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Abstract: Cytotoxic T-cells (CTLs) exhibit strong effector functions to leverage antigen-specific anti-
tumoral and anti-viral immunity. When naïve CTLs are activated by antigen-presenting cells (APCs)
they display various levels of functional heterogeneity. To investigate this, we developed a single-
cell droplet microfluidics platform that allows for deciphering single CTL activation profiles by
multi-parameter analysis. We identified and correlated functional heterogeneity based on secretion
profiles of IFNγ, TNFα, IL-2, and CD69 and CD25 surface marker expression levels. Furthermore, we
strengthened our approach by incorporating low-melting agarose to encapsulate pairs of single CTLs
and artificial APCs in hydrogel droplets, thereby preserving spatial information over cell pairs. This
approach provides a robust tool for high-throughput and single-cell analysis of CTLs compatible
with flow cytometry for subsequent analysis and sorting. The ability to score CTL quality, combined
with various potential downstream analyses, could pave the way for the selection of potent CTLs for
cell-based therapeutic strategies.
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1. Introduction

Cytotoxic T-cells (CTLs) are specialized cells that recognize and kill malignant or
infected cells, making them the commander-in-chief and the soldiers of the immunological
army. The efficiency of these CTLs to find and successfully kill their targets is dependent on
the well-coordinated activation of naïve CTLs in the lymph nodes. Only upon encountering
antigen-presenting cells (APCs) in the lymph node will they turn into effector CTLs, after
which they will return to circulation and actively seek and destroy target cells at sites
of inflammation in the tissue. Importantly, a few studies revealed that disease control
depends on CTL quality rather than on quantity, where quality was defined by multiple
functions [1–3]. In line with that, several sub-populations of CTLs were identified based on
secreted cytokines and the presence of polarizing cytokines [4,5], suggesting that specific
subsets of CTLs are relevant for immunity. Since interrogation of each individual cell is
needed to truly identify CTLs of interest, the field has recently moved from conventional
bulk experiments to single-cell approaches. Over the past two decades, single-cell technolo-
gies have emerged with the goal to dissect cellular heterogeneity and interrogate relevant
sub-populations [6–10]. To efficiently and reproducibly probe the heterogeneity upon CTL
activation, microfluidic tools were developed to allow precise manipulation and compart-
mentalization of single cells in small volumes (pico- to nano-liter) [11], thereby providing
highly controlled environments acting like bioreactors to efficiently activate CTLs [12,13].
Although these efforts to pair CTLs either with target cells or APCs in microwell- and
microtrap-based devices have proven to be effective, they are often restricted by a limited
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throughput since pairs are captured on-chip and the sample size is thus restricted by the
dimensions of the device [12,14]. Droplet-based microfluidics has the major advantage
that the sample size can be increased by longer running times thereby yielding higher
throughputs [15–18], which is especially important when one is studying heterogeneity
in immune cell responses and rare cell behavior is expected. Previous work aimed at
pairing and studying CTL responses in droplets yielded interesting findings at a single-cell
resolution [19,20]. However, these studies were often limited to the measurement of only
a few parameters through microscopy imaging. As various factors, including both mem-
brane marker expression and cytokine secretion, were previously used to score CTL quality,
combining these will allow for true interrogation of the heterogenous CTL response [1–3].
To overcome both the challenge of limited throughput as well as allowing measurement
in a multiparameter fashion, hydrogels can be incorporated during droplet production to
obtain “microgels”, in which cells can be paired. These will maintain the spatial coupling of
single-cell pairs while allowing subsequent cell profiling using flow cytometry, facilitating
a multiparameter measurement [21]. Hence, microgels could pave the way for novel and
robust analytic tools to study single CTL and APC interactions [12,22,23].

