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Abstract: The poor hydrophilicity of polyimide (PI) films limits their applications in flexible electron-
ics, such as in wearable and implantable bio-MEMS devices. In this paper, an atmospheric pressure
Ar/H2O microplasma jet (µAPPJ) with a nozzle diameter of 100 µm was utilized to site-selectively
tune the surface hydrophilicity of a PI film. The electrical and optical characteristics of the µAPPJ were
firstly investigated, and the results showed that multi-spikes occurred during the plasma discharge
and that diverse reactive species, such as O atoms and OH radicals, were generated in the plasma
plume. The physical and chemical properties of pristine and microplasma-modified PI surfaces
were characterized by the water contact angle (WCA), atomic force microscopy (AFM) and X-ray
photoelectron spectroscopy (XPS). The wettability of the PI surface was significantly enhanced after
microplasma modification, and the WCA could be adjusted by varying the applied voltage, water
vapor content, plasma treatment time and storage time. The AFM images indicated that the surface
roughness increased after the plasma treatment, which partially contributed to an improvement in
the surface hydrophilicity. The XPS results showed a reduction in the C content and an increase in the
O content, and abundant hydrophilic polar oxygen-containing functional groups were also grafted
onto the PI film surface. Finally, the interaction mechanism between the PI molecular chains and the
microplasma is discussed. The breaking of C-N and C-O bonds and the grafting of OH radicals were
the key pathways to dominate the reaction process.

Keywords: microplasma jet; polyimide film micromachining; surface modification; hydrophilicity
tailoring

1. Introduction

Recently, flexible electronics such as wearable and implantable devices, flexible bat-
teries and flexible supercapacitors have attracted tremendous attention in the fields of
health monitoring, human–machine interactions, energy storage, etc. [1–5]. Differently
from traditional rigid devices, flexible electronics mainly utilize flexible polymer substrates
to replace traditional silicon or glass to ensure that the devices can maintain the advan-
tages of flexibility, stretchability, and excellent biocompatibility [6]. As promising polymer
substrates, polyimide (PI) films have been extensively used in diverse flexible devices due
to their excellent thermal stability, mechanical properties, chemical resistance, and low
dielectric constant [7–10]. However, the nature of inertness and the low surface energy
of PI films makes it difficult for strong bonding to occur between PI and other materials,
such as metal [11]. Therefore, it is of great significance to modify PI surfaces to obtain the
desired surface properties without changing their bulk properties.

Diverse methods have been proposed to modify PI surfaces, such as chemical process-
ing, photo-irradiation, and plasma treatments [12–14]. Among them, plasma treatment is
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considered the most effective and eco-friendly method due to the advantages of its dry
process, low cost, easy operation and rich of various active species. Up to now, different
kinds of plasma processing technologies have been reported for PI modification, including
low-pressure plasma and atmospheric-pressure plasma treatment [15–17]. Low-pressure
plasma treatment makes the surface characteristics of the modified films relatively uniform.
However, due to the need for expensive vacuum equipment, a cumbersome operation, and
difficulty with selectively controlling the modified area, it is greatly limited in the field of
PI film surface modification. In contrast, atmospheric-pressure plasma can directly treat
the film surface without the usage of vacuum equipment, which greatly reduces the cost
and time of film surface processing. By ejecting the plasma from the generation region to
form a plasma jet, direct contact between the processed objects and the discharge region
can be avoided, thus greatly expanding the application range of atmospheric-pressure plas-
mas [18]. However, most of the atmospheric pressure plasma jets reported so far for PI film
surface treatment have used plasma jets with diameters ranging from several millimeters
to several centimeters, which makes it difficult to accurately control the processing area of
the film surfaces. Actually, in most cases, it is not necessary to modify the entire surface of
a flexible substrate; it is only necessary to perform local processing on target regions [19,20].
Therefore, it is necessary to develop a new atmospheric pressure microplasma jet to meet
the requirements for the localized processing of polyimide films.

