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Abstract: The blood–brain barrier is a highly selective semipermeable border that separates blood
circulation from the brain and hinders the accumulation of substances in the central nervous system.
Hence, a treatment plan aiming to combat neurodegenerative diseases may be restricted. The ex-
ploitation of the nose–brain pathway could be a promising bypass method. However, pharmaceutical
uptake through the olfactory epithelium is insignificant in terms of treatment, if relying only on
fluid dynamic interactions. The main reasons for this are the highly complicated geometry of the
nose and the residence time of the substance. The issue can be tackled by using magnetic particles
as drug carriers. With the application of an external magnetic field, further control of the particle
motion can be achieved, leading to increased uptake. The present work studies this approach compu-
tationally by employing magnetite particles with a radius of 7.5 µm while a magnetic field is applied
with a permanent neodymium-iron-boron magnet of 9.5× 105 A/m magnetization. Through this
investigation, the best drug delivery protocol achieved a 2% delivery efficiency. The most significant
advantage of this protocol is its straightforward design, which does not require complex equipment,
thus rendering the protocol portable and manageable for frequent dosing or at-home administration.

Keywords: computational fluid dynamics; magnetic particles; targeted drug delivery; nasal cavity;
neurological diseases; magnetophoretic guidance

1. Introduction

One of the most significant challenges the medical field has had to cope with during
the last century are neurodegenerative diseases of the central nervous system (CNS) [1].
Given that the neural cells of the CNS do not regenerate and that their attrition is almost
irreversible, it is vital to establish methods to protect and shield them as much as possible
from factors that can cause permanent defects and degeneration [2]. The blood–brain
barrier (BBB) constitutes the major obstacle in a treatment plan. It comprises endothelial
cells, pericytes and astrocytes arranged in a way that forms a tight junction, non-permeable
to most chemical substances [3]. Reportedly, more than 90% of the drugs proposed (i.e.,
peptides, monoclonal antibodies, protein therapeutics, etc.) as possible medicines for
neurodegenerative treatment were rejected by the Food and Drug Administration (FDA)
due to their inability to penetrate the BBB [4]. More than 98% of small molecules and almost
100% of macromolecules are blocked [5]. Molecules that could normally provide aid both
in treatment and diagnosis turn out to be useless due to the impenetrable nature of the
BBB. Factors such as molecular weight, polarity, hydrophilicity and preferability to specific
carriers determine whether a substance will penetrate the BBB [6]. A very promising
technique to deal with some of these restrictions is administration via the nasal route [7,8].

A substance can reach the brain through the nasal cavity, as evidenced by the effects
of the drug cocaine [9]. Many studies have proven that the concentration of cocaine in
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the brain over time is greater when using the nasal route in comparison with intravenous
administration, indicating the existence of a nose-to-brain path [9,10]. A substance can
enter the brain using the nasal route via the olfactory epithelium, following one of three
different mechanisms, i.e., using the transcellular route via the cells, using the paracellular
route between the cells and, lastly, using the intracellular axonal pathway through the
olfactory nerves protruding from the cribriform plate on the upper site of the nasal cavity.
Nevertheless, there are also some significant limitations, such as the convoluted geometry
of the nose, which limits drug deposition on the olfactory region to substantially less
than 1%, hindering possible treatment plans [7,8]. Moreover, the area of the olfactory
region constitutes another limitation, since it occupies only about 8% of the total surface
area of the nasal route [11] (Figure 1). In addition, the metabolic mechanisms of the
olfactory mucosa set a time limit on the presence of the therapeutic substances, reducing
the absorption rate. The inhaled substances are blocked by the hair on the nasal vestibule or
by the mucus layer covering the nasal cavity and removed through the oscillating behavior
of the mucociliary clearance mechanism [9]. Through inhalation, all particles with an
aerodynamic size in the range of 10–20 µm are deposited on the nasal mucosa [9]. The
membrane permeability, susceptibility to degradation, as well as the site of deposition
should be considered. Deposition of a substance at a different region than the olfactory
epithelium can often result in entry to the blood stream and the substance being blocked
from the BBB. Hence, guiding the agent while preserving its chemical properties and
increasing its residence time can induce the optimum absorption conditions. According to
several studies, a way to achieve this is through the use of magnetic particles as the agent
carrier [11–14].
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The physical properties of magnetic particles make such guidance possible through
the application of an external magnetic field [15,16]. Therefore, the site of deposition does
not depend only on the initial conditions and on aerodynamic interactions, but there can
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be a further guidance through magnetophoretic forces. Moreover, given that a particle
can be covered with multiple layers, both the protection of the agent from environmental
degradation, in addition to the possible toxicity of its metallic core to the nasal cavity, can
be addressed [17]. Another advantage of magnetic particles is their residence time at the
site of interest when applying the appropriate magnetic force [18,19]. Even though there
have been computational studies exploiting magnetophoretic guidance with high efficiency
delivery to the olfactory epithelium [11,12], the magnetic fields used were very high,
making treatment expensive and impractical for frequent dosing or at-home administration.
Additionally, such fields can only be generated using dynamic control and not through
static magnets.

