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Abstract: Micro-electromechanical systems (MEMS) have dominated the interests of the industry due
to its microminiaturization and high frequency for the past few decades. With the rapid development
of various radio frequency (RF) systems, such as 5G mobile telecommunications, satellite, and other
wireless communication, this research has focused on a high frequency resonator with high quality.
However, the resonator based on an inverse piezoelectric effect has met with a bottleneck in high
frequency because of the low quality factor. Here, we propose a resonator based on optomechanical
interaction (i.e., acoustic-optic coupling). A picosecond laser can excite resonance by radiation
pressure. The design idea and the optimization of the resonator are given. Finally, with comprehensive
consideration of mechanical losses at room temperature, the resonator can reach a high Q-factor of
1.17 × 104 when operating at 5.69 GHz. This work provides a new concept in the design of NEMS
mechanical resonators with a large frequency and high Q-factor.

Keywords: nanoresonator; GHz; Q-factor; optomechanical system; NEMS

1. Introduction

The progress of nanotechnology has promoted the rapid development of nano-electro-
mechanical systems (NEMS) in recent years. Their high frequency, low damping, i.e., high
mechanical quality factor (Q-factor) and small mass make them central components for
next-generation clocks, filters, resonators, sensors, and quantum technologies. Based on
the inverse piezoelectric effect, the quartz resonator [1–4], surface acoustic wave (SAW)
device and interdigital transducer (IDT) [5] can be applied for resonators from kilohertz
to megahertz. Moreover, some special SAW devices can also operate in GHz [6]. To meet
the needs of today’s wireless technology, film bulk acoustic resonators (FBAR) are utilized
to generate GHz resonance and show excellent performance in temperature stability [7,8].
However, the low quality factor becomes a main obstacle that limits the further develop-
ment of both SAW and FBAR. Moreover, the existing techniques often require piezoelectric
materials with an external radiofrequency excitation, which are not readily integrated into
existing CMOS infrastructures, while non-piezoelectric structures are very inefficient [9].
In recent years, optomechanical systems have seen great progress in terms of laser cool-
ing of the nanomechanical oscillator down to its quantum ground state [10], phonon
lasing [11,12], heat transport [13], phonon leakage engineering [14], and optomechanically
induced transparency [15–17]. Because of the dynamical back-action in optomechanical
interaction, the phonons can be cooled and amplified by enhanced anti-Stokes scattering
and Stokes scattering, respectively. The cooling of the phonons can achieve ultra-low
phonon occupancy and approach the quantum ground state. The amplification of phonons
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can realize phonon lasing and acoustic resonation with high frequency. The phonon lasing
normally occurs in a single mechanical mode, as in photon lasing. The optomechanical
crystal cavities have been studied theoretically and experimentally for generating GHz
and even THz phonons by ultrafast laser excitation through Brillouin scattering [9,18–23].
Therefore, the optomechanical systems offer great potential for breaking through the barrier
of a GHz nanoresonator with high Q-factor at room temperature.

In the present work, we propose a novel cross-shaped nanobeam mechanical resonator
operating at 5.69 GHz based on optomechanical interaction. The structure can be fabricated
by using a silicon-on-insulator (SOI) wafer, and then the cavity geometry is defined by
etching on the silicon wafer with electron beam lithography. Large coupling rates and high
Q-factor in room temperature are therefore achieved.

2. The Mechanical Nanoresonator Model

As periodic structures, optomechanical crystals (OMC) possess the properties of both
phononic crystals and photonic crystals [24]. In other words, acoustic and optical band
gaps (BGs) can be simultaneously generated in such structures. In practice, for a periodic
structure, only a few unit cells are sufficient to attenuate the propagation of acoustic and
optical waves. Such a nominal unit cell with both acoustic and optical band gaps (BGs) is a
prerequisite for designing an optomechanical crystal cavity. However, these BGs are not
necessarily complete BGs. “Quasi-band gaps” for certain specific polarizations also meet
the demand.

As shown in Figure 1, a quasi-1D optomechanical nanobeam is proposed as the
structure of the mechanical nanoresonator. The nanobeam consists of one cavity and two
mirrors. One cavity cell with lattice constant a1 is placed in the middle of the cavity. As a
Bragg reflector, each mirror is composed of multiple normal cells with lattice constant a,
which is located at each end of the nanobeam. Since the cavity cell and the normal cell have
some different geometrical parameters, the other cells in the cavity should meet tapered
functions to avoid the dimension discontinuity. Two mirrors reflect back the acoustic and
optical waves. The traveling waves are then converted into standing waves. Consequently,
acoustic and optical localized modes arise in the small cavity. Owing to the small volume
of the modes, the interaction between phonons and photons is strongly boosted [25,26].
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Figure 1. The mechanical nanoresonator. (a) The 3D schematic diagram; (b) the view of the x-y plane.

