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Abstract: Software-defined networking has been developing in recent years and the separation of the
control plane and the data plane has made networks more flexible. Due to its flexibility, the software
method is used to implement the data plane. However, with increasing network speed, the CPU is
becoming unable to meet the requirements of high-speed packet processing. FPGAs are usually used
as dumb switches to accelerate the data plane, with all intelligence centralized in the remote controller.
However, the cost of taking the intelligence out of the switch is the increased latency between the
controller and the switch. Therefore, we argue that the control decisions should be made as locally
as possible. In this paper, we propose a novel architecture with high performance and flexibility for
accelerating SDN based on the MPSoC platform. The control plane is implemented in the on-chip
CPU and the data plane is implemented in the FPGA logic. The communication between the two
components is performed using Ethernet communication. We design a high-performance TCAM
based on distributed RAM. The architecture employs a pipeline design with modules connected via
the AXI Stream interface. The designed architecture is flexible enough to support multiple network
functions while achieving high performance at 100 Gbps. As far as we know, the architecture is the
first proposed in the design of a 100 Gbps system.

Keywords: SDN; network acceleration; FPGA; reprogrammable hardware

1. Introduction

The ever-increasing network demands of users make today’s network environment
more and more complex, which makes traditional IP networks show their disadvantages
such as the difficulty of maintaining and scaling a multi-device network [1]. These disad-
vantages have promoted the emergence and development of new network architectures.
However, it has been observed that it is not easy to validate these novel network archi-
tectures in existing legacy networks due to the limitations of conventional rigid network
equipment. The difficulty for conventional network devices to adapt quickly to changes in
the network environment has given rise to the need for “network programmability” [2–4].

Several new network architectures are being developed to enable the programmability
of networks such as network function virtualization (NFV) [5] and software-defined net-
working (SDN) [6]. SDN separates the data plane from the control plane and the network
intelligence is stripped from network devices and placed on the controller. The data plane
is only responsible for implementing the forwarding behavior of a network. Various types
of devices are utilized to implement the data plane, including central processing units
(CPUs) [7–9], and application-specific integrated circuits (ASICs) [10]. ASICs can be used
to achieve optimal performance in the data plane but are designed for specific networking
applications and cannot be reprogrammed. CPUs can be used to provide the best flexibility.
It is easy to change the forwarding behavior of the data plane by running different software
applications. Such flexibility, however, comes at the cost of performance. Even with the
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help of kernel-bypassing high-performance packet I/O frameworks such as DPDK [11] and
NetMap [12], it is still impossible to achieve the line rate for forwarding 64-byte packets [13].
Even if high performance is achieved by using multi-core CPUs, a lot of CPU resources
are wasted.

In recent years, field programmable gate arrays (FPGAs) have been widely used both
in academia and industry [14–17] because they can achieve higher performance than CPUs
while having programmability comparable to ASICs. In traditional heterogeneous SDN
networks, the FPGA acts as a dumb forwarding device that simply accelerates the data
plane according to the instructions from the intelligent remote control plane. However, this
extraction of all intelligence from the FPGA comes at the cost of increased communication
latency between the control plane and the data plane, resulting in a slower network
reaction [18]. Therefore, some studies have proposed the concept of returning the control
logic to the switch [18–20]. As heterogeneous architectures move toward tighter integration,
FPGA manufacturers are beginning to integrate the CPU and FPGA resources to form a
multiprocessor system on a chip (MPSoC) [21,22]. Therefore, the implementation of the
control plane is no longer tied to “remote devices” but can also be implemented in the
CPU of the MPSoC, thus reducing the latency of communication. The CPU and FPGA
collaborate through this tightly coupled form and SDNs can be accelerated by a single chip.

In this paper, we propose an architecture with high performance, low communication
latency, and flexibility for accelerating SDN based on the MPSoC platform. By taking
advantage of the designed architecture, SDN can maintain its high speed, programmability,
and flexibility. The main contributions of this paper are as follows:

• A CPU-FPGA cooperative high-performance architecture is proposed to accelerate
SDNs, which can achieve a throughput of 100 Gbps. The control plane is implemented
in the CPU, which is integrated with FPGA resources in the same MPSoC and the
data plane is implemented in the FPGA logic. The communication between the two
components is performed using Ethernet communication. To our knowledge, the
architecture where the control plane and the data plane are integrated into the same
MPSoC platform and communicate utilizing Ethernet is the first to be proposed.

• The architecture allows flexible and high-performance processing of packets to satisfy
the needs of various network functions. The required network functions are easily
deployed through the control plane.