Here, we generated a single-cell droplet microfluidics platform to probe CTL het-
erogeneity upon activation using soluble stimuli and artificial antigen-presenting cells
(aAPCs). We incorporated ultra-low melting point agarose hydrogels to create microgels
containing CTL/aAPC pairs for downstream analysis by flow cytometry. Activation of
CTLs was measured in a multidimensional fashion, screening both expression of membrane
markers as well as multiplexed cytokine secretion. We observed distinct CTL activation
profiles induced by soluble stimuli compared to aAPCs. This approach allows for scoring
the quality of CTL activation combined with various potential downstream applications
after sorting, and can therefore greatly benefit future immune cell therapeutic applications.

2. Materials and Methods
2.1. Cell Isolation and Preparation

CD8+ T-cells were isolated from buffy coats obtained from healthy human donors
(Sanquin bloodbank, Eindhoven, The Netherlands) after written informed consent per the
Declaration of Helsinki and according to the institutional guidelines. Peripheral blood
mononuclear cells were isolated using Lymphoprep (Stemcell Technologies, Vancouver,
Canada) according to manufacturer’s protocol, after which CD8+ cells were isolated using
magnetic-activated cell sorting kit (Miltenyi Biotech, Bergisch Gladbach, Germany). Iso-
lated CD8+ T-cells were resuspended in RPMI medium (Gibco, Life Technologies, Carlsbad,
CA, USA) with 2% Human Serum (Sanquin Bloodbank) and 1% Penicillin–Streptomycin
(Gibco, Life Technologies), hereafter referred to as culture medium. The cells were then
coated with capture antibodies for IL-2, TNF-α, and IFN-γ (Miltenyi Biotech). After incuba-
tion and washing, the cells were resuspended in culture media for droplet encapsulation.

2.2. Microfluidic Device Fabrication

Droplet microfluidics devices were produced using soft lithography. Photomasks were
ordered from CAD/Art Services, Inc. (Bandon, OR, USA). PDMS molds were produced by
spin-coating wafers with SU-8 3000 photoresist (Microresist Technology, Berlin, Germany)
according to manufacturer’s protocol to obtain 30 µm of channel height. PDMS devices
were fabricated by mixing SYLGARD® 184 PDMS with SYLGARD® 184 curing agent (both
from Merck) at 10:1 w/w before pouring the mixture onto the PDMS molds and curing for
2 h at 65 ◦C. Using a 1 mm biopsy puncher, holes for the inlets and outlet were punched.
The obtained PDMS devices were bonded to glass slides using a plasma asher (Emitech,
K1050X, Montigny-le-Bretonneux, France). After bonding, the channels were treated
with 5% perfluorooctyltriethoxysilane in HFE-7500 fluorinated oil (both from Fluorochem,
Hadfield, United Kingdom) in order to make channel walls hydrofobic, incubated for 1 h at
65 ◦C, flushed again with HFE-7500, and incubated overnight at 65 ◦C for thermal bonding.
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2.3. Production of Temperature Regulation Device

The designs for all heating devices were made in Siemens NX (Siemens AG, Munich,
Germany) (designs are available as Electronic Supplementary Material). All devices were
printed in clear resin (RS-F2-GPCL-04, Formlabs, Somerville, MA, USA) using a Formlabs
Form 3 SLA printer. After printing, the uncured resin was removed from the channels
by flushing them several times with clean isopropanol from a 20 mL syringe that was
directly connected to the Luer-lock connections. The prints were then washed and cured
per the manufacturer’s instructions in a Form Wash (FH-WA-01, Formlabs) and Form
Cure (FH-CU-01, Formlabs) station. The chip platform was finished by bonding a 0.5 mm
PMMA plate to the bottom using super glue (Loctite, Düsseldorf, Germany) and a glass
microscope slide to the top using Dowsil™732 silicon glue (Dow Corning, Midland, MI,
USA). Luer-lock to barb connectors (Cole-Parmer, Vernon Hills, IL, USA) were used to
connect the tubing. The three heating devices were connected to a water pump (7026898,
RS PRO) in series and warm water was flushed through to maintain a temperature of 37 ◦C.

