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Abstract: Low loss Ruddlesden–Popper (RP) series, i.e., (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06, has been
synthesized by a mixed oxide route. In this work, the substitution of Ca2+ cation in Sr5Ti4O13 sintered
ceramics was chosen to enhance the structural, optical, and dielectric properties of the product. It was
found that the Ca2+ content has significant effects on enhancing the dielectric properties as compared
to Mn and glass additions. It was observed that the relative density, band gap energy, and dielectric
loss (tangent loss) increase while relative permittivity decreases along with Ca2+ content. High
relative density (96.7%), low porosity, and high band gap energy (2.241 eV) values were obtained
in (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06 sintered ceramics. These results will play a key role in the
application of dielectric resonators.

Keywords: (Sr1−xCax)5Ti4O13 ceramics; XRD; FT-IR optical; electric properties

1. Introduction

Recently, the Sr based Ti family has come to play a key role in the development
of wireless communication technologies [1]. The low loss dielectric ceramics with good
dielectric properties and temperature stability are widely used in the applications of di-
electric resonator antennas [2–5]. To overcome the miniturized devices requirements, the
ceramic dielectrics must have maximum values of relative permittivity (εr) and low di-
electric losses [6–9]. Besides the poor sintering temperature, the barium magnescium
tanatalate material have optimum dielectric properties, which is used further in the appli-
cations of dielectric resonator devices [10–12]. On the other side, compound, i.e., CaTiO3-
MgTiO3, ceramics posses good dielectric properties, i.e., (εr = 21.2, Q × f = 56,200 GHz,
τf =±0 ppm/◦C). Lately, the RP series ceramics have been the subject of numerous scientific
studies, with results showing their interesting dielectric properties [13–16]. An+1BnO3n+1 is
the general formula of RP-series, and the phase analysis consists of n—blocks of octahedra
(BO6) corner-sharing which construct a layered peroveskite like structure. In previous
research, it has been reported that the compound, i.e., SrLn2Al2O7 and MLnAlO4 (Ln = Nd,
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La, & Sm, M = Ca, Sr), ceramics along with n = 1 and n = 2 show good dielectric properties.
The RP series posses bulk structure and optimum dielectric properties, i.e., εr = 16.0 to
19.0, Q × f = 54,600–69,500 GHz and τf = −1–−32 ppm/◦C for n = 1; εr = 17.9 to 21.6,
Q × f = 64,680–71,680 GHz & τf = +4–−22.1 ppm/◦C for n = 2, have been reported [13–17].
Fan Yi et al. reported the modification in phase, microstructure, and dielectric properties
of RP-series [14,15]. Actually, this impression has been realized in M2+/Ti4+ cation substi-
tution in MLnAlO4 calcined ceramics, which further modified the phase, microstructure,
optical, and dielectric properties, i.e., (εr = 18.2 to 21.4, Q × f = 75,000 GHz to 96,500 GHz
and τf ~ ±0 ppm/◦C) [18–20]. On the other hand, the dielectric properties, especially
quality factor value, are not too good. In RP-series, at n = 2, the ceramic compound, i.e.,
SrLn2Al2O7 generally has low dielectric losses and good relative permittivity values as
compared to MLnAlO4 ceramics. Moreover, many researchers have reported the optimum
dielectric properties among the RP series [13–21]. The RP-series, such as Sr2La(A3 + B4)O7
(A = Fe, Cr, B = Mn, Ti), has been investigated already in a literature review, and a new RP
compound, (Sr2LaAlTiO7), has been synthesized and analyzed as a new low loss ceramic
material [22–26].

In the present work, the good results on structural, optical, and dielectric properties
(at low frequency) of Sr5Ti4O13 based structure ceramics will be studied. These results will
be modified by making some doping elements at A-site cation in the base product.