This study aimed in determining whether magnetophoretic guidance generated by a
real permanent magnet is feasible with such low magnetic fields. In addition, we sought
to investigate which magnets’ layout, among the three studied, has the best delivery
efficiency. The novelty of the present work is in the thorough analysis of the optimum
combination of design variables for magnetophoretic olfactory delivery, which is illustrated
by the achievement two specific milestones: (1) optimization of the device design and
(2) identification of the best operational variables (i.e., drug release position). As will be
shown, by systematically examining both the device (magnets) and operational (release
position) parameters, the olfactory delivery efficiency has been improved. In comparison
with the extremely low olfactory delivery efficiency of standard nasal devices, the optimized
device can deliver medications to the olfactory region at much higher doses. This study is
the first to calculate the olfactory deposition efficacy for microparticles released across a line
rather than a specific point of release under the influence of magnetophoretic assistance.

The structure of the text is as follows: In the methods and materials part, the nose
and nasopharynx model is presented and the studied protocols are described. The math-
ematical background is defined by presenting the utilized approaches, namely the fluid
dynamics approach, the magnetostatic approach and the particle tracing approach. De-
tailed information about the numerical simulation technique is also given. In the results
section, the magnetic field gradient distribution and the particle trajectories are illustrated
for all the protocols examined. Finally, in the Discussion section, the optimum design and
best operational variables are established.

2. Materials and Methods

This section offers a detailed presentation of the materials and the methods imple-
mented in the analysis. More specifically, the nose model construction, as well as the
protocols of this study are described, along with the software and numerical details of the
analysis. Lastly, the parametrized analysis is outlined, including the fluid dynamics, the
magnetostatic and the particle tracing approaches. In this study, three different delivery
approaches were analyzed based on a layout of two permanent neodymium-iron-boron
(NdFeB) magnets (with a remanence of 1.2 T) placed on the nasal septum (Figure 1). The
geometry was reconstructed from a real CT head image. For all protocols, the delivery
efficiency was calculated on the olfactory region as the percentage of particles reaching the
olfactory region of the total number of particles released in the nose.

2.1. The Nose and Nasopharynx Model

In order to discover the numerical solution of the problem, a numerical model based
on realistic data was necessary. Thus, we used the DICOM imaging data from a male CT
head scan with resolution/voxel spacing of 0.488 mm × 0.488 mm × 0.625 mm taken by
embodi3D (https://www.embodi3d.com/files/file/8174-skull/) (accessed on 18 October
2018). The x axis of the reported resolution is defined as “right to left”, the y axis as “anterior
to posterior” and the z axis as “inferior to superior”, according to the patient’s coordinate
system. The three-dimensional array of the data image was 512 × 512 × 208, where 208 is
the total number of slices in the z direction.