2.4. Droplet Production, Cell Encapsulation and CTL Stimulation

Droplet production was performed using a previously reported pipette tip method [24],
and by attaching the droplet device to a neMESYS microfluidic pump (Cetoni, Korbußen,
Germany). The first inlet was used for 2.5% Picosurf (Spherefluidics, Cambridge, United
Kingdom) in HFE-7500 (30 µL/min), the second for CD8+ T-cells (5 µL/min), and the
last for stimuli, or aAPC Dynabeads (Thermofisher) (5 µL/min). Cells were injected at a
concentration of 4 × 106 cells/mL. When Dynabeads were included these were injected at
a concentration of 1 × 107 particles/mL. Soluble stimuli were added at a concentration of
1 mg/mL for PMA and 10 mg/mL for ionomycin (both from Peprotech). When producing
aqueous droplets cells, Dynabeads and stimuli were suspended in culture media, when
producing microgels they were suspended in culture media containing 1% w/v of ultra-low
melting point agarose (Merck, Kenilworth, NJ, USA). Droplets were collected in Eppendorf
tubes and incubated at 37 ◦C and 5% CO2 for 24 h.

2.5. Droplet Characterization

To determine the distribution of cells among droplets, contents were manually counted
in brightfield microscopy-obtained images. Droplet size was determined using ImageJ
software [25], where automated thresholding was used to create a greyscale image of the
brightfield images after which the particle analysis function was used to automatically
measure droplets. The diameter was calculated as the average between the major and
minor axes of detected particles.

2.6. Cell/Microgel Retrieval and Flow Cytometric Measurement

After 24 h of incubation, droplets containing agarose were cooled to 4 ◦C for 30 min to
obtain microgels. Both cells and microgels were retrieved from the emulsion by adding
20% of 1H,1H,2H,2H-perfluoro-1-octanol (PFO) in HFE-7500 onto the emulsion at a 1:1 v/v
ratio. The obtained solution was washed and afterward stained using Zombie NIR viability
kit (Biolegend). Next, they were stained with a cocktail of cytokine-detection antibodies for
IFNγ, TNFα, and IL-2 (all from Miltenyi Biotech), along with antibodies to detect surface
marker expression; CD8-Brilliant violet 605, CD69-Brilliant violet 650, and CD25-Brilliant
violet 786 (all from Biolegend), according to manufacturer’s protocols. During the staining
of microgels, the incubation time was doubled to give antibodies more time to diffuse into
the agarose. When washing microgels, the washing solution was kept on the microgels for
5 min before spinning down. Centrifugation of microgels was performed at 100 RCF for
10 min. After the staining procedures, fluorescent values of both cells and microgels were
measured using FACSymphony (BD) and data were analyzed using Flowjo Software 10.7.0
(FLowJo LLC, Ashland, OR, USA).
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2.7. Statistical Analysis

Data processing and statistical analysis were performed using PRISM 9 (Graphpad
software). Data are shown as mean ± standard error of the mean (SEM) unless indicated
differently. Statistical analysis was performed using repeated-measures one-way ANOVA
with post-hoc Tukey’s test after normality was proven using Shapiro–Wilk test. p < 0.05
was considered significant.