In this paper, an atmospheric pressure Ar/H2O microplasma jet (µAPPJ) with a
diameter of about 100 µm was proposed and used for the localized surface modification
of a polyimide film. The electrical and optical characteristics of the µAPPJ and the effect
of different applied voltages, water vapor contents and plasma treatment times on the
hydrophilicity of PI films were investigated and discussed. This work could provide a
promising method for the in situ and localized surface hydrophilicity tuning of PI films for
flexible electronics.

2. Experiment Details
2.1. Microplasma Jet Setup

The experimental setup of the atmospheric pressure Ar/H2O microplasma jet is
presented in Figure 1. The plasma generator was composed of a quartz micropipette with
an inner diameter of 0.5 mm and a nozzle diameter of 100 µm, respectively. A needle–ring
electrode structure was used in this experiment. A stainless-steel wire with a diameter of
100 µm was used as the needle electrode and directly inserted into the micropipette with
its tip 4 mm away from the tube nozzle. A copper foil with a thickness of 150 µm and a
width of 5 mm was utilized as the ring electrode and wrapped around the tube with its end
7 mm away from the tube exit. A sinusoidal AC high-voltage source (CTP-2000, Nanjing
Suman Co., Ltd., Nanjing, China) was used as the power supply, and its high-voltage
port was connected to the needle electrode while its ground port was connected to the
ring electrode. An argon (Ar) and water (H2O) vapor mixture was introduced into the
micropipette through a bubbling bottle with distilled water, and the H2O vapor content
was adjusted by the auxiliary Ar flow. The two gas flows were respectively controlled by
two mass flowmeters, and the total gas flow was kept at 400 sccm in this experiment. The
water vapor content in the gas mixture was calculated through the flow ratio between Ar
passing through the water and the total gas flow [21]. A PI film was directly placed on the
acrylic holder of an XY platform and the µAPPJ was vertically installed on the PI sample,
with the working distance fixed at 1 mm.

2.2. Diagnostic Methods

The discharge images of the µAPPJ were captured with a digital camera. The electrical
characteristics of the microplasma jets were detected with a high-voltage probe (P6015A)
and a current probe (Pearson 2100), and the data were recorded by an oscilloscope (Tek-
tronix TBS1102, USA). The optical emission spectroscopy (OES) of the microplasma jet was
collected with a spectrometer (MAX2000-Pro Spectrometer, Shanghai Wyoptics Co., Ltd.,
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Shanghai, China) with a variable wavelength from 200 nm to 1100 nm. The hydrophilicity
of the PI film surfaces was evaluated using water contact angle (WCA) measurements. All
the WCAs were measured using the sessile drop method with a contact angle meter (SDC-
350, Sindin Co., Ltd., Guangzhou, China) at room temperature. The morphologies of the PI
film surfaces were observed with an atomic force microscope (AFM, FM-Nanoview1000,
Feishiman Co., Ltd., Suzhou, China) in the non-contact mode with a detection region of
4 × 4 µm2. The chemical elements of the PI film surfaces were analyzed with an X-ray
photoelectron spectrometer (XPS, AXIS ULTRA DLD, Kratos, USA) with an excitation
source of Al Kα radiation (λ = 1486.6 eV).
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Figure 1. (a) Schematic diagram of the experimental setup for localized surface modification of PI
film using µAPPJ; (b) photograph of the generated microplasma jet.

3. Results and Discussion
3.1. Electrical Characteristics of µAPPJ

The electrical characteristics of µAPPJ were demonstrated by the voltage–current (V–I)
curves of the plasma discharge. A typical example of a V–I curve with an applied voltage of
12.8 kV (peak-to-peak voltage) at a frequency of 20 kHz and a water vapor content of 0.2%
is shown in Figure 2a. It can be seen that, during both the positive and negative half-cycles
of the applied voltage, multi-spikes with an amplitude of about 5–10 mA were observed in
the current curve. These current spikes were considered as the filament discharge between
the needle and the ring electrodes [22].