https://www.embodi3d.com/files/file/8174-skull/
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Since the areas of interest were the nose and the nasopharynx, the software ITK-SNAP
was used to extract them [20]. The segmentation was performed semi-automatically by
intervening in every CT slice in order to make sure that the resulting model was as detailed
as possible. Figure 2 shows in green the segmented nasal and nasopharyngeal volumes. The
sinuses were not included in the model, since they were not included in the analysis (see
Section 2.2 below). The final model geometry contained 238,460 facets and was exported in
STL format.
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In a following step, we used Autodesk Fusion 360 [21] to simplify the mesh and
increase its quality to facilitate numerical solvers. The final mesh consisted of 17,484 facets.
Figure 3 presents the final geometry.
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Finally, the geometry was imported to COMSOL Multiphysics® [22], the software
which was used for the numerical solution of the problem. The final nasal volume was
2.98 × 10−5 m3 while the total surface area was 2.26 × 10−2 m2. Hence, the olfactory region
surface is 8% of the total, i.e., 0.18 × 10−2 m2.

2.2. Studied Protocols

Three different protocols were constructed in this study, in which the tracing of the mi-
croparticles released in the nasal cavity was analyzed (Figure 3). The magnetization of the
magnets used was the same in all protocols, but the geometry of the magnets varied. The layout
of magnets was based on two lab magnets, so that an experimental analysis may be conducted
in the future. Magnet 1 was a rectangular bar with dimensions of 1 cm × 1 cm × 4 cm. Magnet
2 was a flat rectangular magnet with dimensions of 5 cm × 3 cm × 0.2 cm.

Protocol 1 consisted of magnet 1 placed parallel to the nasal septum. The center of
the magnet was placed at a 5 mm distance from the nasal cavity (Figure 3). Protocol 2
consisted of magnet 1 placed transversely on the nasal septum. It is the same as Protocol 1,
but with the magnet rotated by 90 degrees (Figure 3). Protocol 3 consisted of magnet 2
placed horizontally on the nasal septum. The center of the magnet was also placed at a
5 mm distance (Figure 3).

2.3. The Fluid Dynamics Approach

For the airflow problem, the chemical engineering module in COMSOL was used.
The flow of air inhaled was assumed to be steady, incompressible and isothermal at
36.6 ◦C [23]. A laminar flow was assumed, and the incompressible Navier-Stokes equations
were used [24] for the stationary state. The density of air was ρair = 1.14 kg/m3, and the
viscosity ηair = 1.9 × 10−5 Pa·s.

There were three boundary conditions for the airflow problem:

• the inhalation steady normal inflow velocity was 0.5 m/s at the entrance of the
nostril [11]; The nostrils’ total area was 1.32·10−4 m2;

• pressure at the bottom part of the nasopharynx was set to 0 atm;
• at the inner wall (mucosa), the flow velocity was set to 0 (no-slip boundary condition).

2.4. The Magnetostatic Approach

For the magnetostatic problem, the AC/DC Module in COMSOL was used. For the
three protocols studied, two geometrically different NdFeB magnets were used (Figure 3).
The remanence magnetization value was the same for all magnets, equal to µ0 M = 1.2 T,
and the vector direction was such in all protocols that the reference plane was yz (Figure 3)
and the origin was the center mass point of the magnet. Specifically, the magnetic flux
density component vectors for all three protocols were:

Bx = 0 T By = 0.771 T Bz = 0.919 T

The relative magnetic permeability of the magnets was set to µr = 1.05. In addition,
the equations were solved in an air-filled space, where the relative magnetic permeability
was considered equal to 1. The presence of tissues in this space (assumed later) did
not change the value of the magnetic permeability, since human tissues do not have
magnetic properties.

Magnetic insulation was assumed at the boundaries of the computational domain
used for the solution of the magnetostatic problem (the domain was much larger than the
nose/nasopharynx model).

