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Abstract: A wideband circularly polarized rectangular dielectric resonator antenna (DRA) fed by a
single feeding mechanism has been studied theoretically and experimentally. The purpose of the
study is to determine how adding a parasitic strip next to the flat surface metallic feed would affect
various far- and near-field antenna characteristics. Initially, the basic antenna design, i.e., the T-shape
feed known as antenna A, produced a 4.81% impedance matching bandwidth (|S11| −10 dB). Due
to the narrow and undesirable results of the initial antenna design, antenna-A was updated to the
antenna-B design, i.e., Yagi-Uda. The antenna-B produced a decent result (7.89% S11) as compared to
antenna-A but still needed the bandwidth widened, for this, a parasitic patch was introduced next
to the Yagi-Uda antenna on the rectangular DRA at an optimized location to further improve the
results. This arrangement produced circular polarization (CP) waves spanning a broad bandwidth of
28.21% (3.59–3.44 GHz) and a broad impedance |S11| bandwidth of around 29.74% (3.71–3.62 GHz).
These findings show that, in addition to producing CP, parasite patches also cause the return loss to
rise by a factor of almost three times when compared to results obtained with the Yagi-Uda-shape
feed alone. Computer simulation technology was used for the simulation (CST-2017). The planned
antenna geometry prototype was fabricated and measured. Performance indicators show that the
suggested antenna is a good fit for 5G applications. The simulated outcomes and measurements
match up reasonably.

Keywords: band singly fed; circular polarization; flat surface metal strip; dielectric resonator antenna
(DRA); Yagi-Uda; 5G N.R.

1. Introduction

The DRA is a unique kind of antenna that utilizes the radiating modes of a dielectric
resonator (DR). In terms of variety of material and shape, the DRA offers a higher margin
of flexibility and adaptability than 1-D linear and 2-D planar antennae. Other desirable
qualities of DRA include its compact size, minimal ohmic loss, and simplicity of excitation.
The DRA is viewed as a viable contender for the next generation of wireless communications
because of these important properties [1].

Micromachines 2022, 13, 1913. https://doi.org/10.3390/mi13111913 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13111913
https://doi.org/10.3390/mi13111913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-8503-037X
https://orcid.org/0000-0001-6005-878X
https://orcid.org/0000-0002-2261-4105
https://orcid.org/0000-0003-0392-8704
https://orcid.org/0000-0001-5887-0920
https://orcid.org/0000-0002-9394-5219
https://orcid.org/0000-0002-1566-1675
https://orcid.org/0000-0003-3669-2080
https://doi.org/10.3390/mi13111913
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13111913?type=check_update&version=2


Micromachines 2022, 13, 1913 2 of 15

Circularly polarized DRAs have gained attention recently due to features such as being
less affected by atmospheric conditions, more capable of mitigating polarization mismatch,
and in particular not being sensitive to how the transmitting and receiving antennas are
oriented. Initially, the primary research focus was on linearly polarized (LP) antennas. For
satellite communication and navigation systems, global positioning systems, and radio
frequency identification systems, circularly polarized DRAs are preferred [2–15]. Although
these techniques make the design more intricate and sensitive, a wider bandwidth has been
attained through such design modifications. Additionally, perforation DRA delicate cutting
is a difficult task; however, by inserting the parasitic patch, these issues may be resolved
without sacrificing the DR’s size and form.

In general, there are three different ways to generate the CP fields of a DRA: single feed,
dual feed, and quadrature feeds [2,3]. Wider impedance matching (S11) and axial ratio (3 dB)
bandwidths may often be achieved using quadrature or dual-feed mechanisms; as a result,
power dividers or external hybrid couplers are employed, unavoidably increasing the total
size, complication, and cost of the antenna system. In parallel, the feeding technique, such
as a single probe/flat surface metal strip, uses a specific feeding structure and typically has
an extremely simple and easy feeding network; however, it has the shortcoming of having
a small impedance matching bandwidth along with a narrow 3 dB axial ratio of less than
10%. This technique generates circularly polarized waves primarily through exciting the
dielectric resonator geometry. This is why there has been a lot of focus on increasing the
bandwidth of circularly polarized DRAs energizing through a singly fed mechanism [4].