Dissipated power is another key parameter for the electrical characteristics of the
µAPPJ, and its value was obtained by the following formula:

P =
1
T

∫ t+T

t
V(t)× I(t)dt (1)

where P represents the dissipated power, T is the period of the discharge and V(t) and
I(t) are the voltage and current of the plasma discharge, respectively. Figure 2b shows the
variation in the dissipated power with different applied voltages. It can be seen that the
power increased from 5.9 to 15.2 W when the applied voltage (peak-to-peak voltage) varied
from 8 to 16 kV.
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Figure 2. (a) Voltage–current discharge characteristics of Ar/H2O microplasma jet; (b) variation in
dissipated power with different applied voltages.

3.2. OES of µAPPJ

To investigate the presence of reactive species generated in the plasma plume, the
typical optical emission spectra of pure Ar and Ar/H2O microplasma jets are shown in
Figure 3. Both the applied voltages were kept at 12.8 kV, and the water vapor content for
the Ar/H2O microplasma jet was kept at 0.2%. It can be seen that both the spectra were
dominated by neutral Ar atoms (Ar I) lying in the wavelength ranging from 700 to 850 nm.
Due to the fact that the plasma was generated in open-air conditions, reactive O atoms at
777.2 nm, OH radicals at 308.9 nm and molecular nitrogen spectral bands in the range of
330 to 420 nm were also detected in both the pure Ar and Ar/H2O microplasma jets. These
reactive species mainly came from the inelastic electron-impact collisions or the collisions
between the Ar* and the O2 or water vapor in the ambient air, especially for the pure
Ar microplasma jet [23]. When a certain amount of water vapor was introduced into the
plasma, it could be clearly seen from the spectrum that the OH intensity increased in the
Ar/H2O microplasma jet. The possible reaction pathways to generate the OH radicals are
listed as Reactions (2)–(6). It can be concluded that the OH intensity is mainly dependent
on the water vapor molecules and the electron density [24], and it plays an important role
in polymer surface modification.

e + H2O 	 e + H• + •OH (2)

e + H2O 	2e + H+ + •OH (3)

e + H2O 	 2e + H2O+ (4)
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e + H2O+ 	 e + H+ + •OH (5)

Ar* + H2O 	 Ar + H• + •OH (6)
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air conditions.

Figure 4a shows the emission intensity of the OH radicals as a function of the applied
voltage. With an increase in the applied voltage, the intensity of OH increased due to the
increase in the electron density, which provided more reactive particles for the surface
modification of PI films. However, in the experiment, we found that the applied voltage
should not be too high, especially for the microplasma jet generator with a tip nozzle of
100 microns. When the voltage was higher than 14.2 kV, its tip was easily damaged due
to the discharge filaments. Therefore, it is necessary to control the applied voltage in the
experiment to provide more reactive particles and ensure that the plasma jet generator is
not damaged.

The effect of the water vapor content on the emission intensity of OH was also investi-
gated, and the results are shown in Figure 4b. As the water vapor content increased from
0 to 0.4%, the intensity of OH at 308.9 nm first rapidly increased to the maximum value,
and then gradually decreased with the further introduction of water vapor. The reason for
this phenomenon is that water vapor is an electro-negative gas, and the electron density
decreases with excessive water vapor content via electron attachment [25].
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3.3. Hydrophilicity of PI Films Modified by µAPPJ