2.5. The Particle Tracing Approach

For the particle tracing analysis, data exported from the previous approaches were
used. The microparticles assumed in this study were made of magnetite. Magnetite exhibits
ferromagnetic solid properties. Magnetite particles have a high magnetization, which, in
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combination with their low toxicity, makes them appealing for biomedical applications,
compared with other magnetic materials (e.g., cobalt, chromium) [14]. The particle density
was set to 5200 kg/m3. The microparticles were assumed to be spherical with a radius of
Rp = 7.5 µm. The number of particles traced was set to 100, and they were released only
on the left nostril to meet the limited available computational resources. The approach
employed a Newtonian framework and the solution was based on ‘one-way coupling’,
i.e., the continuous fluid-phase affects the particles’ motion but not vice versa. COMSOL’s
software uses the Runge-Kutta approach to evaluate the particles’ path. Assuming no
interaction between microparticles, the governing equation for their motion is

d
(
mpvp

)
dt

= Ff + Fm (1)

where Ff is the drag force exerted on particles in a fluid, and is defined as

Ff = −6πµRp
(
vp − vf

)
(2)

where

vf : speed of fluid;
vp : particle speed (initially, vp = 0 m/s);
Rp : radius of magnetic microparticle;
µ: dynamic viscosity of the fluid; and
Fm is the magnetic force acting on the magnetic particles under the effect of an external
magnetic field, defined as

Fm = µ0Vp
3χp

χp + 3
(H·∇)H (3)

where

µ0 : magnetic permeability of free space;
Vp = 4

3 πR3
p: volume of the particle;

χp: magnetic susceptibility; and
H: intensity of magnetic field.

Since the magnetic susceptibility of magnetite microparticles reaches generally high
values, the above equation can be approximated by the following equation:

Fm = 3µ0Vp(H·∇)H (4)

Given that the microscopic motion of the particles is typically dominated by the fluid
drug force, gravitational interaction was considered negligible in this approach.

2.6. Numerical Solutions

Initially, both the fluid dynamics problem, along with the magnetostatic problem,
were investigated separately for the determination of the air flow and the magnetic field in
space. There were three different protocols according to the magnet position, and conse-
quently there were also three different meshes. Protocol 1 consisted of 1,393,119 elements
(tetrahedral), Protocol 2 of 1,389,112 elements (tetrahedral) and Protocol 3 of 299,595 ele-
ments (tetrahedral). The element volume ration (EVR) for Protocol 1 was 6.69× 10−12. For
Protocol 2 it was 9.33× 10−12, while for Protocol 3 it was 3.34× 10−12. Figure 4 shows the
mesh quality plot for the subdomain elements of nose geometry in the yz plane (Figure 3)
for all protocols (COMSOL’s interface). The quality measure is related to the aspect ratio.
For simplification, only the left half of the nose geometry is depicted, since we calculate the
deposition efficiency only from the left nostril (see Section 2.5). The quality, q, of all the
mesh elements was greater than 0.1, particularly in the region of interest (i.e., the olfactory
region and vestibule), for all protocols (Figure 4), and therefore the mesh quality should
not have affected the solution quality. Hence, no boundary layer mesh was added. The
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mesh quality for the protocols in the analysis is presented in Figure 4. Figure 4a,b depict the
subdomain mesh quality for protocol 1. Figure 4c,d show the subdomain mesh quality for
protocol 2, while Figure 4e,f show the same for Protocol 3. The solver used was GMRES and
the preconditioner was Geometric Multigrid. The tolerance for all protocols was set to 10−6.
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3. Results

In this section, the results from the particle tracing analysis for each protocol are pre-
sented. Additionally, the space gradient of the magnetic flux density B is illustrated, since it
contributes to the final magnetophoretic force exerted along the paths of the microparticles.

The Particle-Tracing Approach

Table 1 presents the final trajectories of the microparticles in the nasal cavity for the
three different protocols. It also presents the approximate distance between the point of
release and the nasal wall, together with the delivery efficiency of each protocol. The paths
of the particles are depicted in red. The total number of particles was 100 and the release
was conducted in the left nostril. The particles were released across a line in the yz plane
with a length of dy ≈ 1.5 cm, engaging almost the whole length of the nostril, as depicted
in Table 1. All the figures shown illustrate the yz plane. Moreover, since the gradient of the
externally imposed magnetic field is a determinant of the exerted magnetophoretic force,
an illustration of the gradient of B for each protocol is included in Table 2.