• All the designed modules adopt the pipeline design and each module is connected
through the AXI Stream interface. We also use a distributed RAM-based TCAM to
implement a high-performance match table. The design runs at a clock frequency of
322 MHz and is capable of achieving 100 Gbps throughput performance.

• We implement the proposed flexible and high-performance architecture on an FPGA
board. Use cases are also provided and evaluated to demonstrate the flexibility and
high throughput.

The rest of the paper is organized as follows. The related work is discussed in Section 2.
The designed architectures of the data plane and the control plane are detailed in Section 3
and Section 4, respectively. In Section 5, use cases are presented to illustrate the flexibility
of the proposed architecture. The implementation and evaluation are shown in Section 6.
Finally, the conclusion is given in Section 7.

2. Related Work

Some studies utilize FPGAs to design network switches to accelerate the data plane
of SDN. Naous et al. [23] designed an Openflow switch for packet forwarding in the SDN
data plane. Han et al. [24] also designed a switch based on FPGA. Although these designs
accelerate the data plane, they all suffer from inflexibility. The tables in these designs are
fixed and only a specific field, such as the destination IP address in the packet header, can
be used as the matching field. Moreover, only a fixed set of actions can be performed on
packets. If the network function changes, the whole design needs to be rewritten, which
does not meet the flexibility requirements.



Micromachines 2022, 13, 1854 3 of 17

Many works utilize high-level language such as P4 to program the FPGA to accelerate
networks. P4 is a protocol-independent high-level programming language [25]. The P4
compiler translates the P4 program to configure the target device. P4FPGA [26] is used to
develop and evaluate data plane applications. It is a P4-to-FPGA compiler and runtime that
first translates the P4 program into Bluespec [27] by the Bluespec compiler, and then the
Bluespec code is compiled to Verilog. This means that this work depends on a commercial
compiler. P4-NetFPGA [28] is based on the NetFPGA SUME board and Xilinx P4-SDNet
compiler. The P4-SDNet compiler can convert a P4 program into an encrypted HDL module.
By integrating this HDL module, users can customize the processing of network packets.
Cao et al. [29] designed a framework for converting P4 programs into VHDL. In contrast
to the methods mentioned above, instead of compiling P4 programs directly into HDL
code, it provides a per-built template library and realizes the desired functions through
these optimized VHDL templates. These designs using P4 to accelerate the network all
have a disadvantage in that the generated HDL code still needs to be synthesized and
implemented to generate the bitstream. The whole process may take several hours, which
cannot meet the on-the-fly configuration requirements for the network.

Some studies aim to use SmartNICs to accelerate the processing of network packets
as an alternative to traditional NICs. Corundum [30] is a high-performance, FPGA-based
network interface card. It has a high-performance data path and a custom PCIe DMA engine
that can support over 10,000 queues. However, it only implements simple NIC functions
and does not offload other network functions. To accelerate network functions, Li et al. [31]
proposed a reconfigurable network processing pipeline, which divides the processing of
packets into several modules. They also proposed a module indexing mechanism that
allows modules to be connected in any order, thus enabling programmability. However,
when the design was evaluated using the test traffic generated by the IXIA tester, it only
achieved an Ethernet rate of about 1 Gbps. FlexNIC [32] is a flexible network DMA interface
that aims to reduce packet processing overheads. Users can install packet processing
rules into the NIC. The NIC processes packets and then sends them to the host memory.
They focus on the communication between the FPGA and the host, whereas our design
implements the control plane on the on-chip CPU.

Table 1 compares our work with other hardware-based works in terms of the imple-
mented device, flexibility, and throughput. FlexNIC [32] can be implemented with a NIC
(i.e., ASIC) and can achieve high flexibility. However, the throughput of this design is
relatively low. Hamadi et al. [33] accelerated an Open vSwitch (OVS) fast path based on a
network processing unit (NPU), which achieved 20 Gbps, but its flexibility was poor due to
the limitations of the NPU. FAS [34] accelerated SDN switches based on FPGA and achieved
about 8 Gbps. Drawerpipe [31] is an FPGA-based reconfigurable packet processing pipeline
that enables flexible packet processing. However, the throughput was low when tested with
IXIA. As shown in Table 1, our work was able to achieve high performance and flexibility
at the same time.

Table 1. Comparison with other related works.