The optomechanical interaction results from two mechanisms: (1) The photoelastic
effect (PE) [27]; permittivity variation induced by strain field; (2) the moving interface
effect (MI) [28]; permittivity variation caused by the moving of the interface. The cavity
radiation field, i.e., radiation pressure, couples with the mechanical motion. Hence, the
fundamental mechanism is the momentum transfer of photons [29]. The enhanced phonons
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can be excited by a picosecond laser [30]. Consequently, the optomechanical crystal cavity
can be utilized as a mechanical resonator owing to the strong coupling between phonons
and photons.

To quantify the coupling rates, we considered both the frequency shifts due to the
photo-elastic effect [27] and the moving interface [28].

gOM = gPE + gMI = −
ω

2
〈E|∆εPE|E〉+ 〈E|∆εMI|E〉

〈E|ε|E〉 xzpf (1)

〈E|ε|E〉 =
∫

V
ε|E|2dV (2)

where ω is the optical angular frequency. ε is the permittivity matrix of the materials, while
ε is the permittivity of an isotropic material without deformation. E represents the electric
field. xzpf =

√
h̄/(2meffΩ) is the zero-point fluctuations with the reduced Planck constant

h̄, and the angular frequency Ω of the acoustic mode. meff =
∫

V ρ|U|2dV represents
the effective mass with normalized displacement field U (max{|U|} = 1), The moving
boundary contribution is given by mass density ρ. The moving boundary contribution is
given by

〈E|∆εMI|E〉 = −
ω

2

∮
∂V

(U · n)
(

∆εE2
‖ − ∆ε−1D2

⊥

)
dS (3)

where n is the outward normal vector of the surface ∂V. D is the electric displacement field.
The subscripts || and ⊥ denote the field component parallel and perpendicular to the in-
terface between two dielectric materials, respectively. ∆ε = εSi − εair and ∆ε−1 = ε−1

Si − ε−1
air .

As for the photoelastic effect contribution [31],

〈E|∆εPE|E〉
= −ε0n4

∫ {
2Re

{
E∗x Ey

}
p44Sxy + 2Re{E∗x Ez}p44Sxz + 2Re

{
E∗y Ez

}
p44Syz

+|Ex|2
[
p11Sxx + p12

(
Syy + Szz

)]
+
∣∣Ey
∣∣2[p11Syy + p12(Sxx + Szz)

]
+|Ez|2

[
p11Szz + p12

(
Syy + Sxx

)]}
dV

(4)

where ε0 is the permittivity of free space. n is the refractive index. Sij (i, j = x, y, z) denote the
strain components. Re{} denotes taking a real part. Superscript * represents conjugation.

3. Results and Discussions

The mechanical nanoresonator is designed and optimized to improve a qualify factor
as follows. First, the geometry of the nominal cell is determined to provide a desired
acoustic fundamental mode. Second, based on the same topology of the nominal cell, the
cavity cell is determined by guiding its acoustic and optical fundamental modes into the
acoustic and optical band gaps of the nominal cells, respectively. Then, the acoustic and
optical fundamental modes can be localized in the cavity. Thirdly, a tapered function is
given to make sure that the nanobeam is smoothly transformed from the nominal cell to
the cavity cell, and from the ends to the cavity center. Finally, the mechanical losses are
investigated comprehensively, and the mechanisms of the high Q-factor are revealed.

3.1. Design and Optimization

We present a cross-shaped unit cell of a silicon wafer for designing the quasi-1D op-
tomechanical nanobeam, as schematically illustrated in Figure 2a. The geometrical param-
eters as lattice constant a = 600 nm, b = 180 nm, c = 180 nm, w = 600 nm are fixed un-
less otherwise stated. The thickness t is taken as 220 nm, which is commonly used in
the SOI platform. The coordinate system is shown in Figure 1. Crystallographic orienta-
tion (100) corresponds to the x-axis. The acoustic and optical material parameters of Si
are: mass density ρ = 2330 kg/m3; anisotropic elastic constants C11 = 166 GPa, C12 = 64 GPa,
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C44 = 80 GPa; refractive index n = 3.5, and the photoelastic constants p11 = −0.094, p12 = 0.017,
p44 = −0.051 [31].
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Figure 2. (a) A cross-shaped unit cell. (b) Acoustic band structure of ee symmetry modes for
w = 500, 600, and 700 nm, respectively. (c) Mode shapes of the 3rd (denoted by T) and 4th (denoted
by F) modes for different w.

