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Abstract: There is increased interest in the food industry for emulsions as delivery systems to preserve
the stability of sensitive biocompounds with the aim of improving their bioavailability, solubility,
and stability; maintaining their texture; and controlling their release. Emulsification in continuously
operated microscale devices enables the production of emulsions of controllable droplet sizes and
reduces the amount of emulsifier and time consumption, while NIR, as a nondestructive, noninvasive,
fast, and efficient technique, represents an interesting aspect for emulsion investigation. The aim of
this work was to predict the average Feret droplet diameter of oil-in-water and oil-in-aqueous mint
extract emulsions prepared in a continuously operated microfluidic device with different emulsifiers
(PEG 1500, PEG 6000, and PEG 20,000) based on the combination of near-infrared (NIR) spectra with
chemometrics (principal component analysis (PCA) and partial least-squares (PLS) regression) and
artificial neural network (ANN) modeling. PCA score plots for average preprocessed NIR spectra
show the specific grouping of the samples into three groups according to the emulsifier used, while
the PCA analysis of the emulsion samples with different emulsifiers showed the specific grouping of
the samples based on the amount of emulsifier used. The developed PLS models had higher R2 values
for oil-in-water emulsions, ranging from 0.6863 to 0.9692 for calibration, 0.5617 to 0.8740 for validation,
and 0.4618 to 0.8692 for prediction, than oil-in-aqueous mint extract emulsions, with R2 values that
were in range of 0.8109–0.8934 for calibration, 0.5017–0.6620, for validation and 0.5587–0.7234 for
prediction. Better results were obtained for the developed nonlinear ANN models, which showed
R2 values in the range of 0.9428–0.9917 for training, 0.8515–0.9294 for testing, and 0.7377–0.8533 for
the validation of oil-in-water emulsions, while for oil-in-aqueous mint extract emulsions R2 values
were higher, in the range of 0.9516–0.9996 for training, 0.9311–0.9994 for testing, and 0.8113–0.9995
for validation.

Keywords: microfluidic emulsification; aqueous mint extract; NIR spectra; chemometrics;
ANN modeling

1. Introduction

The consumption of medicinal plants is inversely related to the occurrence of diseases
such as several types of cancer, cardiovascular, cerebrovascular, and neurodegenerative
diseases. The high presence of antioxidants in plants, in the form of bioactive compounds,
represents an important basis for the health-protecting effects connected with their con-
sumption [1]. Due to their beneficial effects, these bioactive compounds extracted from
medicinal plants have been successfully incorporated into food systems [2].

In order to increase the use of extracts with compounds isolated from medicinal plants
in food matrices, several technologies should be considered: nanoemulsions, nanocapsules,
vapors, and edible films [2]. There is increased interest in the food industry for emulsions
as delivery systems to maintain the completeness of sensitive biocompounds with the aim
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to improve their bioavailability, solubility, stability, and texture and the control of their
release [3]. Therefore, the industrial use of emulsions has emerged in recent years with the
aim to ameliorate certain product characteristics or to create completely new ones [4,5].

Emulsions are multiphase systems comprising two or more liquids that are insol-
uble in one another [6]. One phase is a continuous phase in which small droplets of
another phase are dispersed [7,8]. According to the droplet size range, emulsions can be
divided into macroemulsions (0.1–100 µm), microemulsions (5–100 µm), and nanoemul-
sions (20–200 nm) [9,10]. Emulsions typically consist of oil, water, and emulsifier [3,11].
Emulsifiers are surface-active substances (surfactants) that are used for avoiding emulsion
destabilization such as flocculation, coalescence, and Ostwald ripening [12]. They are
normally soluble in one phase, consisting of functional groups capable of interaction with
the other phase at the interfacial surface [6]. Emulsifiers are amphiphilic molecules that are
used with the aim to maintain the emulsion stability for a long period of time by preventing
droplet coalescence at the liquid–liquid interface [8].

Emulsification is a process of emulsion formation; however, this process is unsponta-
neous and requires energy input for droplet production [13]. Conventional high-energy
methods include colloid mills, high-pressure homogenizers, and sonicators [5,14–16]. Ma-
jor obstacles of these methods are the relatively expensive equipment and the regulation
of process parameters such as the temperature, applied force, and droplet size of an
emulsion [5,17]. To overcome the above-mentioned limitations, the use of microfluidic
technology has the potential to eliminate the existing problems. According to the litera-
ture, transferring the emulsification to a smaller scale enables the production of emulsions
with controllable droplet sizes and reduces the amount of emulsifier and time consump-
tion [18–20]. The microchannel geometry allows the control of shear forces; high shear
forces act on a small liquid volume (several nanoliters), allowing the precise adjustment
of the emulsion droplet size. The prevailing surface tension in microchannels ensures
the continuous generation of droplets with the same droplet size and shape [21]. To pro-
duce monodispersed droplets using various microfluidics, different techniques have been
described, including T-junctions, Y-junctions, and flow-focusing cross-junctions [22]. Ac-
cording to Vidovič et al. [23], the characteristics of the dispersion being dispersed as well
as the working conditions and the device being utilized determine the form and distri-
bution of the droplets. When working to generate droplets using continuously operated
microfluidic devices, the size of the droplets depends on the channel geometry, channel
length, shape–flow-rate ratio, and velocity. Furthermore, the droplet size also depends on
the contact and injection angle as well as the surfactant addition [24]. According to Wang
et al. [25], changing the contact angle between the dispersed phase and the channel wall
is the most practical way to modify the droplet size. Microchannels are mostly produced
form glass and poly(dimethylsiloxane), and the effect of the wettability of those materials
on the contact angle has to be taken into consideration [26]. Due to the significance of the
contact angle in the design of microdroplet preparation machinery as well as its role in the
selection of appropriate raw materials for industrial processes, it is crucial to understand
how it affects step emulsification. In experimental work, applying different surfactants
frequently alters a fluid’s interfacial tension and contact angle.