Work Device Flexibility Throughput

FlexNIC [32] ASIC High 20 Gbps
Hamadi et al. [33] NPU Low 20 Gbps

FAS [34] FPGA High 8 Gbps
Drawerpipe [31] FPGA High 1 Gbps

Our work FPGA High 100 Gbps

3. The Architecture of the Data Plane

In this section, we focus on the FPGA design that is used to accelerate the SDN data
plane. First of all, a NIC shell for packet transmission and reception is implemented to
enable the processing of network packets. Then, the pipeline architecture for processing
network packets flexibly, which is placed in the user logic of the NIC shell, is presented.
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3.1. The Architecture of the NIC Shell

The architecture of the NIC shell is shown in Figure 1. When packets are input from
a QSFP28 port, they are first processed by the high-speed transceiver that performs clock
recovery and serial-to-parallel conversion of the packets. Then, the packet frames are
output in the form of an AXI4-Stream bus. Next, the packets from different channels and
the control plane are fed to the MUX module, which combines the packets from different
channels into a single data path. A user logic interface is implemented that allows the
user to process the packets as desired. Packets are then input into the DEMUX module
after being processed by the user logic. The DEMUX module is responsible for distributing
packets to different channels or the control plane according to the control signal along
with the packet. The control signal decides what action is to be performed on the packet.
Actions include dropping the packet, outputting the packet to the destined channel, and
outputting the packet to the control plane. The packets then enter the transmission path of
the high-speed transceiver or the control plane.
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Figure 1. The architecture of the NIC shell.

3.2. The Architecture of the Pipeline
3.2.1. Overview

The implemented architecture is shown in Figure 2. This architecture is designed to be
pipelined and is capable of performing a variety of network functions. The control plane
configures the programmable pipeline through the control path. Packets first enter the
parser module. The parser parses the packet header information, extracts the required
header fields and metadata (such as the packet length, timestamp, etc.), and composes
them into the extended header. In addition, the parser separates the packet header from
the payload. The packet payload is cached by the FIFO, whereas the extended header
enters the subsequent match-action pipeline for processing. The match-action pipeline
consists of multiple programmable processing units. The programmable processing units
are elaborately designed to achieve line-rate processing. When an extended header enters
the processing unit, a field in the extended header is used as the matching field to search
for the corresponding action that should be performed. If the extended header matches
a rule, then the corresponding action will be performed. If the extended header does not
match any rules, the extended header will be sent directly to the next processing unit. Then,
the extended header is output to the deparser module after being processed by multiple
processing units. The deparser combines the header and the payload to form a new packet
and generates the control signal to determine whether the packet is forwarded, dropped,
or uploaded to the control plane.
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Figure 2. The reprogrammable match-action pipeline.

3.2.2. The Parser and Deparser

The parser identifies the header type and extracts the required fields. A pipelined
parser was designed in our architecture. The parsing process is divided into four stages.
Each stage processes a layer of protocol and the relevant header fields are extracted to form
the extended header. In the first stage, the Ethernet header is first parsed and the MAC
addresses are extracted. The VLAN header is parsed in stage 2 if it exists and the next
header type is identified. The IP header and the header of the layer 4 protocol are parsed in
the next two stages, respectively. Finally, the extended header is output from the parser
module.

The deparser module receives the extended header processed by the pipeline and the
payload that is cached in the FIFO (PAY_FIFO). The deparser assembles the relevant fields
of the extended header into a new packet header and then stores it in a FIFO (HED_FIFO).
When the merge operation is performed, one header is retrieved from the HED_FIFO and
one payload is retrieved from the PAY_FIFO and the two are combined into a new packet.
In addition, the module generates the control signal of the packet based on the extended
header such as outputting the packet to the Ethernet port, outputting the packet to the
control plane, or dropping the packet.

3.2.3. The Programmable Processing Unit

Each programmable processing unit is responsible for handling a part of the network
function and is arranged as a pipeline to perform the entire network function. To realize
the flexibility of network functions, it is necessary to achieve (1) The programmability of
the matching field. A processing unit cannot only match one specific field but needs to
be able to select one field of the extended header as the matching field according to the
instruction of the control plane; (2) The programmability of the matching pattern. Different
matching fields are matched in different ways. For example, we only care about the highest
few bits of the IP address, whereas all the bits of the TCP port need to be matched. Three
different matching patterns need to be implemented, that is, exact match (EM), mask match
(MM), and longest prefix match (LPM); and (3) The programmability of the action. If
each processing unit can only perform one kind of action, the network functions realized
by the pipeline will be quite limited. The flexible processing of network packets can be
achieved only by realizing the programmability of the matching fields, matching patterns,
and actions in the processing unit.

As shown in Figure 3, the processing unit is composed of three parts, which are the
matching field selector, match unit, and action unit. The control plane configures these
three parts by sending instructions to make the processing unit perform the appropriate
function. The matching field selector selects a certain field in the extended header for
matching based on the instructions of the control plane, which enables the programmability
of the matching field. The field is matched in the match unit, and the match result, together
with the corresponding instruction, is output to the action unit. The action unit performs
the corresponding action to process the extended header according to the instruction. After
being processed, the extended header is output to the next processing unit.
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Figure 3. The architecture of the programmable processing unit.