2. Experimental Procedure

The solid solution of (Sr1−xCax)5Ti4O13, 0 ≤ x ≤ 0.06 ceramic was processed by using
high grade pure carbonates and oxide powders, i.e., SrCO3 (99.95%), CaCO3 (99.9%), and
TiO2 (99.5%) as raw materials. The resultant stoichiometric ratio of the raw materials
were mixed properly and then milled using horizontal ball milling with zirconia media
in distilled water for 24 h and then calcined for 3 h in air at 980 ◦C. After re-milling, the
calcined powder was mixed along with polyvinyl alcohol (PVA) solution at 4 wt.% and
then made into green pellets of 2–3 mm thickness and 10–12 mm diameter. Then, the
green pellets were kept in high energy furnace at 1200 ◦C sintering temperature for 3 h
in air to dense the pellets. After sintering, the pellets were cooled to 600 ◦C at the rate
of 10 ◦C/min and then cooled to room temperature inside the furnace further. The bulk
density was calculated by using the Archimedes principle method for all the pellets. The
phase analysis was identified by using X-ray diffraction (XRD, RIGAKU D/max 2550/PC,
Rigaku Co-Tokyo Japan) with CuKα radiation. The surface morphology of the thermally
etched and gold coated samples was studied using scanning electron microscopy (SEM,
S3400; Hitachi, Tokyo, Japan). The relative permittivity (εr) and tangent loss were measured
by the parallel plate capacitor method using vector-network Analyzer (E8363B, Agilent
Technologies Inc., Santa Clara, CA, USA) [27]. At least four samples have been analyzed to
ensure the accuracy of data. The reciprocal of Q-factor is the tangent loss (tanδ = 1/Q) [28].

3. Results and Discussion
3.1. Phase Analysis

Figure 1 shows the XRD patterns of RP series of (Srn+1TinO3n+1) sintered ceramic for
n = 4. The patterns revealed the tetragonal structure of RP series along with space-group
(I4/mmm) matched to PDF card number 89-1383. The structure of the phase (at n = 4)
was attained by put in a rock-salt type Sr-O layers, the strontium based titanates along
with direction [001], resulting consecutive perovskite pieces due to shifting by direction
1 ÷ 2 [111], w.r.t the unit cell of RP series. The known RP structure has closely alike lattice
parameters i.e., (a = b = 0.385 to 0.389 nm) but c = 2.812 nm for n = 4 [27–32]. The variation
of lattice parameters and volume of the synthesized samples with Ca2+ contents as shown
in Table 1. The shifting of peaks to lowest Bragg’s angles were due to the difference of
ionic radii of Sr2+ and Ca2+ cations as shown in Figure 1b. No secondary phase has been
observed and revealed the single phase of Srn+1TinO3n+1 (n = 4) sintered ceramic. Figure 2
shows the variation of relative density with Ca2+ contents of Srn+1TinO3n+1 (n = 4) sintered
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ceramics. It has been noted that the relative density increases with the Ca2+ content, which
further modified the optical and dielectric properties. The highest values of relative density
is (96.7%) of Srn+1TinO3n+1 (n = 4) sintered ceramics was observed at x = 0.06 content.

Figure 1. (a) XRD pattern of (Sr1−xCax)5Ti4O13, 0 ≤ x ≤ 0.06 sintered ceramics (b) zoomed view of
peak (1 0 4) shifted toward the lowest angle.

Figure 2. The relative density of (Sr1−xCax)5Ti4O13, 0 ≤ x ≤ 0.06 ceramics.



Micromachines 2022, 13, 1824 4 of 12

Table 1. Volume and Lattice parameters of Srn+1TinO3n+1 (n = 4) sintered ceramics.

Contents a = b (Å) c (Å) c/a Error Volume of
Unit Cell (Å3)