Maintaining emulsion stability is one of the greatest challenges during the emulsi-
fication process. As mentioned, the mixing speed, mixing time, emulsification method,
oil composition, oil-to-water ratio, emulsifier type, and concentration are parameters that
influence the droplet size distribution [10,27]. Therefore, it is necessary to develop a rapid
and nondestructive method for monitoring the emulsification process. According to the
literature, the application of near-infrared spectroscopy (NIRs) has emerged for monitoring
variables influencing the formation of emulsions [10,28–30].

Near-infrared spectroscopy (NIRs), as a nondestructive, noninvasive, fast, and efficient
technique, has a long history of application in the food industry [31–33]. The advantages
of its application include having little or no need for sample preparation; the lower cost
compared to conventional analytical techniques, and the capability to analyze a wide range
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of products [33]. NIRs is based on the absorption of NIR radiation in the wavelength
range from 780 nm to 2500 nm [34]. The absorbance of light is mainly caused by overtones
and the combination vibrations of some hydrogen-based functional groups such as O–H,
C–H, C–O, and N–H [24]. Due to the large number of recorded spectra, it is imperative
to analyze the acquired spectral data. In order to extract important information and to
identify significant patterns in NIR spectra, various mathematical and statistical methods
(principal component analysis, (PCA), partial least-squares regression (PLSR), canonical
correlation analysis (CCA), and principal component regression (PCR)) can be used [10,23].
The big advantage of these statistical methods includes exploring these spectral data for
qualitative and quantitative applications [35]. However, due to the complex nature of food,
nonlinear techniques, compared to multivariate methods, have proved to be a good solution.
Artificial neural networks (ANNs) coupled with NIR spectroscopy have been identified as
an excellent tool for monitoring emulsion droplet dimeter prediction [10], the prediction of
the physical and chemical properties of plant extracts [36], and honey adulteration detection
and quantification [37]. For all three mentioned experiments, developed ANN models
described the experimental data with high accuracy (the coefficients of determination were
greater than 0.8).

The aim of this work was to predict the average Feret droplet diameters of oil-in-water
and oil-in-aqueous mint extract emulsions based on the combination of NIR spectra with
PLS regression and ANN modeling. Emulsification was performed in a microfluidic system
including a static teardrop micromixer with the addition of three emulsifiers (PEG 1500,
PEG 6000, and PEG 20,000) at three different concentrations (2%, 4%, and 6%). To the best of
our knowledge this is the first application of NIR spectra and PLS and ANN modeling for
the analysis of oil-in-aqueous mint extract emulsions prepared using a microfluidic device,
motivated by the fact that emulsion technology is generally applied for the encapsulation
of bioactives in aqueous solutions, which can either be used directly in the liquid state or
can be dried to form powders [38]. Different spectral preprocessing methods (first-order
Savitzky–Golay derivative (SG1), standard normal variate (SNV), multiplicative scatter
corrections (MSC), first-order Savitzky–Golay derivative followed by standard normal
variate (SG1+SNV), and first-order Savitzky–Golay derivative followed by multiplicative
scatter corrections (SG1+MSC)) were applied in order to determine the predictive ability of
the models used.

2. Materials and Methods
2.1. Materials

Edible sunflower oil (Zvijezda plus d.o.o., Zagreb, Croatia) was purchased from a local
supermarket. Polyethylene glycols with average molecular weights of 1500 g/mol (PEG
1500) and 6000 g/mol (PEG 6000) were purchased from Acros Organics (Geel, Belgium),
while the 20,000 g/mol polyethylene glycol (PEG 20,000) was obtained from Sigma-Aldrich
(Taufkirchen, Germany). Dried mint leaves (Mentha piperita L.) were purchased from
Suban, Croatia. Plant materials were collected during the flowering season of 2019 in the
north-western part of Croatia, dried naturally, and stored in ambient conditions before use.

2.2. Methods
2.2.1. Mint Extract Preparation

First, 1 g of dry plant material was placed in a 200 mL glass with 50 mL of deionized
water, and solid–liquid extraction was performed using an Ika HBR4 digital oil bath (IKA-
Werk GmbH & Co., KG, Staufen, Germany) at 80 ◦C and 250 rpm for 30 min. After the
extraction, samples were filtered through a 100% cellulose paper filter (LLG Labware,
Meckenheim, Germany) with 5–13 µm pores and stored at 4 ◦C until analyzed. The dry
matter content of the aqueous mint extract was 0.85%.
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2.2.2. Emulsification in a Microfluidic System

Glass microchips with laser-engraved microchannels were placed in stainless-steel
holders, which provided leak-free connections (Micronit Microfluidics B.V., Enschede,
The Netherlands). Experiments were performed in microchannels with the following di-
mensions: width/height/length = 250 µm: 150 µm: 55.3 mm. The microchannels were
equipped with static teardrop micromixers. Emulsion droplets were generated in a borosili-
cate glass microfluidic device. Two syringe pumps (NE -1000 Syringe Pump, New Era Pump
Systems, New York, NY, USA) with high-pressure stainless-steel syringes (8 mL, Harvard
Apparatus) were used for solution delivery. Two phases, oil and aqueous mint extract, were
introduced separately into microchannels through a fused silica connection (375 µm o.d.,
150 µm i.d., Micronit Microfluidics B.V., Enschede, The Netherlands). The emulsification
experiments were performed according to the design of experiments previously described
by Grgić et al. [39] (Table 1).

Table 1. Design of emulsification experiments. Levels of each input variable are given in brackets
(−1, 1, and 0: low, medium, and high levels).