3. Results
3.1. Single CTL Activation in Droplets Reveals Highly Heterogeneous Responses

Stimulation of single cells with soluble stimuli has proven a great way to reveal het-
erogeneous behavior using droplet-based microfluidic platforms [26–28]. Droplets provide
controlled environments containing cells along with stimuli and assay reagents, thereby
preventing cells from influencing each other in a juxta- or paracrine fashion. We investi-
gated primary human CTLs and encapsulated them in 70 picolitre-sized droplets along
with Phorbol 12-myristate 13-acetate (PMA) and ionomycin as stimuli [13,29] (Figure 1A).
Microscopy analysis showed that the cell encapsulation followed the predicted Poisson
distribution (Supplementary Figure S1A) [30] and ensured that virtually all CTLs were
encapsulated as single cells in monodisperse droplets. After single-cell culture, CTLs were
retrieved from droplets by PFO-induced de-emulsification. Subsequently, CTL activation
was assessed by the early activation markers CD69 and CD25. CD69 is an early inducible
cell surface glycoprotein acquired during activation and functions as a signal-transmitting
receptor [31]. CD25 is the alpha chain of the trimeric IL-2 receptor and is considered to be
a prominent early-to-middle cellular activation marker [32]. Simultaneously, we investi-
gated the secretion of the cytokines TNFα, IFNγ, and IL-2, captured via membrane-bound
constructs. We observed three distinct phenotypes based on the expression of activation
markers CD25 and CD69 (Figure 1C,D). Within these populations, a high degree of hetero-
geneity was found with respect to the secreted cytokines (Figure 1E). These encompassed
most combinations possible, confirming the heterogeneous nature of the CTL activation.
Interestingly, membrane marker upregulation appeared reversely correlated with cytokine
secretion as the CD69-CD25- population appeared to have the lowest percentage of non-
producing cells. Furthermore, the CD69-CD25- population showed an increased tendency
to produce a combination of IFNγ and TNFα when compared to the other two populations.
These results indicate the analytical potency of our droplet platform. CTL activation via
PMA/Ionomycin is often used in the literature; however, it surpasses the natural way of
CTL activation by TCR engagement and as such does not mimic a physiological setting.
Thus, an activation model more resembling immune activation via direct cell contact would
translate much better to any system of therapeutic value.

3.2. Spatial Pairing Data Are Lost in Aqueous Droplets upon CTL and aAPC Interactions

In order to achieve effective CTL activation, APCs need to engage with naïve CTLs
in the lymph nodes. Activation involves three main signals [33,34]. The first being the
TCR/CD3 complex binding to the peptide antigen presented by the major histocompat-
ibility complex of APCs. Co-stimulatory molecules provide the second signal [35,36] by
binding to the CD28 receptors located in close proximity to the TCR. Together, these signals
lead to the release of cytokines, which further shape the development of the immune
response [37]. To mimic the first two signals of this cell–cell contact-dependent activation
in our platform, we aimed to co-encapsulate CTLs with aAPCS (Figure 2A,B and Supple-
mentary Video S1), which contain anti-CD3 and anti-CD28 antibodies and are routinely
used to activate T-cells both in bulk as well as at single-cell level [38,39]. By switching from
soluble stimuli to aAPCs, the encapsulation efficiency is altered but the prevalence of all
combinations of encapsulation still followed the predicted Poisson distribution (Figure 2B
and Supplementary Figure S2). After in-droplet co-culture of single-cell pairs and veri-
fication of CTL/aAPC interaction based on cell morphology (Supplementary Video S2),
we assessed CTL activation and observed heterogeneous expression of CD69 and CD25
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(Figure 2C), and very little cytokine secretion in only a small percentage of CTLs (Figure 2D).
Unlike in the PMA/ionomycin stimulation, here, we cannot ensure that individual cells
are co-encapsulated with aAPCs. According to the Poisson distribution, the fraction of
encapsulated CTLs with one or multiple aAPCs can be estimated at around 50% but only
around 30% showed an increase in membrane marker expression. Therefore, the preserva-
tion of spatial coupling of a CTL and aAPC would be an elegant approach to maintain such
information until analysis of activation.Micromachines 2022, 13, x FOR PEER REVIEW 5 of 16 
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throughout. (B) Brightfield microscopy image of aqueous droplets containing single CTLs. Scale bar 
= 100 µm. (C) Gating strategy for flow cytometry data to select viable CD8-positive cells. (D) Marker 
expression of selected viable CD8-positive cells for CD69 and CD25 activation markers, either after 
stimulation with PMA + Ionomycin (black dots) or unstimulated (grey dots). Data display one rep-
resentative donor. (E) Prevalence of populations of PMA + Ionomycin activated CTLs based on 
CD25 and CD69 expression. Data represent SEM of n = 4 biological replicates. (F) Bar graph display-
ing the frequency of different profiles of secretion as exhibited by the three prevalent populations 
of PMA + Ionomycin stimulated CTLs. Data represent average values of n = 3 biological replicates. 
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Figure 1. Single-cell CTL activation using soluble stimuli. (A) Layout of the microfluidic device
used for droplet production including popped-out schematic of droplet formation, scale bar repre-
sents 500 µm. Layout is a direct copy of the photolithography mask design, and channel height is
equal throughout. (B) Brightfield microscopy image of aqueous droplets containing single CTLs.
Scale bar = 100 µm. (C) Gating strategy for flow cytometry data to select viable CD8-positive cells.
(D) Marker expression of selected viable CD8-positive cells for CD69 and CD25 activation markers,
either after stimulation with PMA + Ionomycin (black dots) or unstimulated (grey dots). Data display
one representative donor. (E) Prevalence of populations of PMA + Ionomycin activated CTLs based
on CD25 and CD69 expression. Data represent SEM of n = 4 biological replicates. (F) Bar graph dis-
playing the frequency of different profiles of secretion as exhibited by the three prevalent populations
of PMA + Ionomycin stimulated CTLs. Data represent average values of n = 3 biological replicates.
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Figure 2. Single-cell CTL activation using aAPCs. (A) Schematic of droplet formation when CTLs
are paired with Dynabeads. (B) Brightfield microscopy image of aqueous droplets containing CTLs
(red) and aAPCs (yellow) in pairs. Scale bar = 100 µm. (C) Counted (grey bars) and calculated
(black dots) Poisson distribution of droplet contents when co-encapsulating CTL and aAPCs. Error
bars represent average ± SEM of 4 independent experiments in which at least 1000 droplets were
counted. (D) Marker expression of CD69 and CD25 activation markers on CTLs retrieved from
droplet co-culture with aAPC. (E) Cytokine secretion of CTLs retrieved from droplet co-culture with
aAPCs (black dots) as compared to unstimulated control (grey dots).

