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Abstract: Carbon-nanotube (CNT) is a promising material owing to its compelling mechanical,
thermal and electrical properties and has been applied in a broad variety of fields such as composite,
fiber, film and microelectronic. Although the introductions of CNT have brought huge improvement
for many applications, these properties of macrostructures prepared by CNTs still cannot meet
those of individual CNT. Disordered alignment of CNTs in the matrix results in degradation of
performance and hinders further application. Nowadays, quantities of methods are being researched
to realize alignments of CNTs. In this paper, we introduce the application of CNTs and review some
typical pathways for vertical and horizontal alignment, including chemical vapor disposition, vertical
self-assembly, external force, film assisted, electric field, magnetic field and printing. Besides that,
advantages and disadvantages of specific methods are also discussed. We believe that these efforts
will contribute to further understanding the nature of aligned CNT and generating more effective
ideas to the relevant workers.
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1. Introduction

Carbon nanotubes (CNTs) are seamless cylinders of one or more layer of graphene
(denoted single-wall, SWNT, or multi-wall, MWNT), with open or closed ends [1]. In
1991, Iijima discovered Multi-wall carbon nanotubes (MWCNT) by high-resolution electron
micrograph accidentally [2]. With that, single-wall carbon nanotubes (SWCNT) were
discovered by Bethune in 1993 [3]. With the development of research, CNTs have been
considered as an exciting material owing to its extraordinary intrinsic properties, such as
elastic modulus approaching 1T Pa, tensile strength of 100 G Pa, electric conductivity of
10 Acm−2 and thermal conductivity of 3500 W m−1 K−1 [4–6]. To date, arc discharge [2],
chemical vapor deposition (CVD) [7]. and laser ablation [8]. are the main methods for
preparing CNTs. These properties are far superior to other materials, making carbon
nanotubes widely used in various fields.

These fields can be grouped into the following major categories: [1,9–11].

1. Composite materials. CNTs are often used as additives to improve the properties of
different materials, such as polymers, metals and ceramics. There are some typical
examples, such as sporting goods and structural parts, which are stronger, lighter and
more durable.

2. Fiber and film. After large numbers of researches, CNT fiber could become a strong
competitor of carbon fiber in high-end applications due to its excellent electrical and
mechanical properties [12–18]. CNT-based film has not only enhanced properties
but transparency, which makes it seen as an alternative to indium tin oxide [19,20].
Besides that, CNTs can be used in PDMS to reduce the internal resistance and improve
the output performance [21].

Micromachines 2022, 13, 1863. https://doi.org/10.3390/mi13111863 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13111863
https://doi.org/10.3390/mi13111863
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi13111863
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13111863?type=check_update&version=1


Micromachines 2022, 13, 1863 2 of 19

3. Microelectronic. In this field, due to its excellent electrical performance, quantities of
application can be achieved, such as field emission [22], field-effect transistors [23–25],
sensor [26–33], computer [34], solar cells [35]. and flexible electronics [36].

Although excellent properties have been measured for individual CNT, the macrostruc-
tures, such as yarns and sheets, remain significantly lower than the former [1], which is
resulted by its highly anisotropic due to their high aspect ratio. Thus, there are two main
barriers for further applications of CNTs, preventing from realizing their full potential. The
first is the aggregation of CNTs, which is resulted by van der Waals attraction force between
them. Generally, they are held tightly together instead of being a single nanotube. The
approach, a combination of ultrasound radiation assisted by a rotational stir, was verified
to be the most efficient for dispersing CNTs in epoxy [37]. At the same time, it has been
proved that using functionalized CNTs can improve the uniformity of nanocomposite [38].
Secondly, the disordered CNTs exhibit a much worse performance than the ordered CNTs
due to its anisotropy. For instances, the composite film with aligned CNTs records an
impressive 360% improvement in conductivity in the direction parallel to the alignment as
compared to the structure with randomly aligned CNTs [39]. Also, the strain sensitivity
of composite film with aligned CNTs is six times higher than that with totally random
CNTs [40]. Using electrospun to produce filament with aligned CNTs can lead up to 49%
improvement on modulus [41]. And another important reason is that the alignment and
uniformity of CNTs have a significant effect on the performance and reproducibility [42].
With respect to the alignment of CNTs, there are more methods, including electric field,
magnetic field, shear force, mechanical stretch and so on.