Exp. Emulsifier Concentration (%) Oil Concentration (%) Total Flow Rate (µL/min)

1. 2 (−1) 30 (0) 200 (−1)
2. 6 (1) 30 (0) 200 (−1)
3. 2 (−1) 30 (0) 400 (1)
4. 6 (1) 30 (0) 400 (1)
5. 2 (−1) 25 (−1) 300 (0)
6. 6 (1) 25 (−1) 300 (0)
7. 2 (−1) 35 (1) 300 (0)
8. 6 (1) 35 (1) 300 (0)
9. 4 (0) 25 (−1) 200 (−1)

10. 4 (0) 25 (−1) 400 (1)
11. 4 (0) 35 (1) 200 (−1)
12. 4 (0) 35 (1) 400 (1)
13. 4 (0) 30 (0) 300 (0)
14. 4 (0) 30 (0) 300 (0)
15. 4 (0) 30 (0) 300 (0)
16. 4 (0) 30 (0) 300 (0)
17. 4 (0) 30 (0) 300 (0)

2.2.3. Average Feret Diameter

The prepared samples of oil-in-aqueous mint extract emulsions were photographed
using a microscope equipped with a camera (BTC type LCD-35, Bresser, Germany) at 4×
magnification. The average Feret diameter of the droplets was measured using the software
tool ImageJ (v.1.8.0. National Institutes of Health, Bethesda, MD, USA). The Feret diameter
was defined as the perpendicular distance between two tangents located on opposite sides
of a particle [39]. The average Feret diameter of oil-in-water emulsions prepared in the same
microfluidic system according to the same experimental design (Table 1) was previously
published in an article by Grgić et al. [39].

2.2.4. Near-Infrared Spectra of Emulsions

The near-infrared (NIR) spectra of all oil-in-water and oil-in-aqueous mint extract
emulsions were recorded in the wavelength range from 904 nm to 1699 nm using an NIR
spectrometer (NIR—128—1.7—USB/6.25/50 µm Control Development Inc., South Bend,
IN, USA). The NIR spectra were recorded in disposable plastic cuvettes with a liquid
sample measurement setup. The NIR spectra were recorded in three parallel runs.

2.2.5. NIR Spectra Processing and Modeling

The effects of preprocessing methods of NIR spectra on sample grouping were an-
alyzed using the Unscrambler X software (Version 10.1. CAMO AS, Oslo, Norway).
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Oil-in-water emulsions and oil-in-aqueous mint extract emulsions were analyzed sep-
arately. The performances of the following preprocessing methods were tested: (i) raw
spectra, (ii) first-order Savitzky–Golay derivative (SG1), (iii) standard normal variate (SNV),
(iv) multiplicative scatter corrections (MSC), (v) first-order Savitzky–Golay derivative fol-
lowed by standard normal variate (SG1+SNV), and (vi) first-order Savitzky–Golay deriva-
tive followed by multiplicative scatter corrections (SG1+MSC). The same software was also
used for a principal component analysis (PCA) and a partial least-squares (PLS) regression.

For the prediction of the average droplet sizes of the oil-in-water emulsions and oil-in-
aqueous mint extract emulsions with PEG 1500, PEG 6000, or PEG 20,000 as emulsifiers,
PLS regression models were developed. The PLS model input data were the triplicates of
the spectra of each sample. Each PLS model used seven latent variables (factors) and a
random cross-validation method based on splitting the input data into 20 segments. No
normalization method was used before the data transformation. The applicability of the
PLS models developed using raw and preprocessed NIR spectra was estimated based
on: (i) the coefficients of determination for calibration (R2

cal) and cross-validation (R2
cval),

(ii) the root-mean-square error for calibration (RMSEC) and cross-validation (RMSECV),
(iii) the average value of the difference between the predicted and observed values (bias),
and (iv) the ratio of the predicted deviation (RPD) and the range error ratio (RER) [10,37].

The average droplet sizes of the oil-in-water emulsions and oil-in-aqueous mint extract
emulsions with PEG 1500, PEG 6000, or PEG 20,000 as an emulsifier based on NIR spectra
were also predicted using artificial neural network (ANN) modeling in Statistica v.13.0
software (Tibco Software Inc., Tulsa, OT, USA). Multiple layer perceptron network (MLP
network) models consisted of an input layer, a hidden layer, and an output layer (Figure 1).
The first five factors from the PCA analysis were represented by the five neurons in the
input layer. ANN inputs were chosen from the first five principal components, which
accounted for more than 99.99% of the data variability. A PCA based on the raw spectra
and a PCA based on the selected preprocessing method were used separately. The following
set of alternatives was randomly chosen as the hidden activation function and the output
activation function: identity, logistic, hyperbolic tangent, and exponential. The MLP chose
a random number between 3 and 11 neurons for the hidden layer.
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The data matrix for ANN modeling comprised 51 rows representing emulsion samples
prepared using an individual emulsifier and 6 columns referring to five PCA coordinates
(factors) and the measured average droplet sizes. During the construction, data were
randomly divided into 70% for network training, 15% for network testing, and 15% for
model validation. For each emulsifier, 1000 networks were generated. Model training was
carried out using a back error propagation algorithm and the sum-of-squares error function
implemented in Statistica v.13.0 (Tibco Software Inc., Tulsa, OT, USA) automated neural
networks. The proposed ANN model performance was estimated based on the R2 and
root-mean-square error (RMSE) values for the training, testing, and validation.

3. Results and Discussion
3.1. The Average Feret Diameters of Oil-in-Aqueous Mint Emulsions: Comparison with the
Average Feret Diameters of Oil-in-Water Emulsions

This research examined the applicability of a microfluidic device for generating oil–
aqueous mint extract emulsions utilizing emulsifiers such as PEG 1500, PEG 6000, and PEG
20,000. The prepared emulsions were observed under a microscope at the microfluidic
device outlet. Photos were taken and used for the average Feret diameter measurements.
The gathered photos of the prepared emulsions and measured average Feret diameters are
presented in Figure 2.
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It can be observed that spherical oil droplets of a dispersed phase were generated
in the continuous aqueous mint extract (Figure 2(a1–a3)). As previously described by
Shah et al. [40], in contrast to bulk emulsification techniques, an emulsion is carefully
manufactured one drop at a time in a microfluidic device, and therefore a monodisperse
emulsion is the end product of this procedure. A microfluidic device’s ability to create
controlled-sized emulsion [41,42] droplets depends on a number of factors, including
the flow rates, the fluid viscosity, the emulsifier, and the geometry of the microfluidic
channels [10,34]. All of the mentioned factors have to be taken into consideration when
optimizing the emulsification process [39].