3.3. Agarose Microgels as Bioreactors for Subsequent Flow Cytometry Measurement

To achieve spatial coupling of CTLs with aAPCs, hydrogel-based microgels were
desired with properties that remain soluble during droplet production and culture but have
a trigger-cross-linked ability. Ultra-low melting-point agarose proved an ideal candidate
as it remains soluble under culture conditions at 37 ◦C and crosslinks below 18 ◦C prior
to downstream analysis [40]. Advantages are pore size >~200 nm warranting diffusion of
detection antibodies, and biocompatibility [27,41]. By using 3D-printed devices (Figure 3B),
we ensured the encapsulation of CTLs in agarose solutions under temperature-controlled
conditions to avoid clogging of the device by premature gelation, resulting in monodisperse
droplet formation (Figure 3C). After cross-linking and de-emulsification, monodisperse
agarose microgels containing cells were retrieved in PBS free of oil (Figure 3C). By compar-
ing flow cytometric measurement of cells in microgels and empty microgels with respect to
unencapsulated cells, the microgels appeared to primarily increase the scattering (SSC-A)
of measured events (Supplementary Figure S3). Microgels containing CTLs were selected
by intra-microgel staining for CD8 membrane protein (Figure 3D). We investigated whether
the pore size of agarose hydrogels allowed diffusion of fluorophore-conjugated antibodies
to ensure that CTL activation in microgels could be detected by our antibody panel. CTLs
were therefore activated in bulk using PMA and ionomycin, partially stained in microgels,
and partially stained in bulk. Altered expression, compared to unstimulated controls,
indicated that intra-microgel and cell-specific staining of CTLs was achieved (Figure 3E).
Additionally, microscopic images showed that staining was cell-specific and did not differ
between encapsulated and unencapsulated cells (Supplementary Figure S4). Even for
IL-2 detection, which uses the largest fluorophore–antibody conjugate [42], only a small
difference could be observed in fluorescent intensity. Thus, microgel-encapsulated cells
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are compatible with fluorescent staining for flow cytometric analysis. Future additions of
fluorophores can be reliably incorporated to extend the antibody panel for multidimen-
sional analysis.
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Figure 3. Encapsulation and flow cytometric measurement of CTL-containing agarose microgels.
(A) Schematic of the workflow; cells are isolated and co-encapsulated with aAPCs in droplets along
with agarose solution, droplets containing cells are cultured at 37 ◦C to allow interaction after which
temperature is decreased below 18 ◦C to allow agarose to crosslink and create microgels containing
cell pairs, microgels are retrieved and can be stained for membrane markers and measured or
sorted using flow cytometry. (B) 3D printed temperature control devices. Device used to control
temperature in pipette tips (red arrow) for injection of samples, microscope insert (blue arrow)
containing microfluidic device (black dashed line), and heated holder for collection tube (yellow
arrow). Hot water is flown through all devices in series to maintain 37 ◦C during droplet formation
and after collection. (C) Brightfield microscopy images of water-in-oil emulsion before crosslinking
and of de-emulsified microgels in PBS. Scale bars = 100 µm. (D) Gating strategy to retrieve cell-
containing droplets; Microgels are gated based on the FSC/SSC of empty droplets, CD8+ events are
selected. (E) Histograms depicting the effect of antibody staining in agarose hydrogels compared to
staining in conventional cell solution. Comparing unstimulated control stained in solution (grey),
PMA/Ionomycin bulk stimulated cells stained in solution (blue), PMA/Ionomycin bulk stimulated
cells stained in microgels (red).
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3.4. Phenotypic and Functional Analysis of CTL/aAPC Pairs in Microgels