The match unit is shown in Figure 4, including a match table, priority encoder, and an
action memory. To achieve the programmability of the matching pattern, the match table is
implemented by ternary content-addressable memory (TCAM). TCAM allows a matching
state of don’t care , thus it can perform matching patterns such as EM, MM, and LPM. It
also can perform one search operation per cycle, thus meeting the requirements of pipeline
design to achieve high performance. Some designs use probabilistic data structures to
implement match tables. Although this method guarantees that the error probability is
under a certain threshold, it is not error-free. Incorrect lookup of table entries can lead
to incorrect processing of packets, increasing network overhead. More importantly, the
probabilistic data structure uses hash functions to represent a set of items and cannot
support MM and LPM. The processing of the match unit is as follows. The matching field is
first compared with the table entries stored in the match table. Each entry carries a priority
and if multiple entries are hit, the priority encoder outputs the address of the hit entry with
the highest priority. The address is then used to index the instructions stored in the action
memory, which is implemented with the block RAM. The match result is also generated
by the priority encoder; it indicates the matching field hits in at least one table entry. The
instruction and the match result are then output to the action unit.
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Figure 4. The design of the match unit.

There is no dedicated TCAM resource in an FPGA. In order to achieve high-performance
table lookup, we emulated the TCAM based on the distributed RAM. We used the RAM32M
primitives of Xilinx devices to build the storage part. The RAM32M primitives were im-
plemented using LUT resources. The structure of the RAM32M is shown in Figure 5. We
connected four ADDR interfaces to configure the RAM32M as a RAM with a depth of
32 (25) and a width of 8. The scheme to emulate the RAM-based TAM adopted the idea of
transposition, i.e., the entry of TCAM is used as the address to index the RAM. Therefore, a
RAM32M can emulate a TCAM cell that stores 8 entries with a width of 5. By combing mul-
tiple TCAM cells, we obtained the TCAM of the desired width and depth. The RAM32M
can be accessed in every cycle, so the implemented TCAM was able to perform the match
operation in every cycle, thus enabling high-performance table lookup.
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Figure 5. The design of the TCAM.

The action unit is shown in Figure 6. In traditional architectures, the pipeline archi-
tecture can only perform a fixed series of actions that serve a specific network function.
For example, modifying the MAC address is performed in the first stage and deleting the
VLAN header is performed in the second stage. In each stage, only the fixed action is
performed. The function and sequence of these actions in the architecture are fixed and
cannot be changed. Therefore, these architectures are not flexible. The action dispatcher
was designed to enable the programmability of the action; therefore, each processing unit
was no longer limited to one particular type of action. The processing of the action unit is
as follows. The instruction output from the match unit consists of two parts: the option
field and the execution instruction. According to the option field, the action dispatcher
distributes the extended header to different execution units, each of them executing one
type of action. The execution unit processes the extended header according to the execution
instruction, including modifying header fields, inserting header fields, modifying packet
metadata, etc. For example, if a VLAN ID is intended to be modified, the execution unit will
retrieve the VLAN ID from the execution instruction and insert it into the extended header.
After being processed by the action, the extended header is output through the selector.
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Figure 6. The design of the action unit.

3.3. The Challenge of Achieving 100 Gbps Performance

Implementing the data plane in software is the most popular scheme at present.
However, it is difficult for these software solutions to achieve high throughput. First, the
performance of table lookup is poor. In a 100 Gbps network, the packet rate for transmitting
a small 64-byte packet is 148.8 Mpps. Even with the most efficient exact match, it is difficult
to achieve a lookup rate of 100 M lookups per second using a CPU. Second, the required
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actions need to be performed on packets in the data plane. These actions involve intensive
memory read and write operations. This further reduces the throughput and increases the
processing latency.

To address the low performance of the software method, we made some optimizations
in the proposed hardware architecture. First, there was no dedicated TCAM resource in the
FPGA so we implemented a high-performance TCAM to implement the three matching
patterns. We emulated a TCAM based on distributed RAM, which can perform a search
operation in every cycle. The clock frequency used in our design was 322 MHz so a search
operation can be performed 322 M times per second, which is greater than the search
performance required for a 100 Gbps network. Second, we optimized each action. The
execution time of each action was one clock cycle so the processing delay was minimized.
Third, the architecture employed a pipeline design that is capable of processing packets
every clock cycle. The clock frequency in the design was 322 MHz, and the width of the
bus was 512 bits. For 64B small packets, the packet rate was 148.8 Mpps. If a 512-bit bus is
used, to achieve a throughput of 100 Gbps, the minimum clock frequency to be achieved is
148.8 MHz. Therefore, the design can meet the requirements of 100 Gbps throughput.