Taking the production process as the standard of sort, the alignment of CNTs can be
divided into two classifications which are in situ (in-growth) and ex situ (post-growth) [43].
It is called in situ that alignment achieves during the process of preparing CNT. While the
ex situ alignment refers to using external force, field or other techniques to align unordered
CNTs which have been produced. However, when it comes to alignment of CNTs, it is
widely used that vertical and horizontal alignment according to the direction of alignment
which will be introduced in detail in this paper. By the way, in situ does not contain or is
equivalent to vertical arrangement, as do ex situ and horizontal arrangement. For instance,
combining the extrusion blown plastic film technique and floating catalyst CVD approach
to produce transparent conductive films with horizontally aligned CNTs [44].

Although the plethora of experiments for aligning CNTs have been done in different
forms including pure CNTs, in solution and in polymer matrix, in an attempt to find
some inherent regularities, we try to divide these methods into several categories on the
ground of the rationales used in these approaches, as shown in Figure 1. Herein, we will
give detailed introduction about these categories and their advantages and disadvantages,
which can offer necessary help to these scholars who just started resarching this field.
And these efforts will contribute to further understanding the nature of aligned CNT and
generating more effective ideas to the relevant workers.
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2. Vertical Alignment Approach
2.1. Chemical Vapor Disposition (CVD)

CVD technique has been the most commonly used method, in particular for vertical
alignment of carbon nanotube arrays (VANT) also known as “CNT forest” in which the
direction of axis of CNT is normal to the substrate. In a typical CVD process, CNTs are
generally believed to follow a “vapor–liquid–solid” growth mechanism [45]. Under the
condition of high catalyst density, the bending of carbon nanotubes can be prevented to a
certain extent, so as to realize the growth of VANT. With the development of technique, the
height of VANT has increased from micrometer to millimeter and then to centimeter in the
past thirty years [46–48].

Xie et al. achieved large-scale synthesis of aligned carbon nanotubes by CVD cat-
alyzed by iron nanoparticles embedded in mesoporous silica in 1996, which is the earliest
report [46]. As shown in Figure 2, using water-assisted CVD process and optimized sub-
strate design, Yun et al. prepared the aligned VANTs with the height of 4 mm [47]. In
order to avoid bending of CNTs during the growth, the template-assisted method has also
become a typical method for VANTs. As shown in Figure 3, Li et al. introduced a hexag-
onal close-packed Nano channels alumina template to CVD for the VANT with uniform
diameters and periodic arrays [49]. Using anodic aluminum oxide (AAO) template, Yuan
et al. tried to find out more suitable conditions with iron as the catalyst [50].
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2.2. Vertical Self-Assembly

Based on chelation and electrostatic interaction, Chattopadhyay et al. reported a
metal-assisted self-assembly method which prepared dense arrays of SWNT and permits
growth of successive stacks in a layer-by-layer assembly format [51]. By utilizing the
combination of a self-assembly and a surface condensation reaction, some researchers
adsorbed spontaneously the CNTs with chemical modifications of the carboxyl end groups
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onto different substrates of metal and silicon [52–54], which achieved vertical alignment of
CNTs as shown in Figure 4.
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De Heer et al. proposed an approach to stretch the suspension with a 0.2-um-pore
ceramic filter to produce vertical nanotube films that could be transferred onto substrates by
pressing [55]. If readers want to pay more attention to VANT, there have been several articles
which expound the relevant mechanism and condition of CNT synthesis in detail [45,56–58].