Having established that detection of activation markers in microgels is possible, we
moved forward to induce cell contact-mediated CTL activation. First, we monitored the
location of cells and aAPCs to ensure that cell–bead interactions are not affected by agarose
viscosity and still take place such as in aqueous droplets [43,44]. Brightfield images were
captured during experiments directly after droplet production and again after 24 h of
culture followed by agarose crosslinking (Figure 4A). Analysis of 532 droplets contain-
ing CTL/aAPC pairs demonstrated that single CTLs effectively interacted with aAPCs
(Figure 4B), excluding that agarose viscosity affected cellular interactions. Additional tem-
poral monitoring over the first 30 min after encapsulation was performed as well and
displayed cells latching onto aAPCs within minutes, demonstrating that cell–cell interac-
tion takes place, even in agarose droplets (Supplementary Video S3). Next, we selected all
microgels which contained CTLs based on CD8 expression (Figure 4C) and subsequently
checked pairing with aAPCs by autofluorescent properties of aAPCs. The position of pairs
containing a single aAPC was verified based on overlaying the autofluorescence of a single
aAPC (Supplementary Figure S5). The gated populations were compared and indeed
indicated that 1:1 ratio single-cell contact-mediated activation occurred in a percentage
of cells according to membrane markers (Figure 4D) as well as cytokines (Figure 4E). Fur-
thermore, the observed percentages of activation approximated the percentages observed
under aqueous conditions (Figure 2C,D). Especially when taking into account that in those
experiments, ~50% of all measured cells actually encountered an aAPC. This demonstrated
that agarose encapsulation does not affect mechanisms of activation and successfully serves
its purpose of maintaining spatial information. Moreover, we could clearly distinguish mi-
crogels where CTLs were paired with one aAPC or multiple aAPCs and in this way probed
the effect of multiple interactions. We demonstrated that multiple interactions resulted
in an increased number of activated CTLs, primarily based on CD69 and CD25 marker
expression (Figure 4E). Besides pairing of CTLs with beads, the platform can easily be
adjusted to pair CTLs with another cell type. This would merely require the incorporation
of an additional membrane marker staining, cell pairs can then be selected by gating for
double-positive events (Supplementary Figure S6). Taken together, these results demon-
strate that agarose encapsulation is a highly potent approach to investigating single-cell
contact-mediated activation of CTLs in a high-throughput and multiparameter fashion.