First, we classify the modes as even (e) and odd (o) symmetry with respect to the
middle planes of the unit cell, as shown in Figure 2a, i.e., the planes of y = 0 or z = 0.
Two letters, such as oe, denote the mode has the odd symmetry about the plane y = 0, and
even symmetry about the plane z = 0. Only the ee symmetry bands are considered since
it can prevent the cancellation of the optomechanical interaction caused by superposition
between acoustic and optical modes [32]. In order to avoid the cancellation due to the
anti-phase motion between adjacent cells, it is most desirable to concentrate the vibration
in the y direction. Figure 2b shows the band structure of the PnC with an ee symmetry
cross-shaped unit cell, where w = 500, 600, and 700 nm, respectively. The corresponding
mode shapes marked in the band structures are displayed in Figure 2c. For w = 600 nm
(i.e., w = a), the displacements in x and y directions have the same amplitude, and in-phase
for the 4th mode, but out-of-phase for the 3rd mode. By changing w, the displacements in x
and y directions have different amplitudes. For w = 500 nm (i.e., w < a), the displacements of
the two modes concentrate in different directions: the 3rd mode is x direction, while the 4th
mode is y direction. Conversely, for w = 700 nm (i.e., w > a), the directions of displacements
concentrated for the 3rd and 4th modes are y and x directions, respectively. Accordingly,
size w has great influence on the vibration mode. For w = 500 nm, the BG between the
3rd and 4th bands is too narrow to be utilized as an optomechanical crystal cavity. The
geometry parameter of the nominal unit cell is chosen as w = 700 nm for the following two
reasons. First, among the three lengths, the structure of w = 700 nm has the widest band gap
between the 3rd and 4th bands, which is displayed by the blue region in Figure 2b. Second,
compared with the T1 and T2 bands, the T3 band has the smallest slope. This means that
its group velocity is also the smallest. Hence, the energy of the wave does not propagate
outward. As a result, the mode T3 is suitable as a fundamental acoustic mode to form a
guide cavity mode.

Figure 3a,b show the acoustic and optical band structures of the nominal unit cell,
respectively. It should be pointed out that the optical band structure is obtained by applying
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an even symmetry boundary condition on the plane of z = 0. Periodic boundary conditions
are set on the axial boundaries. In addition, the scattering of optical waves in the air should
also be considered in electromagnetic simulation. Therefore, an air box is set around the
unit cell, except in the axial direction. The scattering boundary conditions are then applied
to the boundary of the air box. For acoustic waves, the scattering is negligible due to the
huge density difference between silicon and air. The blue shadow zones in band structures
showing acoustic and optical BGs are 5.58~6.84 GHz and 180~211 THz, respectively. As
shown in Figure 1b, the nanobeam resonator consists of multiple tapered cavity unit cells.
The cavity unit cell is further determined according to the nominal unit cell. The nominal
unit cell is smoothly transited to the cavity unit cell by adjusting geometry parameters ai,
bi, ci, and wi, as illustrated in Figures 1b and 2a. As the width of the connector between
two adjacent unit cells, a same geometrical parameter bi is taken for different unit cells.
To make the modes T3 and O1 guided modes simultaneously, the acoustic and optical
frequency of the cavity unit cell should locate within the acoustic and optical BGs, i.e.,
5.58~6.84 GHz and 180~211 THz, respectively. Meanwhile, the optical cavity mode with
a frequency of 194 THz is adopted. The optical mode of the resonator operating at a
communication wavelength (such as 1550 nm) can be utilized for the signal processing of
an electromagnetic wave, which makes it a multifunctional device integrating both acoustic
and optical signal processing.
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field of the mode T3; (b) the PtC with ee symmetric electric field of the mode O1. The frequencies of
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Figure 3c–e are plotted to show the frequencies of modes T3 and O1 varying with the
geometrical parameters of the cavity cell. The ranges of the geometrical parameters are
chosen for the following reasons: (1) To form a small tapered cavity, the lattice constant
of the cavity cell is smaller than that of the nominal unit cell. (2) The mode T3 is obtained
from w > a; hence, a w1 larger than w is taken as shown in Figure 1. (3) Parameter c1 can be
larger or less than c. It can be seen that the frequencies of modes T3 and O1 have the same
trend; both of them decrease as the geometric parameters increase. Additionally, with an
increase of w1, the frequency of mode T3 decreases dramatically and far below the acoustic
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BG. Thus, w1 = 700 nm (i.e., w1 = w) is fixed in the following design procedure. That is, all
cells inside the cavity have the same w, b, and t as nominal unit cells. Only ai and ci of the
cells need to be adjusted in the cavity.