For oil-in-aqueous mint extract emulsions, the smallest droplets were generated with
the emulsifier PEG 6000 (Figure 2(a2,b2)), with an average Feret dimeter in the range
from 52.36 ± 16.50 µm to 149.99 ± 39.15 µm, followed by the emulsions with PEG 1500
(Figure 2(a1,b1)) and with PEG 20,000 (Figure 2(a3,b3)). For PEG 1500 emulsions, the aver-
age droplet Feret dimeter was in the range from 112.26 ± 16.24 µm to 163.77 ± 16.93 µm,
while for the PEG 20,000 emulsions the average droplet Feret dimeter was in the range from
109.81 ± 1.74 µm to 169.99 ± 1.06 µm. When comparing the measured data with the results
presented by Grgić et al. [39] for oil-in-water emulsions produced with the same emulsifiers
and using the same process conditions, the droplet size followed approximately the same
trend. For PEG 1500 and PEG 20,000 oil-in-mint extracts, the emulsion droplets were
larger than the oil-in-water emulsion droplets for all experiments. For PEG 6000 oil-in-mint
extracts, the emulsion droplets were larger than the oil-in-water emulsion droplets for
experiments with 30% oil phase.

3.2. NIR Spectra of Oil-in-Water and Oil-in-Aqueous Mint Extract Emulsions: Preprocessing and
PCA Analysis

The NIR spectra of the oil-in-water and oil-in-aqueous mint extract emulsions pre-
pared with different emulsifiers (PEG 1500, PEG 6000, and PEG 20,000) were recorded
continuously in the wavelength range from 904 to 1699 nm. The average spectra of individ-
ual samples, grouped according to the continuous phase, are given in Figure 3(a1,a2), while
the SNV preprocessed spectra of the oil-in-water emulsions and the MSC preprocessed
spectra of oil-in-mint aqueous extract emulsions are given in Figure 3(b1,b2). Despite
variations in spectral absorbance, the majority of the spectra obtained from the emulsion
samples followed a similar pattern. Additive effects (spectral shifts) characteristic of the
different droplet sizes present in the samples can be seen. A similar observation was made
in a study by Bampi et al. [28], where a discrepancy in the spectral baseline was observed
that could be attributed to different light scattering due to the different water droplet sizes
in the emulsions. The largest differences in the spectral peaks of both sample types are
seen for the wavelength range from 1300 to 1699 nm, which is specific for the superposition
of the O-H bonds. Moreover, the differences in this part of the spectrum can be easily
correlated with the water present in the samples [36].