0.00 3.8512 28.1253 7.3411 ±0.8631 417.1471

0.02 3.8518 28.3951 7.3719 ±0.8643 421.2800

0.04 3.8523 28.5505 7.4113 ±0.8651 423.6955

0.06 3.8615 28.8975 7.4837 ±0.8664 430.8958

3.2. Surface Morphology

Figure 3 shows the SEM images of the gold coated samples of (Sr1−xCax)5Ti4O13,
0.00 ≤ x ≤ 0.06 sintered ceramics. The variation of relative densities and grain size of
all the samples has been investigated. The SEM micrographs of (Sr5Ti4O13) green pellets
with doping of Mn or glasses at different sintering temperature were studied by many
scientific researchers [26]. It has been reported that the base product have small crystallite
size and less porosity, which may be affected by the surface strain. However, new grains
and porosity were produced by adding some dopant elements in (Sr5Ti4O13) sintered
ceramic [27–30]. Ca2+ concentration has been observed to increase the porosity and grain
size of all samples in (Sr5Ti4O13) sintered ceramic. These factors will affect the structure,
optical, and dielectric properties of the base product. In order to improve these properties,
numerous studies have examined the synthesis settings used to create various dopants in
the base product [31,32].

Figure 3. SEM images of polished & thermally etched samples of (Sr1−xCax)5Ti4O13, 0 ≤ x ≤ 0.06
sintered ceramics (a) x = 0.00, (b) x = 0.02, (c) x = 0.04 and (d) x = 0.06.
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3.3. Fourier Transform Infra-Red (FTIR) Spectroscopy

Figure 4 shows the FTIR spectra of (Sr1-xCax)5Ti4O13, 0 ≤ x ≤ 0.06 sintered ce-
ramic. FTIR spectrometer plays a key role to characterize the vibrational stretching and
un-stretching mode of the base sample synthesized by chemical reaction route [33,34].
The vibrational stretching mode (O-H) was observed with variable wave number
(K = 2π/λ) i.e., 900.0 cm−1, and 3200.0 cm−1. This mode of vibration is produced by
the absorption of vapors during synthesis process. Only asymmetric mode at wave num-
ber (3700.0 per cm) was recorded in the base product which shown carboxylates fam-
ily [35]. In this characterization the normal stretching mode was observed at wave number
(500.0 per cm).

Figure 4. FTIR spectra of (Sr1−xCax)5Ti4O13, 0 ≤ x ≤ 0.06 sintered ceramics.

3.4. UV Spectroscopy

Figure 5 shows the UV-spectra of (Sr1−xCax)5Ti4O13, 0.00 ≤ x ≤ 0.06 sintered ceramics.
Many of the researchers reported that the Sr5Ti4O13 base sample was found to be transpar-
ent for white light [36]. It is very important to note that the compound, i.e., Sr5Ti4O13, is
translucent for visible light. The band structure and electronic transition were characterized
using photon energy [37]. The electron needs to execute the inner shell transition in order
to obtain the optical bandgap energy. This optical bandgap energy strongly depends upon
the coefficient of absorption (α), which was calculated using Equation (1) [25].

α =
A
(
hv− Eg

)1/2

hv
(1)

where Eg = bandgap energy, A = constant of proportionality, and hv = photon energy.
The coefficient of absorption will be defined how distant light of specific wavelength

can be penetrated into material before being absorbed. When light absorbed poorly by
material have low coefficient of absorption looks to be thin at specific wavelength. The unit
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of absorption coefficient is (cm−1). The band gap energy of all the samples was calculated
using the Tauc plots method. It was reported that the values of band gap energy increase
with Ca2+ content.

Figure 5. Band gap energies of (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06 ceramics i.e., (a) 1.684 eV
(b) 2.093 eV (c) 2.216 eV & (d) 2.241 eV.

3.5. Photoluminescence (PL) Spectroscopy

Figure 6 shows the photoluminescence (PL) spectroscopy of (Sr1−xCax)5Ti4O13,
0.00 ≤ x ≤ 0.06 sintered ceramics. The emission line spectrum will be produced by the
recombination of holes and electron charge carriers. Using the equation (E = hc/λ), where
E = optical excitation energy, h = Plank’s constant (~6.63 × 10−34 Js) c = speed of light
(3 × 108 m/s) and λ is the emission wavelength, we can find the value of excitation energy
of all the samples.