In order to determine geometrical parameters a1 and c1, dependence of the fre-
quency contours of modes T3 and O1 upon these two geometrical parameters is plotted
in Figure 4a,b, respectively. For acoustic mode T3, the frequency within the acoustic BG is
illustrated by only one yellow triangle in the left bottom, while for optical mode O1, the
frequency within the optical BG distributes almost the whole left bottom of the square. The
acoustic and optical guided modes can be obtained simultaneously by taking the value in
the parameter overlapping regions as Figure 4a,b. Correspondingly, frequencies of modes
T3 and O1 are both located in corresponding BGs, such as a1 = 0.8 a and c1 = 0.7 c.
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Figure 5 displays the frequencies of the 2nd and 3rd acoustic modes S and T versus
a1, where c1/c = 0.76, 0.94, and 1. Hence, one intersection exists between two frequency
lines of these two modes for each c1. It can be noted from Figure 5 that the frequency of
acoustic mode S3 increases faster than that of the acoustic mode T3 as a1 decreases from 1
to 0.7. On the frequency of the intersection, a quasi-degenerate mode generates and leads
to aberration of the mode shape because of coupling between two modes T3 and S3. Hence,
the size around a1 = 0.85 a of the intersection is urgently avoided. When a1 decreases across
the intersection, modes S3 and T3 convert to the 3rd and 2nd modes, respectively.
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Since the geometrical parameters of the nominal unit cell and the cavity cell have
been determined, it is further necessary to determine structural tapered functions of the
transformation from the nominal cell to the cavity cells. As shown in (a) and (b) of Figure 6,
ai(x) and ci(x) are the structural tapered functions. Because the significant structural
difference between the adjacent unit cells leads to large optical scattering losses [33], the
boundary conditions dp(x)/dx|x=0,1 = 0 need to be satisfied to reduce the losses. The
basic function p(x) = 2x3 − 3x2 + 1 is defined to construct structural tapered functions
as ai(x) = a

[
1−

(
1− a1

a
)

p(x)
]

and ci(x) = c
[
1−

(
1− c1

c
)

p(x)
]
. The variation curves of

ai(x)/a and ci(x)/c along the nanobeam resonator are plotted in Figure 6a. The geometric
parameters are listed in Table 1. Figure 6b,c illustrate optical and acoustic guided modes
which are highly localized in the cavity. In the electromagnetic simulation, the whole
structure is surrounded by an air box. Since the air box has no periodic boundary, scattering
boundary conditions are adopted for all boundaries of the air box. It is worth noting that
these two guided modes are exactly transformed from the fundamental modes O1 and T3.
Compared to air, silicon has a mass density of three orders of magnitude greater, while
its refractive index is of the same magnitude. The acoustic guided mode is completely
localized in the cavity cell while the optical guided electric field is distributed in multiple
units. Nevertheless, the optical guided mode yields a Q-factor of Qo = 2500 by considering
the electromagnetic scattering. Then, according to Equations (1)–(4), the coupling rate
between these two modes is obtained as (gPE + gMI)/2π = (442 + 333) kHz = 775 kHz.
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Figure 6. (a) Structural tapered function curves ai(x) and ci(x). (b) The normalized electric field Ey

for the optical guided mode at 198 THz. (c) The normalized displacement field |U| for the acoustic
guided mode at 5.69 GHz. The normalized thermal profile T of two phases: (d) 0, and (e) π, which is
solved by the thermomechanical FEM for the acoustic mode at 5.69 GHz and room temperature.

Table 1. Varied geometric parameters of the cavity cells. Note that the other geometric parameters b,
w, and t of the cavity cells are all fixed.

Cell Number i 1 2 3 4 5

ai (nm) 480 492 522 558 588

ci (nm) 126 132 145 161 174

3.2. Mechanical Losses

Until now, much research has been devoted to reduce mechanical losses to improve
the quality factor of the mechanical resonator [34–39]. The sources of the mechanical losses
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include the Akhieser mechanism [40], thermoelastic damping [41], and clamping losses [42].
Hence, the total mechanical Q-factor Qm is given by corresponding Q-factors [43]:

1
Qm

=
1

QAK
+

1
QTED

+
1

QCL
(5)

Obviously, the total Q-factor is mainly determined by the min{Qi} as in the buckets
effect. The first term on the right side of Equation (5) can be received as [44]:

QAK =
ωm

2αcs
(6)

α =
γ2ω2

mCV Tτ

2ρc3
s

(7)

τ =
3κ

CVc2
s

(8)

where CV is the volumetric specific heat at constant volume, γ is the average Grüneisen
coefficient, and κ is the thermal conductivity. cs is the average velocity of longitudinal and
shear waves. All of these parameters are temperature dependent. Consider Si at room
temperature (300 K), γ = 0.4556 [45], κ = 155 W/(m·K) [46], CV = 1.6611 J/(cm3·K), and
cs = 9129.9 m/s [47]. Then, substituting these parameters into Equations (6)–(8), the QAK is
obtained as 1.5 × 104.