According to Borges et al. [29], NIR spectroscopy is a method that allows the efficient
determination of the average diameter and water content of oil-in-water emulsions and
offers great potential for the online qualitative analysis of biodiesel during storage. Fur-
thermore, according to Bi et al. [43] and Grisanti et al. [44], the implication that numerous
interferences frequently cause spectra to be altered during the signal acquisition process
is a practical issue for the implementation of NIR technology. The sample thickness, mea-
surement geometry, or physical characteristics of the samples can influence the light path
length, and therefore preprocessing is an essential step in NIR spectral modeling [45]. As
described by Feng et al. [46], spectral preprocessing is used to eliminate systemic noise and
highlight the changes between the samples. In this work, the efficiency of the first-order
Savitzky–Golay derivative (SG1), standard normal variate (SNV), multiplicative scatter cor-
rections (MSC), first-order Savitzky–Golay derivative followed by standard normal variate
(SG1+SNV), and first-order Savitzky–Golay derivative followed by multiplicative scatter
corrections (SG1+MSC) was analyzed. The results showed that SNV and MSC were the
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most efficient methods for the analysis of the NIR spectra of oil-in-water and oil-in-aqueous
mint extract emulsions prepared in a continuously operated microfluidic device. The
standard normal variate (SNV) and multiplicative signal correction (MSC) methods was
analyzed (Figure 3(b1,b2)). By deducting the complete spectrum’s mean value, the standard
normal variate (SNV) eliminates a constant offset component and scales down all spectra
by dividing the result by the full spectrum’s standard deviation [47]. On the other hand, by
employing the linear least-squares approach to construct a linear model between a reference
spectrum and other spectra in the dataset, the multiplicative scatter correction reduces
spectral deviations. The dataset’s average spectrum, known as the reference spectrum, is
frequently selected [48]. However, without the application of chemometric methods that
can extract significant data from the spectra, few conclusions can be drawn from either the
raw or preprocessed spectral data. For this reason, a PCA analysis was applied to the raw
spectral data and preprocessed data as one of the most widely used chemometric methods
to detect the differences between samples [10]. The results for the oil-in-water emulsions are
shown in Figure 4, and the results for the oil-in-aqueous mint extract emulsions are shown
in Figure 5. Based on the PCA results, SNV was selected as the optimal preprocessing
method for individual oil-in-water emulsion NIR spectra and MSC was selected as the
optimal preprocessing method for individual oil-in-aqueous mint extract emulsion NIR
spectra. The selected preprocessing methods resulted in the best discrimination of the
sample and the highest explanation of the data in the first two principal components [49].
PCA score plots for average NIR preprocessed spectra (Figures 4a and 5a) show the specific
grouping of the samples in three groups according to the emulsifier used (PEG 1500, PEG
6000, and PEG 20,000). As expected, the grouping was more evident for the oil-in-water
emulsions. Mint extracts, as the continuous phase for the second type of emulsion, scarcely
influenced the sample grouping. The chart of the principal components (x-axis) and the
percentage of explained variance (y-axis) shows its inflection point at the third PC, which is
an indication of the most important PCs to investigate the observed system. As presented
for both types of emulsions, the first three principal components (PCs) explained most
of the sample variability. For the oil-in-water emulsions, the first three PCs explained
75.92% of the data variability, while for the oil-in-aqueous mint extract emulsions the first
three PCs explained 87.06% of the data variability. The compressed variance difference in
PC1–PC3 for the oil-in-water emulsions and oil-in-aqueous mint extract emulsions could
be explained by the color difference of the continuous phases used and the larger effect of
color in PC1–PC3 of the oil-in-aqueous mint extract emulsions. The detection of significant
variables (variables with large variances) and correlations between variables [50] was made
by the analysis of the loading spectra (Figures 4b and 5b). Even though both positive and
negative contributions are displayed in the loading plots (Figures 4b and 5b), the spectral
shape of the pure PC1 loading vector displays the majority of the distinctive absorption
peaks observed in Figures 2a and 3a. Moreover, the intensity maximum of the pure PC1
spectrum is shifted toward the actual spectrum by the positive and negative contributions
from PC2 and PC3, as previously presented by Zhang et al. [51]. For the oil-in-water
emulsions, the maximum loading peaks were noticed at 941 nm (C−H bond, 3rd overtone)
and 1631 nm (C−H, 1st overtone), while for the oil-in-aqueous mint extract emulsions
the maximum loading peaks were noticed at 960 nm (C−H bond, 3rd overtone), 1437 nm
(O−H, 1st overtone), and 1631 nm (C−H, 1st overtone). Furthermore, a PCA analysis
was applied for the analysis of the emulsion samples according to the emulsifier used. As
presented in Figures 4c,e,g and 5c,e,g, the specific grouping of the samples based on the
amount of the emulsifier used can be noticed. It can be seen that sample grouping was more
pronounced for the oil-in-water emulsions. Furthermore, the emulsions with the highest
amount of emulsifier (6%) were specifically grouped, while there was some overlap of the
samples with 2% and 4% emulsifier. That was especially evident for the oil-in-aqueous
mint extract emulsions (Figure 5c,e,g). Moreover, the first three factors explained 75.31%
(PEG 1500), 89.11% (PEG 6000), and 89.11% (PEG 20,000) of the variability between the
oil-in-water emulsion samples and 83.85% (PEG 1500), 89.24% (PEG 6000), and 96.23%
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(PEG 20,000) of the variability between the oil-in-aqueous mint extract emulsion samples.
The obtained results indicate that those samples were also separated based on the mixing
rate, oil phase, and particle size. The loading plot shows that for oil-in-water emulsions the
maximum loading peaks were noticed as follows: (i) for PEG1500 at 941 nm (C−H bond,
3rd overtone) and 1631 nm (C−H, 1st overtone) (Figure 4d); (ii) for PEG 6000 at 941 nm
(C-H bond, 3rd overtone), 1218 nm (C−H, 2nd overtone), and 1687 nm (C−H, 1st overtone)
(Figure 4f); and (iii) for PEG 20,000 at 1631 nm (C−H, 1st overtone) (Figure 4h). Moreover,
for the oil-in-aqueous mint extract emulsions, maximum loading peaks were noticed as
follows: (i) for PEG1500 at 1469 nm (O−H, 1st overtone) and 1631 nm(C−H, 1st overtone)
(Figure 5d); (ii) for PEG 6000 at 1438 nm (O−H, 1st overtone), 1469 nm (O−H, 1st overtone),
and 1631 nm (C−H, 1st overtone) (Figure 5f); and (iii) for PEG 20000 at 960 nm (C−H bond,
3rd overtone), 1437 nm (O−H, 1st overtone), 1631 nm (C−H, 1st overtone), and 1687 nm
(C−H, 1st overtone) (Figure 5h). The high percentages of explained variance in both cases
are indicative that NIR coupled with chemometrics can be successfully used for the rapid
and nondestructive discrimination of emulsion samples. These results are consistent with
studies by Borges et al. [29], Bampi et al. [28], and Dinache et al. [52], who also successfully
used NIR spectroscopy coupled with chemometrics to analyze emulsions.
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3.3. PLS Modeling of the Average Feret Diameters of Emulsions

The aim of this work was to analyze the applicability of NIR spectroscopy to dis-
tinguishing the emulsion droplet sizes, expressed as the average Feret diameter at the
microfluidics device outflow. For that purpose, partial least-squares (PLS) modeling was
applied (Table 2).

Table 2. Parameters of partial least-squares (PLS) models for the prediction of the average droplet
size, expressed as the average Feret diameter of oil-in-water emulsions and oil-in-aqueous mint
extract (green shading) emulsions prepared in a microfluidic device at different flow rates using
different emulsifiers based on different NIR spectra pretreatments. Preprocessing methods: raw
spectra (No), first-order Savitzky–Golay derivative (SG1), standard normal variate (SNV), multiplica-
tive scatter corrections (MSC), first-order Savitzky–Golay derivative followed by standard normal
variate (SG1+SNV), and first-order Savitzky–Golay derivative followed by multiplicative scatter
corrections (SG1+MSC). Model applicability: the coefficients of determination for calibration (R2

cal)
and cross-validation (R2

cval), the root-mean-square error for calibration (RMSEC) and cross-validation
(RMSECV), the average value of the difference between the predicted and observed values (bias), the
ratio of predicted deviation (RPD), and the range error ratio (RER). Seven factors were included in
each model.