VANT can only be used in little applications, including field emitters, AFM tips and
sensors, but need expensive equipment and precise condition, compared to horizontal
aligned carbon nanotubes (HANT). It is an inherent drawback that the catalyst seen as
impurity is difficult to remove nondestructively, and due to the dense arrangement, electric
shielding usually brings negative effects on properties and applications of electron devices.
Still, it cannot be denied that the advances of VANT techniques favor many potential
applications and horizontal alignment of CNT.

3. Horizontal Alignment Approach

Compared to VANT, HANT has more abundant methods. In a bid to introduce them
more clearly, we divide the main approaches into several sections, including external force,
film-assisted, electric field, magnetic field and printing.

3.1. External Force Method
3.1.1. Shear Force

Shear force is a kind of common method for aligning tube and early is used to align-
ment of CNT. As introduced below, three classes of shear force can be distinguished: solid,
liquid and gas.

(1) Solid State

A facile method was proposed by Ajayan in 1994, which provided a fresh approach
for relevant researches [59]. They cut thin sheets of CNT-polymer composites and found
that the CNTs were not cut off and straightened during the cutting process, thus achieving
an orderly arrangement. It also was proved that shear force can align CNT in a polymer
film by polarized Raman spectrum [60]. Li et al. introduced a super acid slide coating
method, in which SWNTs were dissolved in chlorosulfonic acid and several droplets of this
solution were sandwiched between two glass slides [61]. The slides were pressed and slid
manually and then the oriented thin films of CNT were accomplished, as shown in Figure 5.
Interestingly, Bradford et al. proposed a novel approach which achieved the conversation
from VANT to HANT by shear pressing as shown in Figure 6.
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(2) Gas State

Snow [63], Xin [64] and Hedberg [65] are foregoers in alignment of CNTs by the
force of gas blow. Although they used the different setups, the forces they relied on are
similar. When the solution of CNTs dropped on the Si substrate along with the gas blow,
droplet dispersed in the direction of gas blow, which can achieve large-scale dispersion and
alignment of CNTs easily.

Yan et al. Carried out a series of experimental studies on aligning CNT by gas shear
force, which is a classic approach influent the behind. A PDMS mold with submicron
channels was placed, channel side down on a substrate to form tubular channels in which
the CNT droplet can align as the fluid flowed driven by the capillary effect (Figure 7a) [66].
To solve the problem of nanotubes accumulate in the channels, further researches have
been done. Firstly, the substrate was slightly tilted to assist the suspension reaching the
channels [66]. Furthermore, the end of the channels was designed to be the funnel-shaped
microchannel entrances, and a jet of N2 was introduced to provide a stable gas blow
for pushing the CNT solution into the microchannel (Figure 7b) [67]. Eventually, they
transferred the patterns of aligned CNTs onto a functionalized electrode successfully [68].
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(3) Liquid State

Poulin et al. proposed firstly the method that aligning CNTs in liquid [69]. The
SWNTs were uniformly dispersed in an aqueous solution containing surfactant SDS, and
the dispersion was injected into PVA aqueous solution keeping stable stirring through a
needle. The carbon nanotubes are oriented at the tip of the needle and fixed by the polymer
chain segment in PVA aqueous solution. Tannenbaum et al. mixed SWNT, NaDDBS and
CMC in a cylindrical container which have a rotatable inner cylinder to achieve the rotation
of solution as shown in Figure 8 [70]. The results show that the addition of CMC helps
to increase the dispersion and orderly arrangement of CNTS under shear force. Hobbie
proposed an approach of optical measurement to describe shear-induced structure and
orientation in semidilute dispersions of MWNT [71].
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Figure 8. Schematic representation of the experimental setup: (a) Concentric cylinder arrange-
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3.1.2. Stretching Force