The impedance matching and 3 dB axial ratio (AR) bandwidths of single-feed CP
DRAs have reportedly increased using a variety of approaches in the literature, including a
straightforward method that utilizes [5,6] DRs. The entire strategy will result in bandwidth
improvement by configuring the DRs to operate at close frequencies.

For instance, a 22% bandwidth may be achieved by just arranging two rectangular
DRs in a stair-shaped DRA [7], although such a method makes the geometry a little
more challenging.

Additionally, a singly fed differentially stimulated hollow rectangle DRA has been
described in [8]. The hybrid coupler was utilized to excite the device and the two flat
surface strips were employed to transmit the differential signal. With that method, the
AR bandwidth was 11.8%. On the other hand, frequency reconfigurable antennas [9,10]
are compact in size, use the single feed excitation mechanism, and have better results in
near-field characteristics but they are not circularly polarized. For Sub-6 GHz and WLAN,
application compact size antennae are utilized [11]; however, they have complex feeding
techniques which make the design a bit complicated. A novel method that uses a parasitic
strip or patch in conjunction with a flat surface strip to feed the DRA has just been proposed
in [12]. The parasitic strip causes two nearly degenerate orthogonal modes to be activated,
which result in CP fields and disturb the DRA fields. A single feed may be used to apply the
new approach to a traditional DRA. The AR bandwidth was increased from 6.5% to 20% by
adding a patch (parasitic) within a round/circular loop antenna [13]. The observed CP
bandwidth of 7.13%, which was found to be three times broader than without the parasitic
element, was produced by a driven open half-loop conducting metal strip with a parasitic
patch in the following work [14].

Moreover, thin flat surface conducting strips have been installed on cylindrical DRAs [15]
for both parasitic and feeding purposes. As a result, the return loss has increased from
5.1% to 11.5% while also producing an AR. Cutting the corners/edge of the DRA and
placing a flat surface parasitic strip nearby is another method to increase return loss and
create CP; this method dramatically increases S11 to 49.7% and the axial ratio bandwidth to
11.7% [16].

In the last decade, a lot of work has been done to design antennas that can cover 5G
applications, such as in [17]; here, the array has been used to achieve a broader bandwidth
and covers 5G applications. However, such antennae have a complex design and are
linearly polarized, while in parallel, [18] have a simple geometry design but have the
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drawback of a narrow 10-dB impedance bandwidth. In [19–21], the authors achieve a
reasonable bandwidth in both return loss and axial ratio but have a complicated geometry
design. Microstrip patch antennae are used in [22], which have the disadvantage of metallic
loss at higher frequencies. Dipole antennas are also used for 5G applications [23,24] but the
performance of these antennas is too good when used as an array or MIMO.

In order to overcome all the above-mentioned issues, a broadband CP DRA is pre-
sented in this article, where a parasitic patch is added at an ideal distance next to the
Yagi-Uda-shaped flat surface metal strip to solve the narrow bandwidth issue, as discussed
before with antenna-A and antenna-B. The findings are shown here with the help a of
simulating tool, i.e., CST Microwave studio [25], which generated broader (|S11| −10 dB)
impedance matching and 3 dB axial ratio bandwidths of 29.74% and 28.01%, correspond-
ingly, in addition to the improved gain of 6.65 dBic. The broadband CP DRA prototype is
constructed, and measurements show good agreement between real-world and computer
simulation findings. The suggested DRA’s working spectrum spans the frequency range of
3.67–4.60 GHz, making it suitable for 5G applications

The structure of the article is as follows. The configuration of the antenna components
is presented in Section 2. This is followed by a discussion of the theoretical implications,
working principle, bandwidth augmentation, production of CP waves, and design require-
ments. The experimental results of the produced antenna are shown in Section 3. The
findings are drawn in Section 4.

2. Antenna Design and Analysis

In addition to discussing the dimensions of the rectangular DRA with and without
a parasitic patch, this subsection also explains the CST’s operating principles and simu-
lated outcomes.