Emulsifier Pretreatment R2
cal RSEC R2

val RMSECV R2
pred RMSEP Bias RPD RER

PE
G

15
00

No 0.6900 11.3085 0.5496 14.5378 0.5357 13.5556 6.2689 1.6265 9.2493
SG1 0.5803 13.1587 0.4589 15.6916 0.3509 14.5654 5.2033 1.5138 8.6081
SNV 0.6863 11.3765 0.5617 13.4810 0.4618 13.4267 6.8044 1.6421 9.3381
MSC 0.6891 11.4375 0.5154 14.2484 0.4582 14.8875 6.8439 1.4810 8.4218

SG1-SNV 0.6105 12.6752 0.4871 15.2877 0.3640 16.9920 1.1515 1.2976 7.3788
SG1-MSC 0.6127 12.6396 0.4479 15.2402 0.2065 18.5027 1.6547 1.1916 6.7763

PE
G

60
00

No 0.9467 4.6815 0.5865 13.2891 0.5874 13.0513 2.2884 1.6805 7.4023
SG 0.9575 4.1833 0.7304 11.9565 0.4831 14.8774 1.5755 1.4742 6.4937

SNV 0.9601 4.0536 0.6204 13.0093 0.6254 12.4360 2.5424 1.7636 7.7686
MSC 0.9587 4.1230 0.6239 12.6438 0.5862 13.0704 2.2782 1.6780 7.3915

SG1-SNV 0.9567 1.0402 0.8733 2.7853 0.6105 13.2121 2.4787 1.6600 7.3122
SG1-MSC 0.9459 4.7151 0.6572 12.0521 0.6915 14.8931 2.1356 1.4727 6.4869

PE
G

20
,0

00

No 0.9766 1.5039 0.5695 7.1978 0.5534 5.2628 4.8615 2.4455 13.2401
SG1 0.7898 4.5089 0.3751 8.3623 0.3963 11.5998 1.8105 1.1095 6.0070
SNV 0.9692 1.757 0.8740 7.4639 0.8692 1.7257 1.7257 7.4581 9.3778
MSC 0.9682 1.7532 0.4821 7.2293 0.5117 6.1176 2.7696 2.1038 11.3901

SG1-SNV 0.9991 0.3024 0.9973 0.5394 0.9165 1.8562 2.8638 6.9337 37.5391
SG1-MSC 0.7853 4.5565 0.3304 8.4233 0.3808 11.7133 1.1713 1.0988 5.9488

No 0.8412 4.8959 0.6454 7.5579 0.6901 10.2962 0.4921 1.4379 7.8740
SG1 0.8296 5.0706 0.6613 8.0253 0.4400 17.1542 4.1051 0.8631 4.7261
SNV 0.8385 4.9369 0.6262 7.2036 0.7261 9.7119 0.4814 1.5244 8.2477
MSC 0.8319 5.0366 0.6620 7.3342 0.7234 9.7707 0.4076 1.5153 8.2975

SG1-SNV 0.8385 4.9369 0.6221 7.2793 0.7261 9.7119 0.4814 1.5244 8.1477PE
G

15
00

SG1-MSC 0.8317 5.0404 0.5182 8.6245 0.4607 19.9587 7.4658 0.7418 4.0620
No 0.8931 9.3504 0.4184 22.1524 0.5524 27.0695 1.9972 1.3227 5.6627
SG1 0.8661 10.4682 0.1864 25.5765 0.1678 41.4123 6.4073 0.8646 3.7015
SNV 0.8932 9.3476 0.5232 21.0092 0.5576 26.8832 2.1530 1.3319 5.7019
MSC 0.8934 9.3411 0.5017 20.5099 0.5587 26.8457 2.1110 1.3337 5.7099

SG1-SNV 0.8802 9.9017 0.2595 23.7959 0.1396 48.6993 6.5399 0.7352 3.1476PE
G

60
00

SG1-MSC 0.9034 8.8882 0.2949 24.0148 0.2087 48.2772 5.8181 0.7417 3.1751
No 0.5648 23.0535 0.3161 31.0397 0.2218 29.6369 5.7822 1.1706 6.2226
SG 0.6155 21.6689 0.2418 31.2997 0.2004 33.8383 3.9401 1.0253 5.4500

SNV 0.5891 22.4006 0.3106 29.2811 0.2393 29.3017 6.0420 1.1840 6.2938
MSC 0.8109 15.1972 0.5123 24.1765 0.7062 18.6126 3.5765 1.8640 9.9083

SG-SNV 0.7916 15.9512 0.4772 30.3806 0.1364 41.0687 8.9847 0.8448 4.4905PE
G

20
,0

00

SG-MSC 0.9894 3.5941 0.4334 31.4240 0.1064 44.1265 9.0842 0.7862 4.1793

The performances of the different preprocessing methods were tested, including
the first-order Savitzky–Golay derivative, standard normal variate, multiplicative scatter
corrections, first-order Savitzky–Golay derivative in combination with standard normal
variate, and first-order Savitzky–Golay derivative in combination with multiplicative
scatter corrections. The applicability of the developed PLS models was evaluated using
R2

cal, R2
cval, RMSEC, RMSECV, bias, RPD, and RER. As for the PCA analysis, the SNV
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preprocessing method was shown to be the most efficient for the PLS modeling using the
NIR spectra of the oil-in-water emulsions, whereas the MSC was the most efficient for the
PLS modeling using the NIR spectra of the oil-in-aqueous mint extract emulsions.