In this method, thin film and fiber are main applicable objects as shown in Figure 9.
Thostenson et al. created an aligned nanocomposite film of MWNT by extrusion and
drawing using a rectangular die in the molten state [72]. It was found that the tensile
modulus, yield strength and ultimate strength of the polymer films were improved by
adding nanotubes, and the elastic modulus of the aligned CNT composites was increased
5 times than that of the randomly oriented composites. Haggenmueller et al. fabricated
nanocomposite films and fibers consisting of a PMMA matrix with SWNTs by the methods
of melt pressing and melt spinning [73]. Dai et al. produced the SWNT-epoxy composite by
solution casting technique [74]. Subsequently, the mixture was stretched repeatedly along
one direction at the semidried state for 100 times manually to achieve the alignment of
CNT. Cheng et al. also employed this method in MWNT/BMI composites with high CNT
concentrations [75]. The above references all showed that the conductivity and mechanical
property along the flow direction was higher than perpendicular to it. Li et al. stretched
pure CNT networks to align CNT and assessed the real-time degree of alignment by X-ray
and Raman scattering techniques [76]. To meet various applications, Liu et al. successfully
prepared tunable CNT arrays for spinning continuous unidirectional sheets [77].

Li et al. firstly proved that it is possible that spinning fibers of CNTs directly during
the process of CVD [78]. On this basis, Vilatela et al. controlled the condition of the CVD
and the rate of collector to prepare the fibers with high performance and shed light on the
fact that the CNTs were oriented and parallel to the fiber axis in the process [79]. Zhang et al.
reported a distinct method that using the super-aligned CNT arrays made by themselves
achieved directly the fabrication of the yarns with aligned CNT, as shown in Figure 10 [80].
During the process of spinning, continuous yarns were produced due to the strong van der
Waals force between CNTs. Apart from that, Gommans et al. generated continuous fibers
with oriented CNTs from solution [81].
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Obviously, the force-induced methods have huge advantages that available devices,
simple operation and improvement of mechanical properties. However, deterioration of
electrical and dielectric properties is usually produced during the process of alignment,
and it is almost impossible to achieve accurate control of an individual CNT in this way.

3.2. Film Assisted Method
3.2.1. Langmuir-Blodgett Film

Langmuir-Blodgett film (LB film) technology is used to fabricate monomolecular thin
film which transfers from horizontal Langmuir monolayer to a vertical solid substrate.
The first application of the LB film in one-dimensional nanomaterial is about the study
of oriented nanorods [82]. Several years later, Li et al. applied this kind of technique in
functionalized SWNTs to achieve large-scale assembly [83]. Lu et al. introduced a model
to explain the compression-induced alignment during the process of forming LB film
and prepared multilayers of SWNT LB film, as shown in Figure 11a [84]. Similar to LB
film, evaporation-driven assembly also can be used to orient CNTs with an intermittently
moving substrates, as shown in Figure 11b [85].
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3.2.2. Blown Bubble Film

Here, an interesting method is introduced that Cao et al. combined blown film
extrusion and nanocomposite film for the first time [42]. Using a die to form a bubble from
polymer suspension of CNTs with controlled blowing, they achieved the fabrication of
large-area substrates with aligned CNTs. Then this approach also was applied to other
nanomaterials and on flexible substrates with good alignment, as shown in Figure 12A [86].
After that, they continued to fabricate isotropic CNT film by a layer-by-layer transfer
process [87]. Inspired by the blown bubble technique and the floating catalyst CVD, Xie
et al. recently prepared the flexible transparent conductive films with excellent performance,
as shown in Figure 12B [44].
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Film-assisted methods can achieve large-scale alignment of CNT easily, so it is feasible
to realize commercial applications in this way. Another advantage is that this approach can
be employed for flexible films and devices which have broad impact and huge potential on
the number of fields. However, it is impossible to manipulate individual CNT by using
this pathway.