4. The Architecture of the Control Plane

The separation of the control plane from the data plane is one of the characteristics of
SDN. However, the communication between the local data plane and the remote control
plane introduces a certain latency, which causes the network to be slower in response. This
situation is aggravated when the control plane network experiences congestion. Imple-
menting the control plane on the on-chip CPU allows the on-chip CPU to cooperate with
the FPGA logic, thus saving the overhead of the communication between the control plane
and the data plane.

4.1. The Architecture Overview

The control plane is located in the on-chip CPU, and the data plane is located in the
FPGA logic. To realize the cooperation between the control plane and the data plane, it is
necessary to realize efficient communication between the on-chip CPU and the FPGA logic.
In our implementation, the communication between the two components is performed by
means of Ethernet communication. Figure 7 shows the overview of the communication
between the control plane and the data plane. The communication between the control
plane and the data plane is performed through the message packet. The message packet is
a UDP packet that is transmitted at high speeds through the AXI_HP0_FPD interface of
the ARM software controller. The interface is connected via the AXI Interconnect IP to the
stream-to-memory-mapped (S2MM) interface and the memory-mapped-to-stream (MM2S)
interface of the AXI DMA IP. Finally, the message packet transferred through the control
plane and the data plane is output as an AXI4-Stream bus to the controller processing logic.

Table 2 shows part of a message packet. The types of message packets are the hand-
shake message packet, the control message packet, and the data message packet. The
controller processing logic is responsible for processing these message packets, as shown
in Figure 7. The handshake messages are used to establish and maintain communication
between the control plane and the data plane. When the controller processing logic receives
a handshake message packet, it replies with a handshake message packet through the
controller interface to establish and maintain communication between the data plane and
the control plane. The control message packet is used to configure the processing units in
the pipeline to realize the flexibility of the network functions, for example, configuring the
type of matching field; adding, deleting, and modifying table entries in the match table;
setting the actions of each processing unit, etc. The control message packet is processed as
follows. The controller processing logic parses the packet to obtain the instructions. The
instruction contains a sequence number for describing the processing unit to be configured
and specific configuration instructions (such as configuring the matching field, actions, etc.).
The configuration interface distributes the configuration instructions to the corresponding
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processing unit according to the sequence number. The data message packet is used for the
packet transmission between the control plane and the data plane. For packets sent from
the data plane to the ARM software controller, the controller processing logic receives these
packets from the pipeline interface and sends them to the ARM software controller through
the controller interface after processing. For packets sent from the ARM software controller
to the data plane, the process is reversed.

ARM software controller

AXI Interconnect

Hello
Echo

Flow_mod
Flow_request

Packet_out

Hello
Echo
Flow_replay
Packet_in

AXI DMA IP

AXI_HP0_FPD

MM2S S2MM

Controller processing logic

FPGA pipeline

configuration logic

control path

PU_0 PU_1 ... PU_n

controller interface pipeline interface configuration interface

from
control plane

to
control plane

from ETH to ETH

Figure 7. The communication between the control plane and the data plane.

Table 2. Part of a message packet.

Category Type Direction Description

Handshake message
Hello CPU to FPGA;

FPGA to CPU
Establishes the connection between
the control plane and the data plane.

Echo CPU to FPGA;
FPGA to CPU

The heartbeat signal that
is used to maintain the connection.

Control message

Flow_mod CPU to FPGA Used to configure programming processing units.

Flow_request CPU to FPGA Used to obtain the configuration information of
programmable processing units.

Flow_reply FPGA to CPU Used to send the configuration information of the corresponding
programmable processing unit to the control plane.

Data message Packet_in FPGA to CPU Used to send a packet from the data plane to the control plane.
Packet_out CPU to FPGA Used to send a packet from the control plane to the data plane.

4.2. The Controller Processing Logic

The controller processing logic is the bridge for communication between the control
plane and the data plane. It is responsible for parsing, encapsulating, and delivering
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the message packets between the control plane and the data plane. It also maintains the
communication connection between the control plane and the data plane.

As shown in Figure 7, the controller processing logic mainly has three groups of
interfaces: the controller interface, the configuration interface, and the pipeline interface.
The controller interface is used for the transmission of message packets between the ARM
software controller and the data plane. The configuration interface is responsible for
sending instructions parsed from the control message packet to the configuration logic. The
pipeline interface connects the pipeline in the data plane and the controller processing logic.
When packets need to be transmitted between the control plane and the data plane (such
as Packet_in and Packet_out), the packets are transmitted through the pipeline interface.