From the results summarized in Table 2 and Figure 6, it can be seen that the PLS
model for oil-in-water emulsions using SNV preprocessed NIR spectra showed strong
correlations (R2 > 0.7) [53] for the coefficient of calibration (R2

cal), cross-validation (R2
cval),

and prediction (R2
pred) with the addition of PEG 20000 (R2

cal of 0.9692, R2
cval of 0.8740, and

R2
pred of 0.8692). For PEG 15000, the PLS model correlation was moderate (R2

cal of 0.6863,
R2

cval of 0.5617, and R2
pred of 0.4618). For PEG 6000, a strong correlation was achieved for

the coefficient of calibration (R2
cal of 0.9601), while for cross-validation and prediction the

correlations were moderate (R2
cval of 0.6204 and R2

pred of 0.6254). It can also be noticed that
there were variations in RMSEC, RMSECV, and RMSEP for a number of PLS model factors.
The results indicate that PLS models for oil-in-aqueous mint extract emulsions showed
lower accuracy in comparison to those for oil-in-water emulsions. The highest R2

pred of
0.7234 was obtained for emulsions prepared with PEG 1500, followed by PEG 20000, with
an R2

pred of 0.7062, and PEG 6000, with an R2
pred of 0.5587. These poor values can be

attributed to the indirect measurement of the average Feret diameter [54]. The quality of
the developed PLS models was also evaluated based on residual predictive deviation (RPD)
index and the range-to-error ratio (RER). Ideal and robust models need to possess higher
R2

pred coefficients and RPD indexes [55]. Based on the obtained RPD values, the only
model for oil-in-water emulsion with PEG 20000 with RPD = 7.4581 was the one that can
be used for process control (RPD > 6.5) [56]. The other developed PLS models, except the
model for oil-in-aqueous mint extract emulsions with PEG 6000, can be used for screening
(1.5 < RPD < 2.5) [57]. The bias, which is the discrepancy between the means of the true
values and the estimated values, additionally known as the error of means, was strongly
affected by the measurement error and the number of predictor variables [58]. Comparing
the developed PLS models, it could be noticed that lower bias values were obtained for the
oil-in-mint aqueous extract emulsions.
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Figure 6. Variation in RMSEC, RMSECV, and RMSEP as a function of the latent variable number for
the best PLS models for (a) oil-in-water emulsions and (b) oil-in-mint extract emulsions.

The efficient use of NIR spectroscopy coupled with PLS modeling was presented by
Mishra et al. [59] for the at-line and in-line monitoring of droplet size in mayonnaise. The
authors developed PLS models that achieved prediction errors for droplets in the range
of 0.38 to 0.68 µm. Moreover, Amsaraj et al. [60] combined Fourier-transform infrared
spectroscopy with a partial least-squares discriminant analysis of milk adulteration and
achieved a 100% accurate classification. Bampi et al. [28] proposed PLS models with
9.53% mean error for the external validation of the average droplet size of water–biodiesel
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emulsions, while Jurinjak Tušek et al. [10] applied PLS modeling to predict the average
Feret diameter of oil-in-water emulsions with two different emulsifiers (Tween 20 and
PEG 2000).

3.4. ANN Modeling of the Average Feret Diameters of Emulsions

A multilayer feed-forward neural network or multilayer perceptron (MLP) was fitted
using the training dataset of the average droplet Feret diameter of each individual produced
emulsion. The model inputs were the first five PCs, which contributed 99% of the data
variability selected after the preprocessing that ensured efficient sample grouping. For the
oil-in-water emulsions, five PCs after SNV preprocessing were used, and for the oil-in-
aqueous mint extract emulsions, five PCs after MSC preprocessing were used, as in the case
of PLS modeling. The performances of selected ANNs are given in Table 3 and in Figure 6.
Based on the obtained R2 and RMSE values for training, testing, and validation, it can be
noticed that ANN modeling ensured better agreement between the experimental data and
the model-predicted data than PLS modeling. This can be simply explained by the nature
of the model; PLS models include linear regressions, while ANN models include highly
nonlinear expressions.

Table 3. Characteristics of ANN networks selected for the prediction of the average droplet sizes of
oil-in-water and oil-in-aqueous mint extract (green shading) emulsions prepared in a microfluidic
device at different flow rates using different emulsifiers based on different NIR spectra pretreatments.

Emulsifier/
Pretreatment MLP Training Perf./

Training Error
Test Perf./
Test Error

Validation Perf./
Validation Error

Hidden
Activation

Output
Activation

PEG 1500/
SNV

MLP 5-10-1 0.9843
0.0073

0.8085
0.0101

0.7443
0.0128 Identity Exponential

MLP 5-9-1 0.9844
0.0041

0.8496
0.0100

0.7364
0.0161 Identity Identity

MLP 5-10-1 0.9828
0.0058

0.8508
0.0125

0.7348
0.0172 Exponential Exponential

MLP 5-8-1 0.9836
0.0072

0.8515
0.0079

0.7615
0.0121 Logistic Identity

MLP 5-5-1 0.9835
0.0032

0.8115
0.0120

0.7358
0.0166 Exponential Exponential

PEG 6000/
SNV

MLP 5-4-1 0.9374
0.0048

0.9083
0.0064

0.7160
0.0074 Tanh Exponential

MLP 5-8-1 0.9428
0.0044

0.8675
0.0044

0.7377
0.0119 Exponential Identity

MLP 5-8-1 0.9270
0.0056

0.8551
0.0056

0.7094
0.0145 Tanh Identity

MLP 5-8-1 0.9261
0.0057

0.8287
0.0057

0.7176
0.0149 Exponential Exponential

MLP 5-6-1 0.9297
0.0054

0.8689
0.0054

0.7101
0.0103 Exponential Exponential

PEG 20000/
SNV

MLP 5-7-1 0.9912
0.0003

0.7979
0.0028

0.7501
0.0061 Exponential Exponential

MLP 5-4-1 0.8970
0.0036

0.8056
0.0052

0.7808
0.0064 Exponential Identity

MLP 5-7-1 0.8329
0.0046

0.8036
0.0043

0.7844
0.0068 Logistic Tanh

MLP 5-7-1 0.8154
0.0043

0.8042
0.0054

0.6151
0.0091 Logistic Tanh

MLP 5-5-1 0.9917
0.0002

0.9294
0.00184

0.8533
0.0027 Exponential Exponential
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Table 3. Cont.