Emission at photoluminescence peak of the samples has been noted at the range of
~400–550 nm. Multiple photonic processes such as PL have certain common uses, and PL
is a multiple photonic process that has some typical applications, i.e., (i) determination of
band gape energy, (ii) material quality, as well as (iii) molecular structure and crystallinity,
reported by many researchers [38,39]. It has been observed that the broader emission
spectra were located near to ~2.48 eV (excitation energy) and wavelength (~500 nm) which
is larger than bandgap energy of all the samples may be occurs due to the presence of
impurities. In the photoluminescence spectrum, the cyan color may occur due to the oxygen
vacancy [40].
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Figure 6. PL spectra of (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06 ceramics.

3.6. Low Frequency Dielectric Properties

The low frequency dielectric properties of all the synthesized samples sintered at
1200 ◦C for 3 h in air were better due to their high relative densities. The variation of
relative permittivity (εr) and tangent loss (tanδ) with varying temperature was measured
at 100 Hz–1 MHz for (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06 sintered ceramics using the vector
network analyzer, as shown in Figure 7. Strong irregularity in relative permittivity (εr)
and tangent loss (tanδ) were observed for the contents (at x = 0.0 and 0.02), which shows
the transition of ferroelectric to Para electric phases. The same behavior was recorded
in the values of ‘εr’ and ‘tanδ’ for Ba5-xSrxDyTi3V7O30 (0 ≤ x ≤ 5) sintered ceramics at
temperatures of 430 ◦C, 350 ◦C, 325 ◦C, 85 ◦C, and 42 ◦C, respectively [41,42]. The lowest
value of εr (~1400) was observed for (Sr1−xCax)5Ti4O13, (composition with x = 0.02) at
100 Hz frequency, and found to decrease with increasing operating frequency, which may
be due to the interfacial polarizations. Moreover, the value of εr decreased with increasing
Ca2+ contents, which is due to the difference of ionic polarizebilities of Ca2+ (3.16 Å3) and
Sr2+ (4.24 Å3) [43–45]. It has been revealed that the value of tangent loss increases with
temperature due to the proces of conductivity and different types of polarizations at low
frequency [21]. The lower value of the tangent loss was reported at 1 MHz operating
frequency for the base sample. The variations in both the quantities may be due to the
difference in the values of dielectric polarizabilities [46]. Generally, tanδ decreases when
high cation ions are replaced by smaller cation ions [47].

The complex impedance spectroscopy mechanism is generally used to investigate the
structural properties and bonding of the various types of materials, comprising the ferro-
electric, ionic insulator, and linked ceramics under different experimental conditions [36].
The variation in real impedance Z′ and imaginary impedance Z′′ of (Sr1−xCax)5Ti4O13,
0.0 ≤ x ≤ 0.06 sintered ceramics is shown in Figure 8. Initially, it was revealed that the
magnitude of Z′′ increases with Z′ and then decreases due to the release of space charge
polarization [37]. It was observed that the magnitude of Z′′ decreases by increasing the Z′

and Ca2+contents.
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Figure 7. Cont.
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Figure 7. Variation of εr and tanδwith temperature for the (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06 sintered
ceramics i.e., (a) x = 0.00, (b) x = 0.02, (c) x = 0.04 & (d) x = 0.06.

Figure 8. Cole-Cole Plots of (Sr1−xCax)5Ti4O13, 0 ≤ x ≤ 0.06 sintered ceramics.

4. Conclusions

The solid solutions of (Sr1−xCax)5Ti4O13, 0.0 ≤ x ≤ 0.06 sintered ceramics was syn-
thesized by conventional solid state method. The structural, microstructural, optical, and
dielectric properties of all the samples have been investigated. The XRD patterns revealed
the tetragonal phase with space group (I4/mmm). The SEM image revealed that the grain
size and porosity increase with increasing Ca2+ contents, which was due to the difference
of ionic radii. The results of UV spectroscopy declared that the bandgap energy increases
from 1.68 eV to 2.24 eV along with increasing Ca2+ concentrations. The good values of di-
electric properties (i.e., εr ~ 250, and tanδ = near to zero) in the frequency range from
100 Hz to 1 MHz was observed. It has been observed that the magnitude of Z′′ in-
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creases with Z′ and Ca2+ contents. The overall findings are suitable for the application of
dielectric devices.
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