The hydrophilicity of the PI films was evaluated by water contact angle (WCA) mea-
surements. Figure 5 presents the WCAs of an untreated PI film and the films modified
by the pure Ar and Ar/H2O microplasma jets with an applied voltage of 12.8 kV and
a water vapor content of 0.2%. The WCA of the pristine PI surface reached about 70.5◦,
and this value decreased to 59.8◦ after processing with a pure Ar microplasma jet for 60 s.
When 0.2% water vapor was introduced into the plasma, the WCA of the PI surface further
decreased to 25.4◦ with the same plasma treatment time. This confirms that the surface
hydrophilicity of the PI film was greatly improved after the microplasma jet modification,
and the addition of water vapor was beneficial for further improvement.
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Figure 6a–c show the variation in the WCAs of Ar/H2O microplasma-treated PI
films with different applied voltages, water vapor contents and plasma treatment times,
respectively. It can be seen that, with the other parameters unchanged, the WCA decreased
greatly with increasing applied voltage. This result was mainly due to the fact that a
higher voltage would produce more reactive particles (as shown in Figure 4a), such as
OH, to participate in the surface modification reaction of the PI, resulting in a better
hydrophilicity. However, we also found that when the voltage exceeded 16 kV, the WCA
tended to saturate and no longer decreased. When the water vapor content increased from 0
to 0.2%, the WCA decreased rapidly, but with a further increase in the water vapor content,
the WCA increased gradually, as shown in Figure 6b. It can be seen from the spectral
results in Figure 4b that the OH intensity had a similar variation trend with the water vapor
content. This result indicates that the OH concentration plays a key role in improving
the hydrophilicity of PI surfaces. However, it is also necessary to control the water vapor
content so that the modification effect can be optimized. Besides, the influence of the
plasma processing time on the WCA of PI film surfaces was also investigated, where it can
be seen that the WCA value decreased rapidly in the first 60 s and gradually decreased
with longer plasma processing times.
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Figure 6. Water contact angles of plasma-modified PI films as a function of (a) applied voltage (water
vapor content: 0.2%, plasma treatment time: 60 s), (b) water vapor content (applied voltage: 12.8 kV,
plasma treatment time: 60 s), (c) plasma treatment time (applied voltage: 12.8 kV, water vapor content:
0.2%) and (d) aging time (applied voltage: 12.8 kV, water vapor content: 0.2%, plasma treatment
time: 60 s).

Finally, the aging effect of the plasma-modified PI film was also investigated, as shown
in Figure 6d. It can be seen that a major recovery of the WCA was observed in the first
4 days, while there was no significant increase after a storage time of 6 days with a WCA of
62.1◦. This aging effect was mainly due to surface contamination and the orientation of
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polar groups [26]. In general, the WCA after aging was still smaller than that of the pristine
PI film (70.5◦).

3.4. AFM Morphologies of PI Films

The physical and chemical interaction processes between the PI surface and the
Ar/H2O microplasma jet were investigated in this work to further illustrate the hydrophilic
variation in PI films modified by the µAPPJ. The micro-morphologies of the PI film surfaces
were analyzed using AFM images. Figure 7 shows the AFM images of the pristine PI film
and the plasma-modified PI films by pure Ar and Ar/H2O microplasma jets. It could be
seen that the surface of the untreated PI film was generally smooth and flat, mainly with
some stripe-like convex structures, and the average surface roughness was only 2.3 nm.
After the µAPPJ treatment, the PI surfaces had lots of hill-like protrusions, and the film
surface roughness also increased (about 3.4 to 4.1 nm). It is well known that plenty of
high-energy particles, such as electrons, Ar+ and excited Ar, are generated in the plasma
jet, and these particles will bombard and etch the PI film surface, resulting in undulating
and rough surface morphologies [27]. A rougher surface of the PI films was beneficial for
increasing the surface hydrophilicity [28].
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3.5. XPS Analysis of PI Films