3.5. Single-Cell Decoding of CTL Activation and Secretion Based on Different Stimuli

We investigated CTL activation using PMA/Ionomycin and aAPC-interaction as
stimulation models at the single-cell level. This allowed us to establish a novel depth of
comparing single-cell heterogeneity, based on both cell phenotype and function. Both
models showed similar patterns in CD69 and CD25 expression, with differences in frequen-
cies (Figures 1E and 4D). The most prevalent secreted cytokines within these populations
were; (1) IFNγ in combination with TNFα; (2) IFNγ, TNFα and IL-2 in PMA/Ionomycin-
stimulated CTLs (Figure 5A); (3) IFNγ in combination with TNFα and (4) TNFα only in
aAPC-stimulated CTLs (Figure 5B). However, the correlation between membrane mark-
ers and cytokine production was vastly different between the two activation models. In
PMA/Ionomycin-stimulated CTLs, membrane marker expression and cytokine production
appeared to be negatively correlated since the double-negative phenotype (CD69-CD25-)
showed the least amount of non-producing cells. On the contrary, membrane marker
expression and cytokine production appear to be positively correlated in aAPC-stimulated
CTLs, with the least amount of non-producing cells observed in the double positive phe-
notype (CD69+CD25+). Additionally, IL-2 secretion appears much more prevalent in the
PMA/Ionomycin stimulated conditions, primarily when all three cytokines are secreted.
These findings underline the difference between the two models, where PMA/ionomycin is
a non-specific synthetic approach to obtain optimal cytokine secretion, and aAPCs are used
to mimic biologically relevant mechanisms. Nevertheless, to the best of our knowledge,
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this difference has not been previously observed at this degree of single-cell resolution,
which underlines the strengths of the demonstrated platform.
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Figure 4. Encapsulation and flow cytometric measurement of CTL/aAPC pairs in microgels.
(A) Brightfield microscopy images of droplets for CTL/aAPC pairing; Left image displays droplets di-
rectly after production at 37 ◦C where cells and particles are free floating in agarose solution droplets,
right image displays droplets after 24 h of incubation at 37 ◦C and subsequent gelation at >18 ◦C
where cells are fixed in crosslinked agarose. Yellow circles indicate CTL/aAPC combinations where
no contact is observed, blue circles indicate combinations where contact is observed. (B) Results of
manual quantification of n = 46 images containing n = 532 CTL/aAPC paired droplets from n = 3
independent experiments. error bars represent n = 3 experiments. (C) Gating strategy of CTL/aAPC
droplets; all non-empty microgels are selected, all microgels containing at least a CD8+ cell are gated,
based on Dynabead autofluorescence and viability dye intensity gates are drawn for single viable
CTLs, 1:1 pairs of CTL/aAPCs, and microgels containing a CTL and multiple aAPCs. (D) Prevalence
of populations of 1:1 aAPC activated CTLs based on CD25 and CD69 expression. Data represent
SEM of n = 5 biological replicates. (E) Data summary of activation markers in microgels containing
only CTLs (blue), microgels containing 1 CTL and 1 aAPC (red), and microgels containing 1 CTL
with multiple aAPCs (orange). Data show n = 5 biological replicates with SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, if no significance is indicated none was found.
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of CTLs, n = 5 donors.

4. Discussion

We developed a droplet microfluidic-based single-cell activation platform for the
screening of cytotoxic T-cell activation. In its standard form, the platform allowed us
to activate CTLs at the single-cell level with synthetic soluble stimuli and detect hetero-
geneity based on multiparameter measurement of phenotype and function. In its more
advanced form, we co-encapsulated CTLs and aAPCs in agarose microgels to study single-
cell contact-mediated activation between single cells. In particular, microgel encapsulation
allowed us to highlight the difference in CTL activation mechanisms upon stimulation
with PMA/Ionomycin and aAPCs, whilst obtaining novel resolution over the resulting
heterogeneous responses. Therefore, this platform can be used to dissect CTL multifunc-
tionality based on the profiling of secreted cytokines, which is an important facet of strong
adaptive immunity.