It is clear from the paths shown in Table 1 that the delivery efficiency is 2% for
Protocol 3 and 0% for the other two protocols, since no particle is located on the olfactory
region for the last two protocols (Figure 1, red circle). The results from the first protocol
indicate that all the microparticles are collected in the front part of the nasal valve region,
because the field gradient is larger there, close to the edge of magnet 1. Protocol 2 shows a
similar behavior. There are no microparticles collected close to the olfactory region. Instead,
there is a high concentration of particles on the lateral wall, just above the internal nasal
valve. In contrast, Protocol 3 achieves an efficiency of 2% because it differs from the other
two protocols in terms of its magnitude, the direction of its magnetic flux and its gradient.
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Table 1. The trajectories of the magnetite microparticles (in red) for each protocol under the influence
of an external static magnetic field (1.2 T) are illustrated. The point of release distance from the nasal
wall for each protocol is also included.

Protocols Trajectory of Microparticles under the Impact of an External Magnetic Field Release Distance from
Nasal Wall

Protocol 1
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Table 2. The gradient of magnetic flux density generated by the static magnets (1.2 T) for each protocol.

Protocol Gradient of the Magnetic Flux Density B Created by the Permanent Magnets (∇B)
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4. Discussion

Magnetic particles have a wide range of applications in health care. Their capability
to be guided with an external magnetic field makes them good candidates for many
applications in different areas of medicine. Using magnetic particles as drug carriers to
deliver drugs to the brain tissues constitutes a big challenge, since many factors should be
considered. For instance, magnetic field strength and particle size should be considered
in order to achieve the desired results. Magnet geometry constitutes another important
factor in the delivery protocol, since the magnetophoretic force depends on the gradient
of the magnetic field generated. A study on the delivery of magnetic particles to the
brain via the nose-to-brain route was conducted by Xi et al. [11], who reported a delivery
efficiency that was close to 0.7%, based only on aerodynamic interactions with the same
inhalation velocity and particle sizes, as in the current study. However, after the application
of an external magnetic field generated by a layout of four magnets located parallel to
the nasal septum, with a max magnetization value of M = 8.1× 106 A/m, the efficiency
increased to 45%. This research also stresses the importance of the release point, which
in the case of a whole-nostril-release can lead to minimum particle delivery efficiency
(1.205%) under the same conditions. Another study from the same group [12] underlines
the importance of the magnet strength, particle size and release point. It was an attempt to
optimize their previously published analysis, and it achieved, for the same particle size
of Rp = 7.5 µm and the same inhalation speed of 0.5 m/s, a delivery efficiency of 67%.
Nevertheless, such efficient delivery values require a dynamically controlled magnetization
of M = 8.57× 106 A/m or B = 10.7 T, which, in order to be produced, requires expensive
and bulky equipment. Of interest are the results obtained by combining static with dynamic
magnetic control. In particular, Jafari et al. [25] showed that, in heads of mice cadavers,
magnetic drilling (produced by 4 A Helmholtz coils) in combination with a permanent
magnet of NdFeB (0.8 T) improved the transport of magnetic nanorods (250 nm wide,
2 µm long) in the brain by 60 times compared with a static magnetic field. Nevertheless,
the differentiations in both physiological and anatomical features of mice compared with
humans should be considered in detail [26]. Lastly, it is important to mention that size is
also important in the absorption of a substance from the olfactory bulb to the brain [27].