The chemical compositions of the PI surfaces before and after the plasma treatment
were also examined to further clarify the hydrophilic effect of the plasma modification.
Figure 8 presents the XPS spectra of the pristine PI film and the plasma-modified PI films by
pure Ar and Ar/H2O microplasma jets. Compared with the pristine PI film, it was obvious
that the intensity of the C 1 s peak decreased, while the intensities of the N 1 s and O 1 s
peaks increased. Figure 9 shows the relative percentages of C, O, N and O/C in the pristine,
pure Ar and Ar/H2O microplasma-jet-modified PI films. The increase in the O/C ratio on
the plasma-treated PI surfaces indicated that the plasma induced surface functionalization
of the PI surface, and the addition of water vapor was helpful in grafting more oxygen-
containing functional groups. This inference was verified by the deconvolution of the C 1 s
spectra of the untreated PI film and the PI films modified by the Ar/H2O microplasma
jet, as shown in Figure 10. It can be seen that the C 1 s peak could be resolved into four
main components: the peak at 284.2 eV represented the C-C aromatic carbon; the peak
at 285.1 eV was assigned to C-N; the peak at 286.1 eV was denoted to C-O-C; and the
peak at 288.2 eV belonged to the carboxyl groups, C=O-OH [22,28–30]. The increase in
the concentration of C=O-OH on the PI surface after the Ar/H2O microplasma treatment
was attributed to surface oxidation by oxygen-containing reactive species generated in the
microplasma, such as OH. It is well known that these oxygen-containing functional groups
are polar groups, which play a key role in improving the hydrophilic properties of the PI
film surface [31,32]. This further confirmed that after the microplasma jet treatment, diverse
hydrophilic oxygen-containing functional groups were grafted onto the surface of the PI
film, which was the main reason why the surface of the PI film became hydrophilic. By
adjusting the plasma parameters to change the content of these functional groups generated
on the film surface, the hydrophilicity of the PI film surface can be adjusted [33].
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3.6. Modification Mechanism of PI Film by Microplasma Jet

The modification mechanism of a PI film surface by an Ar/H2O microplasma jet was
discussed in this work through the interaction process between the PI surface and the
plasma. From the results of the physical morphologies and chemical compositions of the PI
films after plasma modification, it could be seen that the reactive and excited particles, free
electrons contained in Ar/H2O microplasma, bombarded the molecular chains on the PI
film surface, resulting in cross-linking and etching on its surface, and finally introducing
diverse oxygen-containing reactive functional groups on the PI surface [34]. Figure 11
demonstrates the reaction processes on the PI surface during microplasma jet modification.
Because the C-N bond and C-O bond in the PI molecular chains are weak, they will be
broken first under the action of electrons and ultraviolet photons in the plasma [35]. These
broken molecular chains then react with O atoms and OH radicals in the plasma to further
form new functional groups, such as -NH2 and -C=O-OH.
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4. Conclusions

In this paper, an atmospheric pressure Ar/H2O microplasma jet (µAPPJ) was used to
achieve localized tailoring of the poor hydrophilicity of PI films. The electrical properties of
the µAPPJ were detected and the results showed that plenty of discharge spikes occurred
during the increasing and dropping slope of the voltage waveform, and that the dissipated
power of the µAPPJ increased from 5.9 to 15.2 W when applied voltage varied from
8 to 16 kV. The OES results indicated that diverse reactive and excited species, such as
nitrogen molecules, OH radicals, Ar* and O atoms, were successfully produced in the
plasma plume. In addition, the emission intensity of OH increased when the applied
voltage increased from 8 kV to 16 kV with a proper addition of water vapor (0.2%). As an
electro-negative gas, an excessive water vapor content (>0.2%) would cause a reduction
in the OH intensity. Compared with the WCA of a pristine PI surface (70.5◦), the WCAs
of plasma-modified PI surfaces were significantly reduced (25.4◦), and the WCA value
could be adjusted by choosing different plasma parameters, such as the applied voltage,
water vapor content and plasma processing time. The aging process indicated that the
WCA could be increased after 4 days of storage, but the hydrophilicity was still better than
that of the pristine films. The AFM images revealed an increased surface roughness of
the PI film after the microplasma modification. The XPS analysis proposed the generation
of polar oxygen-containing functional groups, such C=O-OH and NH2, on the plasma-
treated PI film surfaces. In addition, an increase in the roughness and the introduction of
polar functional groups together led to an improvement in the wettability of the PI films.
Finally, the processes of the destruction of C-N and C-O bonds and OH radical grafting
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were discussed, and they were considered to be the possible reaction mechanism between
the PI film and the µAPPJ. This work could provide a reference for the localized surface
hydrophilicity tailoring of polyimide films. In our future work, the maskless writing of
hydrophilic micropatterns with different wettabilities will be explored with the aid of a
three-axis mobile platform, and detailed applications of the modified PI films for wearable
and implantable devices will be investigated.
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