3.3. Electric Field Method
3.3.1. Electric Field Assisted Method

In 1996, Fishbine originally discovered that CNTs can be electrically polarized in
electrostatic fields, which induced the electrostatic dipole moment to achieve the alignment
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of CNT [88]. On this basis, Oliva et al. proposed a modeling of the dynamic carbon
nanotube network under alternating current electric fields to systematically elucidate the
process of CNT migration and three dynamic mechanisms including CNT rotation induced
by electrostatic dipole moment, Coulombic interaction between CNTs and CNT migration
towards an electrode induced by dielectrophoresis force as shown in Figure 13 [89]. Banda
et al. introduced the efficient dispersion of CNTs in the polymer in detail and demonstrated
the improvement of electrical and mechanical properties after alignment [90]. It also was
found that orientation of CNT can be achieved in both AC [90–97] and DC [92,96,98–100].
electric fields as shown in Figure 14, and more uniform and aligned network structures
can be achieved in the AC electric field than in the DC electric field [92]. Besides that,
field magnitude [90], Concentration [95,99], frequency [96] and required time [101] are key
factors in the alignment of CNT.
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Reproduced with permission [89]. Copyright 2014, Elsevier.
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Figure 14. Optical photographs of MWCNT in distill water under an applied electric field. (a) V = 0 V,
(b) VDC = 200 V after 120 s, (c) VAC = 400 V at 1 kHz after 5 s. Reproduced with permission [96].
Copyright 2012, IOP Publishing.

Liquid solutions and polymers are common mediums for aligning CNT in electric
fields. It has been proved that CNTs can rotate and eventually orient along the direction
of electric fields in various liquid solutions, including isopropyl alcohol [91], distilled
water [97] and ethanol [98]. Park et al. achieved the alignment of SWNTs in a photopoly-
merizable monomer solution immobilized by photopolymerization under a continuously
applied AC electric field [93]. Oliva et al. fabricated CNT/polymer composite films with
aligned CNTs under the AC field [95]. Chapkin et al. monitored the arrangement of CNTs
under an applied electric field in situ, real time by a polarized Raman spectroscopy, which
can assist in determining processing condition [101]. Owing to the lower viscosity and the
higher permittivity of liquid solutions than polymers resulting in lower damping term and
higher dipole moment, CNTs can achieve alignment in a shorter time [95].

3.3.2. Electrospinning

Electric fields can be combined with other technologies for aligning CNT, and electro-
spinning is a typical example. Electrospinning, generally, is another a simple and common
method for drawing nanoscale fibers from polymer solution or melt [102]. To improve
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the properties of fibers, incorporating CNTs in fibers emerged to prepare CNT-polymer
composites and provided a new means for CNT alignment. A theory was presented to
explain the alignment of CNT in electrospinning. Due to the flow in a wedge, random CNT
are oriented along the nozzle gradually [103]. Frank et al. prepared PAN fibers containing
aligned SWNT by electrospinning, and found that the alignment of SWNT in PAN fibers
(50–200 nm) is better than in PLA fibers (1 mm) [104]. Sen et al. also fabricated the PU
nanofibers and membranes with aligned SWNT by electrospinning, which exhibited a
significant enhancement in the mechanical properties [105]. Hou et al. prepared CNT/PAN
composite nanofiber sheets by the electrospinning with the moving collector which aligned
nanofibers on nanofiber sheets [106]. Although there still are some obstacles in the electro-
spinning of thermosetting fibers, recently, Aliahmad et al. fabricated thermosetting fibers
embedded in aligned CNTs networks, as shown in Figure 15 [41].
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Li et al. proposed an original approach that the collector contained two pieces of con-
ductive silicon strips separated by a gap as shown in Figure 16a [107]. During the process of
electrospinning, the charged nanofibers were stretched to span across the gap, to form uni-
axially aligned arrays. Influenced by this idea, Haddon et al. prepared SWNTs composite
fibers, in which CNTs aligned along the axial direction of polymer-CNTs composite fibers
as shown in Figure 16b [108]. In the experiment, they chose PVP as basal material that
has a good compatibility with SWNTs. Under the action of static electricity, they directly
obtained the oriented polymer-carbon nanotubes composite fiber by electrospinning. The
polymer on the surface of SWNTs was etched to obtain the oriented CNTs array. Zhang
et al. continued to complete this method by improving the collector, which is a rotating
drum with parallel copper wires seen as electrodes [17]. In addition, there are other types
of collectors modified to collect aligned CNTs during the process of electrospinning, such
as auxiliary electrode collector [109], high-speed rotating collector [110], ring collector [111]
and wire spring collector [112].