In the controller processing logic, two cores handle message packets from the con-
troller interface and packets from the pipeline interface, respectively. For packets from
the controller interface, the filtering module first filters them based on the IP address and
port, and only receives message packets; other packets or wrong message packets are
directly discarded. The core1 module processes the message packets. For message packets
to configure the data plane, core1 parses the packets and sends instructions to the configu-
ration interface. For message packets that need to reply (such as establishing a connection,
replaying a Flow_reply message to a Flow_request message), core1 generates the content
of the message to be replied to and sends it to the assembler module for assembly. The
assembled message is encapsulated into an Ethernet packet in the eth_ip_udp module and
cached in the FIFO. Finally, the message packet is sent to the ARM software controller
through the controller interface. For data message packets from the control plane (such as
Packet_out), the data message packets are decapsulated and directly sent out through the
pipeline interface.

When the data plane receives a packet that it does not know what to do with, the
packet should be uploaded to the control plane. The data plane first sends the data packet
through the pipeline interface to the controller processing logic. For controller processing
logic, packets received from the pipeline interface need to be uploaded to the control plane
and core2 is responsible for processing these packets. First, these packets are stored in the
FIFO for buffering; core2 reads them and generates the message header. The assembler
assembles the message. The eth_ip_udp encapsulates the messages into Ethernet packets.
Then, the packets are stored in FIFO and are sent to the controller interface.

5. Case Study

To illustrate the flexibility of the designed architecture, we implemented some ap-
plications. These network functions can be configured quickly and efficiently through
the control plane, allowing researchers to focus on the core functional logic and achieve
rapid development.

L2/L3 Switch. Switches with legacy architectures control the forwarding behavior
using algorithms built into the hardware and it is therefore difficult to accommodate
changes in the network. We offload the function of the switch to the proposed architecture.
The parser mainly extracts the following fields of the packets: Ethernet type, source and
destination MAC addresses, and source and destination IP addresses. The match-action
tables implemented in the pipeline are shown in Figure 8. First, the source MAC address
is examined. Packets with a multicast source MAC address are not valid and should be
dropped. Then, it determines whether the packet has a VLAN header based on the Ethernet
type. If so, the VLAN header is removed. Then, the pipeline recalculates the TTL for IPv4
packets or the hop limit for IPv6 packets. If the TTL or the hop limit is 0, the packet will
be dropped. Next, the source MAC address is changed and the checksum is recalculated.
Finally, the packet is forwarded from the corresponding port according to the IP address.
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Table 0

m0: Ethernet.SMAC

a0: drop/forward

Table 1

m1: Ethernet.TYPE

a1: delete VLAN header

Table 2

m2: IP.TYPE

a2: sub TTL/hop limit

Table 3

m3: IP.DIP

a3: change SMAC

Table 4

m4: IP.TYPE

a4: calculate checksum

Table 5

m5: IP.DIP

a5: set forward port

: the match field
: the action

m
a
i
i

Figure 8. The match-action tables of the L2/L3 switch.

Packet Filtering. Packet filtering discards specific flows according to pre-defined
filtering rules, thereby enabling access control of network packets. The packet filtering
is offloaded to the proposed architecture. When a packet enters the filter, the filter first
classifies the packet, usually based on the 5-tuple classification. Then, the filter compares
the 5-tuple classification with the pre-defined rules to decide whether the packet should
be passed or dropped. If the packet has the desired IP and port, the packet will be passed.
The control plane sends the required filtering rules to the data plane and the corresponding
action (forward, upload, or drop) can be set for each rule to realize packet filtering.

Applications in real networks. Our institute is working on a new information-centric
networking (ICN) architecture. In the original network architecture, packet forwarding was
handled by servers, which limited the overall performance of the network. The performance
was about 20 Gbps. To improve the overall performance of the network, our design was
applied to the new network architecture to accelerate packet forwarding. A significant
performance improvement was achieved over the original architecture.

6. Implementation and Evaluation

The designed architecture was implemented in an FPGA board with a Xilinx XCZU19EG-
2FFVC1760E. We used this FPGA because it is suitable for high-performance network
packet processing and has sufficient resources to support our proposed 100 Gbps high-
performance architecture. This FPGA integrated a 64-bit quad-core Arm Cortex-A53 and
dual-core Arm Cortex-R5F with rich features to satisfy the requirements of the control
plane. A QSFP28 Ethernet transceiver composed of four independent 25 Gbps transmit
and receive channels was used to provide the 100 Gbps Ethernet link. The design ran at a
clock frequency of 322 MHz with a 512-bit AXI4-Stream bus; hence, the total bandwidth
can satisfy the performance requirement of 100 GbE. The architecture was implemented by
carefully designed Verilog code to ensure high performance.