For the second term QTED of Equation (5), it arises from the coupling between the
displacement field and the temperature field [48]. The expansion (and contract) of a
structure under cyclic stress causes local cooling (and heating) and leads to temperature
gradients. By considering the thermoelastic damping, the normalized thermal profiles T
of two phases, 0 and π, are shown in Figure 6d,e, respectively. All boundaries are free
and have thermal insulation. The QTED is further obtained by FEM. The temperature field
and the displacement filed are highly overlapped. Moreover, both the temperature and
displacement fields are highly confined inside the cavity. Therefore, it is known that the
temperature change is caused by high-frequency mechanical vibration. Given that the
coefficient of thermal expansion β = 2.6 × 10−6 K−1, the QTED = Re{ωm}/2Im{ωm} is
obtained as 5.1 × 104.

As depicted in Figure 7b, the perfectly matched layers (PML) with the length of 2a are
added to two ends of the nanobeam. The boundaries are all free, and then the logarithm
normalized displacement field is obtained in Figure 7c by modal analysis. The displacement
amplitude decays exponentially from the cavity to the mirror at two ends. Under the free
boundary condition at both ends, the displacement of the end is 10 orders of magnitude
smaller than that of the cavity. Considering all symmetry bands, the acoustic band structure
of the PnC with nominal cells is depicted in Figure 7a. It can be noted that the acoustic
cavity band of 5.69 GHz lies in the complete BG, which greatly reduces the clamping losses
and yields a QCL as large as 1.2 × 109.

Compared with QAK, QTED is several times larger, while QCL is several orders of mag-
nitude larger. Therefore, from Equation (5), the acoustic quality factor Qm at room tempera-
ture is 1.17 × 104, which is close to QAK. Mainly limited by the Akhieser mechanism [40],
the Q-factor of the proposed nanoresonator cannot be further improved unless through
cryogenic processing. From Equations (6)–(8), it can be found that the QAK is inversely pro-
portional to frequency. Consequently, a further increase of frequency of the resonator will
inevitably reduce the Q-factor. Nevertheless, the f × Qm product is as large as 8.5 × 1013,
which is considerable at room temperature and GHz resonance. Finally, Table 2 lists the
performance comparison among different types of the resonators in published literature
and this work. The proposed resonator has the highest frequency and the largest Q-factor
at room temperature. The resonator can even reach a Q-factor as large as 4.9 × 1010 by
operating in a dilution refrigerator at milliKelvin temperature [37].
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Table 2. A performance comparison among different types of resonators operating at GHz.

Resonator Type Material Resonant
Frequency (GHz) Q-Factor f.Qm

SAW [6] AlN 1.325 109 1.4 × 1011

FBAR [7] PI 1.055 210 2.2 × 1011

FBAR [49] AlN 2.5 850 2.5 × 1012

OMC Resonator [37] Si 5 4.9 × 1010 2.6 × 1020

This work Si 5.69 1.17 × 104 8.5 × 1013

4. Conclusions

A novel cross-shaped resonator with an optomechanical crystal cavity was proposed
to break the low quality bottleneck factor at a high frequency GHz level. The design idea
and optimized procedure were provided systematically. An acoustic guided mode highly
localized in the cavity was obtained by utilizing a fundamental mode with transverse
vibration. Meanwhile, inside the cavity, the high overlap between optical and acoustic
modes enhanced the coupling rates. The clamping losses were greatly reduced by complete
BG of the mirrors. By taking a thorough consideration of all kinds of mechanical losses,
we found that the acoustic Q-factor is mainly limited by the Akhieser mechanism at room
temperature. Finally, the nanoresonator was realized, which can reach Qm = 1.5 × 104

and the coupling rate of 775 kHz even when operating at 5.69 GHz. Therefore, when
operating at a GHz range, the proposed nanoresonator can produce a Q-factor two orders
of magnitude larger than SAW and FABR. This work paves the way for designing a GHz
nanoresonator with a high Q-factor.
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