In addition to electrospinning, electric fields can be combined with other technologies,
such as the synthesis of in site CNTs [113] and 3D printing [114].

As mentioned above, the electric field approach is available and can be applied to both
solution and polymer, which means that it can be easily combined with other technologies.
Another advantage is that CNTs can achieve oriented alignment without contact in this
way, which ensures the performance of CNT. To a certain extent, an individual CNT
can be manipulated by dielectrophoresis forces to fabricate microelectronic devices. As
continuous improvement, Electrospinning technology can be used to realize the large-scale
manufacture of fibers with aligned CNTs.
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3.4. Magnetic Field Method

Similar to the electric field method, the magnetic field also can be used to align CNTs
without contact. Walters introduced the suspension of SWNTs to a strong magnetic field
of 19T to align segments and then achieved the preparation of thin membranes [115]. As
shown in Figure 17, Kimura et al. placed MWNT polyester composite in a mold surrounded
by a constant magnetic field of 10T and verified the ordered result by measuring magnetic
susceptibility, conductivity, and elastic modulus [116]. Not only can the high magnetic
field achieve orientation, Ma achieved the alignment of CNTs in composite under a low
magnetic field of 0.4T, which has a significant enhancement in toughness and fracture
energy [117]. With respect to the alignment of CNTs in solution, Bhardwaj et al. poured
the solution mixed by CNTs and polymer on glass plates kept under magnetic field [118].
After drying overnight, the CNTs in these polymer films aligned along the direction of the
magnetic field, which could be measured with the help of Raman spectroscopy.
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Magnetic field can be applied into other techniques as same as electric field. Lee et al.
achieved the control of the growth direction of CNTs correlated with the direction of the
magnetic direction using CVD technique [119]. Yang et al. chosen two parallel magnets as
the collectors of the electrospinning, which generated the well-aligned fibers parallel along
the magnetic field lines [120].
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In general, magnetic field has many same advantages as electric field, such as non-
contact, availability and flexibility. However, due to the absence of dielectrophoresis force,
the movement and manipulation of individual CNT is impossible.

3.5. Printing Method
3.5.1. Direct Writing Printing

Figure 18a illustrates the fact that the high aspect ratio filler induced by the force
of shear and extrusion align along the printing direction in the process of direct writing
printing [121,122]. Lewicki et al., firstly, reported an example of additively manufactured
carbon fiber composite materials through an adaptation of direct ink writing 3D-pringing
technology [123]. In the experiment, the carbon fiber phase in the ink transferred from a
random orientation to an ordered alignment on the effect of the microextrusion in the print
head inducing shear alignment. Farahani et al. designed and fabricated two strain sensors
made of SWNT composites with a fairly high electromechanical sensitivity by direct writing
printing assisted by the ultraviolet used to accelerate the curing of the materials printed,
which is a novel way to manufacture microelectronic devices [124]. Lee at al. proposed a
new method of dip-pen nanolithography in which the tip of an atomic force microscope
acted as a “pen” coated with a composite containing SWNTs with the advantage of the
non-destruction as shown in Figure 18b [125].
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Reproduced with permission [122]. Copyright 2014, John Wiley and Sons. (b) Schematic of patterning
SWNTs using the direct-write dip-pen nanolithography approach. Reproduced with permission [125].
Copyright 2016, American Chemical Society.