The test environment is shown below. A Dell R730 commodity server was used for
comparative testing. The server was equipped with two Intel Xeon E5-2609 v3 1.9 GHz
CPUs, both with 6 cores, and 32 GB DDR4 memory. An Intel E810-C 100G NIC was installed
in the PCI Express 3.0 × 16 slot and was configured in 4 × 25 G mode. The server ran on
CentOS 7.9 with kernel 3.10.0. To test the designed architecture, the IXIA tester connected
to the NIC or FPGA via a fiber optic cable and served as a packet generator.

The remainder of this section is as follows. In Section 6.1, we first evaluate the impact
of multiple pipeline stages on the performance of the designed architecture, including
throughput and latency. In Sections 6.2 and 6.3, we evaluate the performance of the two
network applications introduced in Section 5 to illustrate that the proposed architecture
achieves flexibility and high-performance requirements. We evaluate the communication
latency between the control plane and the data plane in Section 6.4. The resource usage of
the designed pipeline architecture is evaluated in Section 6.5.
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6.1. Evaluation of Multiple Pipeline Stages

In this part, to illustrate the impact of the number of pipeline stages on performance,
a software application based on the DPDK was built for comparison. In this application,
one pipeline was first built and processed with one CPU core to illustrate the worst-case
performance variation. The pipeline had multiple stages and each stage only performed
the longest prefix match on the destination IP address. The matched packets were sent to
the next pipeline stage and forwarded to the corresponding port based on the destination
IP address at the last stage. The FPGA pipeline was also configured to perform the same
function. The IXIA tester generated test traffic with a packet length of 64B to 1024B. The
test traffic was composed of multiple flows. After being processed by the FPGA or CPU,
the test traffic was forwarded back to IXIA.

Figure 9 shows the throughput of the CPU and FPGA. When the number of pipeline
stages was constant, the FPGA processed packets at line rate for different packets, whereas
the performance of the CPU varied with different packet lengths. The throughput that
the CPU achieved was about 5.63 Mpps (47 Gbps) when processing 1024B packets, and
the FPGA achieved higher throughput than the CPU for different packet lengths. This
shows that the design can achieve high performance for different packet lengths. When
the packet length was constant, the FPGA maintained a constant throughput for different
pipeline stages and processed packets at line rate. However, as the number of pipeline
stages increased, the performance of the CPU showed a degradation. This decreasing trend
held for pipelines larger than four stages. This indicates that the designed architecture can
maintain high throughput for a different number of pipeline stages.
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Figure 9. The throughput of the (a) CPU and (b) FPGA.

Figure 10 compares the latency of the CPU and FPGA. Figure 10a shows the latency of
the CPU and Figure 10b shows the latency of the FPGA. The latency of the CPU increased
with the number of pipeline stages and packet length, whereas the latency of the FPGA
was relatively constant. In addition, the latency of the FPGA was about 1.3us, which was
significantly lower than that of the CPU for the different packet lengths and the number of
pipeline stages.

Figure 10. The latency of the (a) CPU and (b) FPGA.
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Next, by evaluating the impact of multiple CPU cores on performance, it was shown
that using the FPGA can effectively save CPU resources. Different numbers of pipelines
were built, each pipeline contained four stages, and different pipelines ran on different
CPU cores. For optimal performance, the used CPUs and NIC were on the same NUMA
node. Figure 11 shows the throughput comparison of the CPU and FPGA when IXIA
sent test traffic with a length of 256B. It shows that as the number of pipelines increased,
the throughput of the CPU also improved. When the number of pipelines was six (i.e.,
when six CPU cores were used), the maximum performance that the CPU achieved was
about 13.15 Mpps (29.04 Gpbs). The FPGA processed the packets at line rate and its
throughput was significantly higher than the CPU’s throughput. Because the poll-mode
driver (PMD) was used to handle the packet I/O of the DPDK interfaces, 50% of the total
12 CPU cores were fully occupied the entire time. By accelerating the packet processing
with the designed architecture, performance was significantly improved and a lot of CPU
resources were saved.
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Figure 11. The throughput comparison of the CPU and FPGA.

6.2. Evaluation of L2/L3 Switch

The L2/L3 switch described in Section 5 was evaluated. To illustrate the performance
gain achieved by using the designed architecture to accelerate packet forwarding, OVS
with DPDK was used as a software implementation for comparison. In this evaluation, the
Open vSwitch 2.13.6 and DPDK 19.11.6 were used. The parameters were carefully tuned
for optimal performance including core affinity, huge pages, poll-mode driver threads, etc.
The IXIA tester generated packets with different lengths, which were processed by the OVS
or FPGA and forwarded back to the IXIA tester.