According to Shi et al. [28], for a particle size on the nanometer scale, much smaller
than in our analysis, the delivery efficiency for a normal inhalation rate without the presence
of magnetic field was approximately 0.5%. The highly complicated nasal geometry does
not facilitate the accumulation of particles at the olfactory region. As shown by Kiaee
et al. [29], maximum olfactory deposition averaged over all injection locations ranged from
~0.1% up to ~25% in realistic geometries. Another important conclusion of that study
was that very low to no olfactory deposition was obtained for particles injected into a
region approximating the lower half of the vestibule, but considerably higher olfactory
deposition could be achieved for particles injected into the upper half of the vestibule.
It should be pointed out that in the present study, no optimization for the point line of
release (which could have improve the delivery efficiency to the olfactory region) was
performed, since our aim was to show the improvement accomplished only by means of
simple magnet configurations. The results collected from our analysis are in agreement
with the results presented by Kiaae et al. [30] for an idealized geometry, which showed that
for particles with a 15 µm diameter it was impossible to have deposition in the olfactory
region. According to authors’ knowledge, this was the first attempt to estimate the olfactory
deposition efficiency for microparticles released across a line instead of a specific point
of release under the influence of magnetophoretic guidance. With reference to Table 1,
differences can be observed among the protocols in terms of release position. This results
from a trial and error method to identify the best release position in the plane for each
protocol according to the magnet’s configuration. Even though the dz release position for
the first two protocols is twice as close to the upper part of the vestibule, the magnetic
configuration is such that it prevents accumulation on the olfactory region, compared with
the third protocol.
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Figure 5 illustrates the velocity field of air within the nasal cavity. Although the initial
air velocity at the release point is 0.5 m/s, the velocity values close to the olfactory region
are small (<0.2 m/s), relatively higher (∼0.7 m/s) in the middle meatus, and high at the
lower part of the nasopharynx (∼1.5 m/s). It has been shown that for smaller particles it is
better to use no or only small velocities to increase the chance of deposition at the olfactory
region, otherwise they end up in the nasopharynx or farther down the upper airway [29,30].
In this study, a particle diameter of 15 µm was adopted as the size of the therapeutic agent
carrier due to the high magnetic responsiveness of particles with this size [11].
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When comparing the magnetophoretic guidance of a static magnetic field produced
from permanent magnets with that of a dynamic control system [12], it can be seen that
the delivery efficiency is greater for the latter, though it is notable that magnetophoretic
guidance is also feasible through a static magnetic field. In this study, the best protocol
achieved a delivery efficiency of 2% under the influence of a low-cost lab magnet with a
remnant magnetic flux of 1.2 T. Comparing the results of [12] for similar magnetization,
which in that case achieved a delivery efficiency of approximately 1%, with our analysis,
it can be concluded that Protocol 3 is twice as efficient. Furthermore, compared with the
work of Shi et al. [28], it can be observed that Protocol 3 has approximately four times better
delivery than non-magnetic guided protocols based only on aerodynamic control. Finally,
in terms of the research described in [25], no meaningful comparison can be conducted,
since the geometric model parameters and the field and particle size parameters differ.

Lastly, another important factor that should be discussed and clarified is the distance of
the magnets. In this research, the approximated distance of the magnets’ center of mass from
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the nasal septum was set at d = 5 mm. This value is the distance between the inner surface
of the nasal septum and the outside part of the human nose septum, according to the given
human geometry, on which the magnets were placed. In Figure 6, this distance is illustrated
with a blue line. That is why the distance value was set at approximately equal to 5 mm.
The anatomic geometry of the nose as well as the individual inter-facial differences change
this distance slightly from patient to patient. Hence, taking into consideration the fact that
the magnetic field is proportional to 1/d2 and that the magnetic force is analogous to the
magnetic field, we concluded that increasing or decreasing this distance it would strongly
affect the results. Specifically, setting the magnetic layouts within the scope of a realistic
distance factor d can exclude overestimated or underestimated values of delivery efficiency.
(This could also be a possible contribution to the low efficiency achieved by the investigated
protocols in comparison with similar work for similar magnetic field and particle size
values [11,12]). Additionally, the maximum distance from the upper part of septum-radix to
the anterior edge of the pronasale in this model was approximately 5 mm. That is the reason
why the investigated magnetic layouts consisted only of one magnet and had a maximum
length of 5 mm. Moreover, in our lab we possess the permanent magnets involved in
the analysis, and this was an additional reason for selecting the forementioned magnets’
characteristics; that is, in order to support a possible future experimental analysis for result
verification. The following table summarizes a comparison of the main contributions of
our work with those reported in the literature regarding the state of the art (Table 3).

Micromachines 2022, 13, x  14 of 16 
 

 

 
Figure 6. Distance from the outside nose septum to the nasal septum in human geometry. This dis-
tance of approximately 5 mm (blue line) was used as the distance of the magnets from the nasal 
geometric volume for the numerical analysis. 