2.1. Antenna Configuration

According to Figure 1, the proposed singly fed broadband with a circularly polarized
DRA comprises a rectangular DRA, a Yagi-Uda-shaped flat surface feeding strip, a parasitic
patch, and a PEC ground plane. As depicted in Figure 2, the rectangular DRA’s dimensions
are retained the same as in [18], where they are H = 26.1 mm in height, B = 25.4 mm in
width, and W = 14.3 mm in depth. Additionally, the material ECCOSTOCK HIK, with a
relative permittivity of 9.8 and a tanδ of 0.002, is used to build the RDRA. A novel-shaped
flat surface metal strip was adhered to the DRA face using glue (quick fix). Flat surface
metal strips, which are constructed of four separate cut strips, excite the antenna and form
the Yagi-Uda feed structure.
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Figure 2. Dimension of the Proposed Yagi-Uda RDRA antenna: (a) Dimension of the RDRA;
(b–d) dimension of the Yagi-Uda Feed structure and parasitic element.

A finite integration method (FIT) based simulation tool, called CST MWS, was used
for providing the best parameters for the proposed wideband RDRA feed. The optimal
parameter for the strips is then displayed in Table 1. The 35 × 35 cm2 of square PEC ground
has been utilized. A rectangular DRA was placed in the center of the PEC ground plane.

Table 1. Best estimates of proposed wideband RDRA and feeds dimensions.

Element. Parameter Dimension (mm)
PEC Ground Plane L1, W1 35, 35

RDRA H, W, B 26.1, 14.3, 25.4
Yagi-Uda Feed Wf, Bf, Gf, Lf1, Lf2, Lf3 1, 1, 2, 3, 5, 7
Parasitic Strip Pr_h, Pr_w 11.75, 1.00

2.2. Evolution of Wideband RRDA Antenna

The proposed wideband RDRA antenna’s development and construction are shown
in Figure 3. The layout in Figure 3a depicts the antenna-A configuration, which consists
of three metal strips to have a T-shaped feed and the said feed is excited by a 50 Ω
coaxial probe.

In step 2, antenna-B has been developed from antenna-A. The new feed of the antenna-
B is designed by updating the feed from step -1 using four flat surface metal strips which
results in creating a Yagi-Uda shape feed, as seen in Figure 2b. Finally, the proposed
wideband RDRA is created by adding a parasitic patch at an ideal place beside the Yagi-
Uda feed, as depicted in Figure 3.
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Figure 3. Evolution of the RDRA wideband antenna (3-D View) (a) Antenna-A, RDRA with the
T-shape feed; (b) antenna-2, RDRA with a novel flat surface metal strip (Yagi-Uda); (c) desired
wideband RDRA with the parasitic patch.

2.3. Simulation of Antenna-A Antenna-B Design, Analysis, and Discussion

This subsection explains the antenna-A simulation’s outcome. Figure 4 shows that
antenna-A has a narrow impedance matching bandwidth (|S11| −10 dB) of just 4.81%
(3.96–4.28 GHz) and a resonance frequency of 4.15 GHz. The resonance frequency can be
approximately calculated by [25].

f0 =
1.8412c

2πLp
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that the results from antenna-A are undesirable and cannot be used for 5G applications
because of the narrow band. In order to overcome this issue some modifications have
been performed on antenna-A which leads the design to the Yagi-Uda shape, this design
is named antenna-B. Through simulation results, it has been observed that the results
are not improving much, with S11 just improving from 4.81% to 7.94%. Poor return
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2
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(4)

Here,

K1 =
l

l + 2s
, k2 = e

−πs
2h (5)

where
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e is
the change in effective dielectric constant.

2.4. Incorporating Parasitic Patch

So far, the return loss and gain results are not significant. In order to improve the
impedance-matching bandwidth and generate CP waves, the parasitic patch is introduced
at an optimized location beside the flat surface metal strip. Incorporating the parasitic patch
not only widens the impedance matching of the antenna but is also responsible for the CP
waves. The initial dimension of the parasitic patch can be approximately determined with
the help of the following equation:

πγ

180
=

Lp

[Co fo]
√
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2.5. Working Principle, Generation of CP, Simulation Results of Design, Analysis, and Discussion

The new design after implementing the parasitic patch forms a sequential rotation
arrangement resulting in an improvement in impedance match bandwidth and generation
of CP [29,30]. The simulated surface current distributions of the antenna at 3.74 GHz
(Minimum of S11), as shown in Figure 5. This may be used to understand the impact of
parasitic patches on the electric field. The y-component of the current on the parasitic
patch and that of the induced current on the Yagi-Uda patches are orienting in the same
direction, as can be seen in Figure 5a,c; although their x-components are orienting in
opposite directions, as can be seen in Figure 5b,d.
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(c) t = T/2(180◦), and (d) t = 3T/4(270◦).