Emulsifier/
Pretreatment MLP Training Perf./

Training Error
Test Perf./
Test Error

Validation Perf./
Validation Error

Hidden
Activation

Output
Activation

MLP 5-11-1 0.9998
0.0002

0.9994
0.0005

0.9985
0.0015 Exponential Identity

MLP 5-11-1 0.9993
0.0007

0.9988
0.0012

0.9972
0.0028 Exponential Identity

MLP 5-10-1 0.9966
0.0034

0.9921
0.0079

0.9920
0.0080 Exponential Identity

MLP 5-11-1 0.9997
0.0003

0.9996
0.0004

0.9993
0.0007 Logistic Identity

PEG 1500/
MSC

MLP 5-8-1 0.9996
0.0004

0.9994
0.0006

0.9995
0.0005 Logistic Identity

MLP 5-3-1 0.9516
0.0044

0.9311
0.0075

0.8113
0.0096 Tanh Logistic

MLP 5-11-1 0.9227
0.0042

0.8667
0.0086

0.7257
0.0185 Tanh Tanh

MLP 5-10-1 0.7311
0.0092

0.7104
0.0128

0.6716
0.0167 Logistic Logistic

MLP 5-5-1 0.7693
0.0092

0.7285
0.0113

0.7182
0.0142 Tanh Logistic

PEG 6000/
MSC

MLP 5-4-1 0.8271
0.0087

0.7577
0.0125

0.7192
0.0128 Tanh Logistic

MLP 5-5-1 0.9924
0.0003

0.8273
0.0031

0.6731
0.0091 Logistic Identity

MLP 5-5-1 0.9990
0.0003

0.9915
0.005

0.9978
0.0008 Exponential Tanh

MLP 5-9-1 0.9868
0.0001

0.9691
0.0007

0.9528
0.0016 Exponential Logistic

MLP 5-5-1 0.9969
0.0004

0.7644
0.0055

0.7234
0.0084 Logistic Logistic

PEG 20000/
MSC

MLP 5-11-1 0.9908
0.0005

0.9392
0.0006

0.9281
0.0023 Exponential Identity

The optimal ANN architecture was selected based on the number of neurons in the
hidden layer (less neurons in the hidden layer means a simpler and more stable network).
For the oil-in-water emulsions, the highest R2

validation was obtained for the emulsion with
PEG 20000 (Figure 7(a3)). For the prediction of the average droplet Feret diameters in the
oil-in-water emulsion with PEG 20000, MLP 5-5-1 was selected. The selected ANN was
characterized by five neurons in the input layer, five neurons in the hidden layer, and one
neuron in the output layer. A hidden activation function and output activation function
was the exponential function. MLP 5-5-1 achieved an R2

training of 0.9917, an RMSEtraining

of 0.0002, an R2
test of 0.9294, an RMSEtraining of 0.00184, an R2

validation of 0.8533, and an
RMSEvalidation of 0.0027. The ANN models used for the description of the average droplet
Feret diameter of oil-in-aqueous mint extract emulsions showed significant improvement
regarding R2

validation in comparison to the developed PLS models. For oil-in-aqueous
mint extract emulsions, the highest R2

validation was obtained for emulsions with PEG 1500
(Figure 7(b1)) using MLP 5-8-1 with five neurons in the input layer, eight neurons in the
hidden layer, and one neuron in the output layer. The selected ANN included a logistic
function as a hidden activation function and an identity function as an output activation
function. This ANN achieved an R2

training of 0.9996, an RMSEtraining of 0.0004, an R2
test of

0.9994, an RMSEtraining of 0.0006, an R2
validation of 0.9995, and an RMSEvalidation of 0.0005.
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Figure 7. Comparisons between observations and ANN model predictions for the average droplets
sizes of (a) oil-in-water emulsions and (b) oil-in-aqueous mint extract emulsions: (a1,b1) PEG 1500,
(a2,b2) PEG 6000, (a3,b3) PEG 20,000.

The effectiveness of ANN modeling vs PLS modeling was estimated using R2 and
RMSE, and based on those criteria, the developed ANN models showed higher effectiveness
for the prediction of the average Feret diameter of both oil-in-water and oil in mint aqueous
emulsions. However, the proposed models were limited in their applicability to the range
of the trained variables and therefore do not have a wider application. As previously
described, the superior performance of the ANN model is attributed to its nonlinear
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mapping capability, which is a feature lacking in the PLS models [61,62], and it is in
agreement with previously presented results where ANN modeling was also applied for
the prediction of emulsion droplets using NIR spectra [10,28]. Furthermore, ANN modeling
was shown to be more efficient than PLS modeling for the rapid detection of the microbial
spoilage of beef fillets based on Fourier-transform infrared spectra [63], for the prediction
of soil organic carbon using UV-VIS-NIR spectra [64], for the quantitative analysis of quartz
in the presence of mineral interferences using FTIR spectra [62], for nondestructive grape
texture prediction using NIR spectra [49], and for the prediction of bioactive component
contents in olive leaf extracts using NIR spectra [36].

4. Conclusions

This is the first application of NIR spectra and PLS and ANN modeling for the analysis
of oil-in-aqueous mint extract emulsions prepared using a microfluidic device. Based on
the presented results, it can be concluded that, for all emulsifiers used, oil-in-aqueous
mint extract emulsion droplets were larger than those generated in oil-in-water emulsions.
The results also showed that NIR spectroscopy coupled with chemometrics can be used
for the distinctive qualitative and quantitative grouping of the samples according to the
emulsifier used for its production. The obtained results for the ANN models a showed
higher ability to predict the average droplet sizes than the PLS models, especially in case of
PEG 1500 oil-in-aqueous mint extract emulsions, where R2 values of 0.9996, 0.9994, and
0.9995 were obtained for training, testing, and validation, respectively. This was attributed
to the ANN’s nonlinear mapping capability, which is a feature lacking in the examined
PLS models.
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