Figure 12 shows the throughput and latency of the CPU (OVS) and FPGA. The bars
show the throughput of the CPU and FPGA and the lines show the latency of the CPU
and FPGA. As the number of CPU cores used increased, the throughput of the CPU also
increased. The performance of the CPU reached the maximum when six CPU cores were
fully occupied. In contrast, the throughput of the FPGA reached line rate for any packet
length. When processing 64B packets, the performance of the FPGA was approximately
13–40 times that of the CPU. In addition, the latency of the FPGA was much lower than
that of the CPU at any packet length and was reduced by about 90%.
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Figure 12. L2/L3 switch. The throughput and latency of the CPU and FPGA. Bars show the
throughput, lines show the latency.

6.3. Evaluation of Packet Filtering

The performance of the packet filtering described in Section 5 was evaluated. As a
comparison, we also implemented software packet filtering using DPDK. IXIA was used
to generate test traffic of various lengths. To evaluate the maximum performance that the
packet filtering can achieve, all packets sent by IXIA will hit the rules and be forwarded
back. Figure 13 shows the throughput of the software method and the FPGA. The FPGA
achieved line rate for any packet length but the throughput of the software method was
related to the packet length and far from line rate. This shows that the packet filtering
implemented by the designed architecture can meet the high-performance requirement.
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Figure 13. Packet filtering. The throughput of the software and the FPGA.

6.4. Communication Latency

The round-trip communication latency between the control plane and the data plane
was evaluated. To measure the communication latency between the control plane and
the data plane, we sent a Flow_request message packet from the control plane to the data
plane. The data plane returned the Flow_reply message packets to the control plane after
receiving the Flow_request message packets. The round-trip latency was obtained by
calculating the timestamp of the corresponding message packets. Figure 14 shows the
round-trip communication latency between the control plane and the data plane. We
measured 100 sets of data and the communication delay was about 273 µs.
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Figure 14. The round-trip communication latency between the control plane and the data plane.

6.5. Resource Utilization

Resource utilization is related to the number of stages in the pipeline and the size
of the matching table in each stage. Fewer table entries with fewer widths will consume
fewer resources. In this evaluation, we used match tables with a width of 128 bits, action
memories with a width of 160 bits, and a total number of table entries of 2048. Table 3
shows the resource utilization, which mainly included lookup tables (LUTs), flip-flops (FFs),
and memory resources. The block RAMs (BRAMs) were mainly used by action memories
and FIFOs. The LUT resource consumption was high because there was no dedicated
TCAM resource in the FPGA so the TCAM was implemented based on distributed RAM.
In addition, many solutions use block RAM to implement TCAM [35,36] so the resource
usage of LUT and block RAM can be balanced by combining the two solutions.

Table 3 also compares our work with other related works. FAS [34] implemented
an SDN switch based on an FPGA. DrawerPipe [31] designed a reconfigurable network
processing pipeline. Blueswitch [24] implemented the related functions of data plane
forwarding. Compared with the other works, our work used more LUT resources because
the TCAM in our work was based on distributed RAM. As shown in Table 3, the power
consumption of our work was about 53.31 W, which was estimated by Vivado after imple-
mentation. The power consumption included the FPGA logic and the on-chip CPU. The
share of static power consumption was 13% and the share of dynamic power consumption
was 87%. The throughput of our work was able to achieve 100 Gbps, which is higher than
the performance of other works.

Table 3. The resource utilization.

Work Device LUT/ALM FF/Register BRAM/URAM Throughput Power

DrawerPipe [31] Xilinx Zynq-7000 SoC 6.55% 6.55% 35.74% 1 Gbps -
FAS [34] Altera EP4SGX180 21% 11% 11% 8 Gbps -

Blueswitch [24] Xilinx Virtex-5
TX240T 11% 28% - 10 Gbps -

Our Work Xilinx XCZU19EG 41% 10.43% 35.72% 100 Gbps 53.31 W

7. Conclusions

In this paper, we propose a high-performance and flexible architecture for accelerating
SDN on an MPSoC platform that provides sufficient flexibility to support various network
functions while achieving high performance at 100 Gbps. The design is capable of achieving
better performance than CPUs and is more flexible than ASICs. The control plane is imple-
mented in the on-chip CPU and the data plane is implemented in the FPGA logic resources,
providing the flexibility to accelerate packet processing. The required network functions
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are easily deployed through the control plane. By taking advantage of the flexibility and
high performance of the designed architecture to accelerate SDN networks, a significant
amount of valuable CPU resources can be saved. The results of the measurements show
that the performance of the designed architecture is significantly improved compared to the
performance of the CPU, and when the designed architecture performs different network
functions, it is still able to maintain high performance, which can meet the requirements of
future high-speed networks.
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