Furthermore, it is not difficult to conclude that the induced current on the parasitic
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. To further study the broadband CP property of the
designed antenna, the current concentrates on the novel shape flat surface metal strip at
t = 0, t = T/4, t = T/2, and at t = 3T/4. Moreover, it is seen that the composite current
surface currents on the novel feed are orthogonal at 0◦ and 90◦, which provides the required
condition for CP generation. Thus, the antenna owns CP performance due to the orthogonal
current direction. Surface current distribution at 180◦ and 270◦ opposes the direction of
the currents at 0◦ and 90◦. In addition, the current distributions sequentially rotate in an
anticlockwise direction, so RHCP performance is exhibited.

2.6. Parasitic Strip Optimization

Figure 6a–c illustrate the variation in the height (Pr_h), the gap between the parasitic
patch and the Yagi-Uda strip, and the width (Pr_w) of the parasitic strip, respectively,
together with the difference in the impedance-matching characteristic |S11| and 3 dB
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axial ratio. Figure 6a shows that the resonant frequency does not vary as the height of the
parasitic patch changes but the bandwidth S11 decreases by −10 dB and exceeds −10 dB at
about 4 GHz. This is brought about by the parasitic strip’s modification of the electrical
length of RDRA in the y-direction.
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Figure 6. Parametric examination of return loss and axial ratio for various: (a) Height, (b) width, and
(c) positions of the parasitic strip.

Axial ratio fluctuation is shown in Figure 6a in a similar way. The height of the parasitic
patch was discovered to enhance the axial ratio bandwidth; however, the overlapping
region is found to be small due to the S11 bandwidth. Figure 6b,c exhibit, respectively, the
variation in the return loss characteristic and the axial ratio bandwidth due to changes
in the breadth and gap between the parasitic patch and the feed. The width and gap of
the parasitic strip have slight effects on the axial ratio bandwidth, even when the other
parameters (|S11|) are simultaneously changing. This is because of the parasitic strip that
loaded DR modes, such as TExδ13 and TEy1δ3, in the lower band. Parametric studies
enable the determination of the parasitic patch’s optimized parameters. Likewise, the
proposed antenna offers a simple axial ratio and impedance adjustment.

3. Simulated Result of the Proposed Antenna

This segment introduces a bandwidth improvement method and CP wave production.
It is noted that inserting the parasitic patch helps in creating extra resonant frequency,
which in turn helps in reaching a broader bandwidth [31]. A parasitic patch of flat surface
metal strip is positioned next to the Yagi-Uda-shaped feed at an optimal gap. This caused
two orthogonal degenerate modes to emerge, nearly one on each side of antenna-A’s return
loss (S11) values.

The impedance-matching bandwidth graph in Figure 7 shows the increase in band-
width caused by switching from antenna-B to the predicted DRA. When there is no parasitic
strip, this behavior makes it clear that there is just one mode. However, when the patch
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is added beside the Yagi-Uda-shaped single feed, a 28.95% impedance bandwidth was
attained, in the range from 3.59 GHz to 4.40 GHz. It has been determined that the proposed
antenna’s bandwidth is around three times greater than that of antenna B. In parallel, two
new modes TExδ13 and TEy1δ3 are created at the same 3.72 GHz and 4.37 GHz frequencies,
as in [32]. Additionally, as shown in Figure 8, the suggested antenna’s lowest axial ratio
of 3.75 GHz is virtually between the degenerated orthogonal modes. Thus, the suggested
feeding arrangement of the parasitic patch has met the requirement for the creation of
circular polarization. [33]. The parasitic patch-achieved simulated 3 dB axial ratio is 27.52%
(3.52–4.45 GHz). Within the simulated bandwidth for impedance matching, the full axial ra-
tio band completely disappears. Figure 9 depicts the simulated electric field distributions to
help with understanding the parasitic patch’s basic working principle. Figure 10 illustrates
the one-and-a-half field variation that the Yagi-Uda-field vectors make. In order to support
the E-field results, the magnetic field distributions also showed higher-order modes.
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4. Measured Results and Discussion