Zhou et al. reported a method of stereolithography with a pair of rotatable electrodes
controlling the direction of MWNT during the printing [114]. They used the mixture of
surface modification of MWNT and polymer resin as printing material and built a complex
architecture with different mechanical property controlled by the orientation of CNTs.

3.5.2. Inkjet Printing

Utilizing the intrinsic liquid crystal behavior and “coffee ring” effect, Beyer et al.
prepared films of highly aligned CNTs by controlling the deposition and evaporation rates
during inkjet printing, as shown in Figure 19 [126]. And the lines generated in inkjet
printing are quite thin, so the CNTs can be regarded as highly aligned.

In 2006, Kordas et al. reported a typical study about generating CNTs patterns using a
commercial desktop inkjet printer. After that, there have been a number of research studies
into CNT inkjet printing [127]. Song et al. investigated the influences of the experiment
conditions, including substrate heating, surface hydrophilicity and jetting process and the
electrical properties of the sprinted lines with different linewidths and printing times [128].
Okimoto et al. prepared the printable solution and achieved the manufacture of CNT
thin-film transistors, which exhibit better performance than conventional transistors [129].

To date, inkjet printing technique has been applied in many electronic devices, such as
sensors and transistors. Still, the preparation of the ink meets some bottlenecks, such as
relatively complex process and poor applicability. With the further research for the ink, it
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is generally believed that the combination of inkjet printing and CNTs will bring exciting
performance in the near future.
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3.6. Other Methods

In addition to the methods mentioned above, there also are many researches on
alignment of CNT utilizing the approaches such as self-assembly [130,131], liquid crys-
tals [132,133], surface acoustic waves [134].

4. Summary

On the pathway of successful application and commercialization of CNT, ordered
alignment is a tough but inevitable step, which needs more research into the mechanism and
condition to meet what people expect. In this review, we summarize the main approaches
for aligning CNT from two aspects of vertical and horizontal alignment and attempt to give
the advantages and disadvantages of these approaches. But it is hard to say that which
method is best; they can exhibit different edges in different application scenarios. And
there is no doubt that creating a clear boundary between different categories is almost
impractical; some approaches integrate several categories. Nevertheless, it is still beneficial
to help people understand the arrangement of CNTs.

It is obvious that there are more and more approaches to achieve alignment of CNT,
which bring more possibilities to both the manufacture and application. The CNTs/polymer
composite with the aligned CNTs can further enhance the performance of mechanical,
thermal and electrical along the CNTs axial direction, which can be used in sport equipment,
electrostatic dissipation and electromagnetic interference shielding [135]. with the aspect
of electrodes, aligned CNTs electrodes have higher specific capacitance, lower equivalent
series resistance and better rate capability than unordered CNTs electrodes, which can be
used in lithium-ion battery, solar cells and so on [136]. The well-aligned CNT arrays also
could have the more possibility in electronic and microelectronic, which can be used to
prepare top-gate field-effect transistors with better performance than commercial silicon
metal oxide-semiconductor field-effect transistors [137]. At the same time, the combination
of different methods also brings more potential.

Besides the macroscale alignment of CNT, with the rapid development of nanotech-
nology, the microscale alignment and manipulation give a new direction and have huge
development potential. By using a hybrid atomic force microscope and scanning electron
microscope system, the precise placement of a single CNT can be achieved onto a microelec-
tromechanical system [138]. Dielectrophoresis can also be used to manipulate individual or
multiple CNT to bridge electronic conductors [139].

The aligned CNTs can further improve the performance, broaden the application fields,
and bring us more surprises. Although it is still mainly studied in the laboratory now,
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it will appear in our side in the near future. We believe that this paper will broaden the
research strategies and contribute to the wide range of application of CNT.
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