In comparison to previous research on droplets for cell pairing [20,44–48], our ap-
proach warrants unlimited throughput and is not limited by droplet capture in traps, wells,
or observation chambers. Additionally, such methods often rely on monitoring via mi-
croscopy. Although this allows for temporal resolution, it limits the number of read-out
parameters [49,50]. In applications where multiparameter functional measurements are
possible, the ability to recover interrogated cells for downstream applications is often
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limited [51]. In our approach, by sacrificing temporal resolution, we are able to measure cell
pairs using flow cytometry, which opens up the possibility for multiparameter (potentially
up to 45 markers) measurement as well as sorting for downstream applications, which was
previously reported with agarose microgels [52–56]. Combining single-cell analysis with
fluorescence-activated droplet sorting was previously performed on-chip, where droplets
are sorted either before [48,57] or after culture [19,47]. These works have great potential
but are also limited by the number of measured parameters and the closed system they
are performed in. For example, Gerard et al. demonstrated very potent sorting of spe-
cific IgG-secreting cells, but their sort is based on only a single parameter and adapting
it for a different application will change the entire system [47]. Conversely, recovering
cell pairs in microgels offers more flexibility towards fluorescent staining after culture,
as well as the use of well-developed commercially available flow cytometers. Yanakieva
et al. demonstrated this principle by sorting pairs of secretor cells and reporter cells in
microgels in order to enrich yeast clones secreting biorelevant proteins [52]. However, such
applications have previously only been demonstrated with yeast, bacteria or cell lines.
Here, our microgel-based platform aims at monitoring the effect of physical cell–cell contact
in primary immune cell activation. We achieved a higher number of screened parameters
allowing for the study of both immune cell phenotype and functionality.

Nevertheless, a potential hurdle after the recovery of microgels is retrieving cells from
encapsulation. For agarose microgels, this would require heating to above 70 degrees [40],
or enzymatic digestion [58]. Potential candidates to avoid such harmful processes could be
alginate [59–61] or thermo-reversible hydrogels [26,62]. In future adaptations, these could
be utilized to extend our platform to cell retrieval. Furthermore, we demonstrated the
compatibility of agarose microgels with downstream phenotypic and functional studies,
but this approach could be even extended to genetics since agarose microgels have readily
been shown to be suitable for PCR and sequencing purposes [63–65]. For example, single-
cell sequencing could be performed to enable the study of TCR sequences which were
shown to have high relevance and potential to design better vaccines or autoimmune
therapies [66,67]. Reversely, the platform can be utilized to study the heterogeneity of
APCs [10] as the panel of markers that is measured using flow cytometry can be readily
switched to include different targets of interest. The potential of our platform is highlighted
by the interesting observed differences in CTL activation approaches. This interesting
difference might be explained by the different mechanisms exploited by the two activation
models. On one hand, aAPCs target CD3 and CD28 receptors on the CTLs, partially
mimicking how naïve cells are activated by APCs in the lymph node. On the other hand,
PMA directly targets protein kinase C (PKC) and Ionomycin upregulates intracellular
calcium, thus synergizing with PMA to activate PKC and completely bypassing membrane
receptors [29,68]. PMA/Ionomycin is therefore much less physiologically relevant and
might result in less intuitive and relevant results from a T-cell biology perspective.

Taken together, we believe that all these options illustrate the flexibility and potential
of this droplet-based platform to investigate the activation of the adaptive immune system
at the single-cell level.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/mi13111910/s1, Figure S1: “Droplet characterization”, Figure S2: “CTL
and aAPC distribution over monodisperse aqueous droplets”, Figure S3: “Flow cytometry analysis
of microgels”, Figure S4: “Fluorescent staining of cells inside and outside of microgels stained for PE
fluorescence”, Figure S5: “Choosing gating strategy for 1:1 pair selection”, Figure S6: “Monocyte and
T-cell pairing”. Video S1: “Droplet formation for CTL/aAPC pairs”, Video S2: “CTL/aAPC pairs
over time in aqueous droplets”, Video S3: “CTL/aAPC pairs over time in agarose droplets”. Design 1:
“Eppendorf tube device”, Design 2: “Pipette tip device”, Design 3: “Platform device”.
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