and -3 have similar S-parameter
values, and ports-2 and -4 have similar S-parameter values.
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Table 2. Electrical properties of human body tissues.

Human Body
Tissue Layers Frequency (GHz) Relative

Permittivity (εr)
tan δ

Thickness of Tissue
Layers (mm)

Skin
4 36.6 0.281

27 34.1 0.36
10 31.3 0.47

Fat
4 5.12 0.14

57 4.85 0.19
10 4.6 0.24

Muscle
4 50.8 0.23

107 46.9 0.33
10 42.8 0.45

Bone
4 10.5 0.16

77 9.17 0.183
10 8.12 0.21

The SAR analysis is also carried out by importing human body models from the
open-source computer-aided designing (CAD) model [35]. The proposed MIMO antenna is
simulated by placing it to the chest and forearm of the human body model. The SAR values
of the MIMO antenna located on the chest and forearm are depicted in Figure 22a,b. The
corresponding S-parameter curves of the MIMO antenna are plotted in Figure 22c, which
shows an impedance bandwidth of 9 GHz (3–12 GHz).

In Figure 21, the SAR analysis is performed using a quadrilateral tissue model with the
tissue thickness of skin = 2 mm, fat = 5 mm, muscle = 10 mm, and bone = 7 mm. The relative
permittivity and loss tangent values of skin, fat, muscle, and bone are shown in Table 2. In
contrast, the imported human body model in Figure 22 has only one layer of tissue (skin).
During the SAR analysis, the antenna radiation passes through the quadrilateral tissue model
with a total thickness of 24 mm with different tissue properties, which is not the case with the
imported human body model. Therefore, the SAR values obtained using the quadrilateral
tissue model are greater than the SAR values obtained from the imported human body model.
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Figure 22. SAR analysis on an imported human body model (a) Chest, (b) Forearm, (c) Reflection
coefficient curves.

The on-body performance of the proposed MIMO antenna is evaluated by placing
it on a human body and measuring it with a vector network analyzer (VNA), shown
in Figure 23a. Figure 23b depicts the measured reflection coefficients of the proposed
MIMO antenna when it is placed on the human body. It covers the entire UWB with an
impedance bandwidth of 9.2 GHz (2.6–11.8 GHz), making it suitable for wearable and
bio-healthcare applications.
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Figure 24 compares the reflection coefficient curves obtained from different SAR
calculations. The results show that there is no discernible change in the reflection coefficient
curves (in both simulation and measurement) when the proposed antenna is subjected to
SAR performance. In all of the cases depicted in Figure 24, the proposed antenna covers
the entire UWB range.
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Table 3 compares the performance of the proposed antenna with the previously pub-
lished antenna designs.



Micromachines 2022, 13, 1919 19 of 21

Table 3. Comparison of the proposed antenna with the previously published antenna designs.

Ref. Substrate Unit Cell
Area MIMO Area No. of Ports Bandwidth

(GHz)
Peak Gain

(dBi) DG (dB)

[36] Denim 36 × 29 — 1 3–11 7.2 —
[37] Jeans cotton 65 × 60 — 1 2.19–3 — —
[38] Jeans 16 × 28 40 × 86 2 2.42–2.47 3 >9.5
[39] Felt 37 × 34 37 × 76 2 2–6.23 2.88 9.95
[40] Felt 36 × 27 36 × 54 2 1.1–8.6 7.5 —
[41] Felt 30.5 × 20 32.5 × 42 2 3.6–13 5.7 >9.96
[42] Felt 47.2 × 31 132.8 × 70 2 3.53–7.1 1.878, 4.027 >9.975
[43] Jeans 20 × 16 20 × 32 2 3.38–12.78 — 9.99
[44] Jeans 26 × 12 26 × 24 2 4.9–6 5.1 10
[45] Kapton 22 × 15 22 × 31 2 3.43–10.1 3.5 —

[46] FR-4 31 × 22 31 × 44 2
2.28–2.47
3.4–3.62

4.57–6.75

1.3
2.9
4.3

9.998
9.999
9.998

Prop. Polyester 25 × 20 51 × 51 4 3.1–12 4.62 >9.99

• The proposed antenna has a smaller unit cell size than [36–42,46].
• In comparison to the other antenna designs, the proposed four-port MIMO antenna

size is relatively small.
• The designed antenna has a broader impedance bandwidth of 8.9 GHz than

the [36–40,42,44–46] antennas.
• The developed antenna has a peak gain of 4.62 dBi when compared to [38,39,42,45,46].
• Unlike [38,39,41–43], the diversity gain of the designed antenna is more than 9.99 dB.

The following are the main highlights of the proposed work:

• The proposed structure is a compact MIMO antenna composed of four resonators with di-
mensions of 0.52λ0 × 0.52λ0 × 0.015λ0, where λ0 represents the lowest operating frequency.

• The proposed antenna is made of cost-effective textile material, and it is constructed
with simple-to-fabricate structures.

• The proposed antenna is lightweight and easy to integrate into the human body.
• The proposed antenna fabrication process is simple, easy, and inexpensive, and it

allows for easy integration into clothing.
• The flexibility of the proposed antenna is evaluated using bending analysis at different

bending radii.
• The proposed antenna has high durability, resistance to wrinkles, and resistance to

strain due to the use of the substrate polyester.
• The rectangular human body model and the imported human body CAD model

showed low SAR values.
• The proposed MIMO antenna has two polarization vectors (vertical and horizontal)

and exhibits polarization diversity.

7. Conclusions

A smart textile UWB MIMO antenna design is proposed for bio-healthcare applications.
The unit cell is developed into a four-port MIMO antenna with each antenna element facing
orthogonally to the other. Isolation >17 dB is obtained across the entire UWB band, and
the calculated diversity measures of the designed antenna are satisfactory. The obtained
SAR values are significantly lower than 1.6 Watt/Kg, making the antenna suitable for
wearable, smart textiles, location tracking, patient monitoring, and sports applications.
The radiation exposure can be further reduced by using periodic structures such as EBG,
frequency selective surfaces, and so on.
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