A prototype of the suggested CP DRA has been constructed and measured for valida-
tion purposes. The antenna is made up of a rectangle DR constructed using ECCOSTOCK
HIK with a loss tangent tan = 0.002 and a dielectric constant of 10. The DRA is excited
using a Yagi-Udi-shaped flat surface metal strip; nowadays, a flat surface strip can take the
place of the conventional probe feed. In addition to having problems with air gaps that lead
to frequency inconsistencies, coaxial feeding also makes it simple to connect to the coaxial
feed line of the SMA connection [34]. Additionally, the parasitic strip was composed of
copper tape with conductive glue that easily adhered to the DRA wall.

Figure 11 shows a shot of a constructed singly fed RDRA with a parasitic strip in the
front and the back view. A KEYSIGHT N5234A network analyzer (10 MHz–43.5 GHz) was
used to test the input impedance (|S11| −10 dB), in parallel an anechoic chamber was
utilized to evaluate the far-field characteristics including CP, radiation pattern, and gain
(Atenlab OTA-500).
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Figure 12. Comparison of return loss of fabricated and simulated RDRA. 

Figure 11. Photo of fabricated singly fed RDRA with parasitic patch: (a) front view and (b) back view.

All the near- and far-field parameters of the proposed antenna, i.e., simulated and
fabricating reflection coefficients (Figure 12), AR (Figure 13), radiation pattern (Figure 14),
and boresight gains (Figure 15) are shown. Theoretical and experimental findings are
reasonably in accord and the tiny discrepancy is mainly triggered by measurement and
fabrication flaws. The prototype’s modeled and experimental wide input impedance
bandwidths are 28.95% (3.59–4.40 GHz) and 29.74% (3.71–3.62 GHz), respectively, as
depicted in Figure 12. The simulated and measured 3 dB AR bandwidths are 27.52% and
28.01%, respectively, as shown in Figure 13.
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In addition, they are around three times wider than those of the rectangular DRA
design with a Yagi-Uda-shape feed alone. The experimental return loss (S11) and CP (3 dB)
bandwidths roughly overlap with one another. Figure 14 shows the constructed DRA’s
radiation patterns at a minimal axial ratio frequency of 3.7 GHz. Broadside patterns are
obtained in both planes, i.e., phi = 0◦ and phi = 90◦, respectively, as expected. It is a good
left-hand circularly polarized antenna because the left-hand circularly polarized fields
for both planes are more than 26 dB stronger in the direction of the boresight than their
right-hand equivalents. On the other hand, as shown in Figure 15, the prototype DRA
provides an acceptable calculated and examined boresight gain of 6.49 dBic and 6.71 dBic,
respectively, throughout the full desired band.



Micromachines 2022, 13, 1913 12 of 15Micromachines 2022, 13, 1913  12 of 16 

Figure 13. Assessment of the AR of fabricated and simulated RDRA. 

In addition, they are around three times wider than those of the rectangular DRA 

design with a Yagi‐Uda‐shape feed alone. The experimental return loss (S11) and CP (3 

dB)  bandwidths  roughly  overlap with  one  another.  Figure  14  shows  the  constructed 

DRA’s radiation patterns at a minimal axial ratio frequency of 3.7 GHz. Broadside patterns 

are obtained in both planes, i.e., phi = 00 and phi = 900, respectively, as expected. It is a 

good  left‐hand  circularly polarized  antenna because  the  left‐hand  circularly polarized 

fields for both planes are more than 26 dB stronger in the direction of the boresight than 

their right‐hand equivalents. On  the other hand, as shown  in Figure 15,  the prototype 

DRA provides an acceptable calculated and examined boresight gain of 6.49 dBic and 6.71 

dBic, respectively, throughout the full desired band. 

Figure 13. Assessment of the AR of fabricated and simulated RDRA.

Micromachines 2022, 13, 1913  13 of 16 
 

 

 

Figure 14. Radiation patterns of the proposed antenna at 3.7 GHz. 

 

Figure 15. Gain of the proposed antenna. 