Table 3. Comparison of the main contributions of the work vs. those reported in the state of the 
art. 

Reported Studies in the Literature Main Contributions of the Present Work 
The  protocol for similar magnetization 

value (~9.5 ×  10  A/m) achieved a delivery 
efficiency of ~1% [12]. 

Protocol 3 is twice as efficient 

The delivery efficiency for a particle size on 
the nanometer scale was approximately 

0.5% [28]. 

Protocol 3 has approximately four times 
better delivery than non-magnetic guided 
protocols based only on aerodynamic con-

trol. 

Specific release point of MNPs [29,30] 
Calculation of the olfactory deposition effi-

cacy for microparticles released across a line 

5. Conclusions 
The BBB constitutes a tight junction that prevents many substances from entering the 

brain. A way to circumvent the restrictions of the BBB is using magnetic particles as drug 
carriers and guiding them to the site of interest through an external magnetic field. In this 
analysis, we studied whether magnetophoretic guidance is possible with low-cost perma-
nent magnets placed externally on the nasal septum. The best delivery efficiency we 
achieved was 2%. Additionally, the proposed magnet configuration is easy to implement, 
low cost, and portable, and these are valuable and practical features for treatment requir-
ing frequent dosing or at-home administration. In the future, experimental work will be 
needed in order to reach a final conclusion concerning the applicability and the efficiency 
of the herein proposed protocol. 

Author Contributions: Conceptualization, N.P., N.M. and Τ.S.; methodology, N.P., N.M. and Τ.S.; 
software, N.P., N.M. and Τ.S.; validation, N.P., N.M. and Τ.S.; formal analysis, N.P., N.M. and Τ.S.; 
investigation N.P., N.M. and Τ.S.; data curation, N.P., N.M. and Τ.S.; writing—original draft prepa-
ration, N.P., N.M. and Τ.S.; writing—review and editing, N.M. and Τ.S.; visualization, N.P., N.M. 
and Τ.S.; supervision, N.M. and Τ.S.; project administration, N.M. and Τ.S. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Figure 6. Distance from the outside nose septum to the nasal septum in human geometry. This
distance of approximately 5 mm (blue line) was used as the distance of the magnets from the nasal
geometric volume for the numerical analysis.

Table 3. Comparison of the main contributions of the work vs. those reported in the state of the art.

Reported Studies in the Literature Main Contributions of the Present Work

The protocol for similar magnetization value
(∼ 9.5× 105 A/m) achieved a delivery

efficiency of ~1% [12].
Protocol 3 is twice as efficient

The delivery efficiency for a particle size on the
nanometer scale was approximately 0.5% [28].

Protocol 3 has approximately four times better
delivery than non-magnetic guided protocols

based only on aerodynamic control.

Specific release point of MNPs [29,30] Calculation of the olfactory deposition efficacy
for microparticles released across a line
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5. Conclusions

The BBB constitutes a tight junction that prevents many substances from entering
the brain. A way to circumvent the restrictions of the BBB is using magnetic particles as
drug carriers and guiding them to the site of interest through an external magnetic field.
In this analysis, we studied whether magnetophoretic guidance is possible with low-cost
permanent magnets placed externally on the nasal septum. The best delivery efficiency we
achieved was 2%. Additionally, the proposed magnet configuration is easy to implement,
low cost, and portable, and these are valuable and practical features for treatment requiring
frequent dosing or at-home administration. In the future, experimental work will be needed
in order to reach a final conclusion concerning the applicability and the efficiency of the
herein proposed protocol.

Author Contributions: Conceptualization, N.P., N.M. and T.S.; methodology, N.P., N.M. and T.S.;
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T.S.; investigation N.P., N.M. and T.S.; data curation, N.P., N.M. and T.S.; writing—original draft
preparation, N.P., N.M. and T.S.; writing—review and editing, N.M. and T.S.; visualization, N.P., N.M.
and T.S.; supervision, N.M. and T.S.; project administration, N.M. and T.S. All authors have read and
agreed to the published version of the manuscript.
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