In order to validate the results further, the mode frequencies achieved by CST closely 

match those predicted by the Dielectric Waveguide Model (DWM) [35], as provided in 

Table 2. Additionally, the comparison of simulated and measured results of the proposed 

Figure 14. Radiation patterns of the proposed antenna at 3.7 GHz.



Micromachines 2022, 13, 1913 13 of 15

Micromachines 2022, 13, 1913  13 of 16 
 

 

 

Figure 14. Radiation patterns of the proposed antenna at 3.7 GHz. 

 

Figure 15. Gain of the proposed antenna. 

In order to validate the results further, the mode frequencies achieved by CST closely 

match those predicted by the Dielectric Waveguide Model (DWM) [35], as provided in 

Table 2. Additionally, the comparison of simulated and measured results of the proposed 

Figure 15. Gain of the proposed antenna.

In order to validate the results further, the mode frequencies achieved by CST closely
match those predicted by the Dielectric Waveguide Model (DWM) [35], as provided in
Table 2. Additionally, the comparison of simulated and measured results of the proposed
antenna in tabulated form is depicted in Table 3. Table 4 contains a quick comparison of
the previously mentioned designs and the projected broadband circularly polarized DRA
based on S11 bandwidth and CP generation techniques.

Table 2. Analysis of the measured, calculated, and projected DRA frequencies for TEx
δ13 and

TEy
1δ3 modes.

Resonant Modes Fabricated
Resonant Frequency

Simulated
Resonant Frequency (CST)

Anticipated
Resonant Frequency DWM

f MEA (GHz) f CST (GHz) f DWM (GHz)

TEx
δ13 3.8 3.73 3.89

TEy
1δ3 4.5 4.46 4.53

Table 3. Analysis of measured and simulated results.

CST Frequency Range
(S11) (GHz) Return Loss (%) Frequency Range

(3 dB) (GHz)
Axial Ratio BW

(%) Gain (dBic)

3.6–4.45 ~28.95 3.59–4.40 27.52 6.64
Measured 3.71–4.62 ~29.74 3.59–3.44 28.01 6.50

Table 4. Analysis with earlier published work in literature.

Ref Feeding
Mechanism

Wideband
Mechanism

Impedance
BW GHz,(%)

Overlapping
BW %

Gain Max
(dBi) Structure

[14]
Singly fed
microstrip,

coupled cross slot

Square DRA + 4
parasitic vertical

plates

2.2–3.6
(46.9) 49.5 4.7 Complicated

[4] Flat surface strip RDRA + parasitic
patch

2.95–3.65
(13) 6 5 Simple

[8] Flat surface strip CDRA + Parasitic
patch

2.31–2.4
(11.5) 3 4.02 Simple

[15] Coaxial probe
feed

RDRA (cutting
edge) + floating
parasitic strip

6.57–12.18
(59.8) 10.6 4.86 Simple

[20] Cross slot RDRD + multilayer 9.5–12.5
(21) 9.5 11 Complicated

Proposed
work

Singly fed
flat surface strip

RDRA + parasitic
patch

3.6–4.45
(29.74) 28.01 6.5 Simple
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5. Conclusions

In this research, a modified novel feed CP DRA was examined. Primarily, it has
been found that the initial design (antenna-A) produced a narrow impedance-matching
bandwidth. In order to broaden the return loss, some modifications were performed on
the original design (antenna-B). Such changes enhanced the 10 dB bandwidth but still, the
desired results (circular polarization) were not achieved. For this, one of the renowned
techniques was used to generate circular polarization, i.e., a parasitic patch. The optimized
parameter of the parasitic patch was achieved by running a parametric sweep. After
obtaining the optimized dimension and position, a parasitic metallic patch was placed
next to the feeding strip on the DRA wall. As the parasitic patch generated additional
dips, this result caused the appearance of two orthogonal degenerate modes that produce
CP waves and dramatically increased the impedance-matching bandwidth from 7% to
28%. The parasitic patch offers stable links and overcomes the limited ARBWs of single-
fed antennas. The antenna operates at 3.8 GHz and 3.7–4.6 GHz with 10 dB impedance
bandwidths of 28.01% for full-duplex operation. The measured 3 dB AR bandwidth was
28.01%. Reasonable consistency was found between the measured and simulated results.
The proposed DRA would be a promising candidate for 5G applications.
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