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Abstract: Microfluidics concentration gradient generators have been widely applied in chemical
and biological fields. However, the current gradient generators still have some limitations. In
this work, we presented a microfluidic concentration gradient generator with its corresponding
manipulation process to generate an arbitrary concentration gradient. Machine-learning techniques
and interpolation algorithms were implemented to help researchers instantly analyze the current
concentration profile of the gradient generator with different inlet configurations. The proposed
method has a 93.71% accuracy rate with a 300× acceleration effect compared to the conventional
finite element analysis. In addition, our method shows the potential application of the design
automation and computer-aided design of microfluidics by leveraging both artificial neural networks
and computer science algorithms.

Keywords: microfluidics; machine learning; interpolation algorithm; design automation; computer
aided design

1. Introduction

Concentration gradient refers to the gradual change in the concentration of solutes in
a solution as a function of distance through a solution. In other words, a concentration gra-
dient is the outcome when the amount of solutes between two solutions are different. There
are various concentration gradients on earth, from the giant scale, such as the dissolved
oxygen concentration in ocean water from the surface to the deep zone, to the small scale,
such as the famous sodium ion vs. potassium ion concentration inside and outside the cell.
The word concentration usually correlates with chemical or biological molecules such as
ions, atoms, and their complexes. Within the human body, there are various biomolecules
being regulated by unique concentration gradients to control biological activities through
cell-signaling pathways, including cell growth [1], migration [2], differentiation [3,4],
immune response [5,6], wound healing [7,8], and tumor metastasis [9,10].

To understand the regulation mechanism of those concentration gradients on cell
functions, scientists have developed alternative in vitro methods and tools such as different
kinds of concentration gradient generators to complete the goal [11]. Previous literature
reported the applications of microfluidics-based concentration gradient generators in
various cell studies, such as the chemotaxis of cancer cells [11], cellular responses [11–13],
and drug screening [14–17].

Within the above-mentioned applications, drug screening has been extensively stud-
ied in recent years due to the unique benefits of small size, cost efficiency, and the high-
throughput of microfluidics. Hong et al. constructed a Christmas-tree structured microflu-
idic device on a paper platform to generate concentration gradients of doxorubicin (DOX)
to evaluate HeLa cell viability under different DOX concentrations for high-throughput
drug screening [14]. Lim et al. developed a microfluidic spheroid culture device that can
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generate concentration gradients of cancer drug irinotecan for the high-throughput probing
of the dynamic signaling of colon cancer cell HCT116 [15]. Mulholland et al. applied
repeatable concentration gradients to extensive drug screening in the presence of a limited
number of available primary human prostate cancer cells, delivering a range of drug con-
centration simultaneously to multiple-sized spheroids [17]. Luo et al. developed a circular
concentration gradient generator for high-throughput screening of drugs against type 2
diabetes, using glipizide as a model drug and the insulinoma cell line as a model cell [16].

Compared to the research on cell spheroids, Guo et al. designed a multichannel
synchronous hydrodynamic gating with microfluidic concentration gradient generators
to probe the dynamic signaling of single Hela cells [18]. In order to rapidly generate
continuous concentration gradients of multi reagents on a millimeter-sized sample such
as tissue instead of just micron-sized sample such as cells, Rismanian et al. modified
the tree-like concentration gradient generator with a micromixer, and they successfully
achieved the simultaneous delivery of two reagents on a millimeter-sized sample [19].
Compared to a single-layered chip, Yang et al. constructed a microfluidic concentration
gradient generator with parallel multi-channels and multi-layers to produce multi-color
nanoparticles, which could be adapted for synthesizing desired metallic nanoparticles for
research applications [20]. Tang et al. developed multi-layered centrifugal microfluidics
that could generate linear concentration gradients to test the antimicrobial susceptibility
of ampicillin against E. coli [21]. Yang et al. developed a microfluidic concentration
gradient chip with a radial channel network for HeLa cell apoptosis analysis, and the
concentration ranges generated over hundreds of branches were wide and predictable [12].
Sugiyama et al. studied the proactive role of a cell membrane in regulating molecular
transport against the concentration gradient [13].

The current studies have presented new solutions for many research areas. However,
there are still challenges preventing microfluidic gradient generators from a easier and
more applicable use. Firstly, the biomolecule concentrations inside the human body are
in a great range while most of the current microfluidic concentration gradient generators
can only generate a narrow and fixed-range of concentration gradient. Secondly, the
concentration gradient generated in the device is commonly determined by the inflow
concentration, which is difficult for researchers to manipulate or program. Thirdly, the
waste liquid generated from the device remains a significant part. Last but not least, the
fluid flow from outlets is usually assumed in an ideal state, without considering the effects
of downstream structures, which might be crucial for biological applications. During the
design process, the velocity field and concentration profile are the key parts and can be
simulated using finite element analysis (FEA) [22]. However, the simulation process is
time-consuming, and the matching consistency between limited pre-generated designs and
user desire is not stable [23]. To address the above issues, machine-learning techniques
provide a promising solution [24,25]. In our previous work, we used convolutional neural
networks to predict both the concentration and velocity behavior of all three outlets for
random microfluidic mixers [26].

In this work, we take a further step and propose a microfluidic device, which can
generate an arbitrary concentration gradient based on different inlet configurations in a
fixed 2 mm × 8 mm region for biological and chemical applications. With the help of
supervised learning [27], the boundary condition of the concentration profile was predicted
by an artificial neural network, and an interpolation algorithm was implemented afterwards
to generate the complete concentration profile for the whole reactive region instead of purely
outlets. As a result, only a one-second process time is needed for a normal desktop (Intel i5
CPU with 8 GB RAM) to predict one typical target design, with an acceptable accuracy rate
(around 90% to 95%) compared with conventional FEA.

2. Theory of the Design

The schematic of the proposed gradient generator is shown in Figure 1A, which
has six inlets and one 2 mm × 8 mm reactive region, with inlets width all set to 0.4 mm.
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The linear flow rate of all six inlets varies from 0 mm·s−1 to 1 mm·s−1, while the corre-
sponding concentration varies from 0 mol·m−3 to 1 mol·m−3. By manipulating the values
of all twelve parameters (six flow rates and six concentrations) of the inlets, different
concentration profiles in the reactive region can be achieved. For instance, Figure 1B is
one demonstrated example with randomly generated inlet configurations, which are listed
in Table 1.

B)A) Inlet 1      2      3          4      5      6

Reactive region
0 mol·m-3

0.8 mol·m-3Peak concentration region

Figure 1. (A) The schematic of the proposed gradient generator, which has six inlets and one reactive
region. (B) One demonstrated example with randomly generated inlet configurations, which has
two peak concentration regions and three valley concentration regions.

Unlike most other gradient generators, whose highest concentration starts from one
end and whose lowest concentration ends up at the other end, the proposed gradient gener-
ator has two peak concentration regions and three valley concentration regions. This set-up
provides the reactive region more opportunities to achieve assorted concentration profiles
for different applications. Specifically, the concentration profile of the proposed example
shows two peak fluxes in the reactive region, which are 0.8 mol·m−3 and 0.6 mol·m−3.
In contrast, there are three valley fluxes around the two peak fluxes, whose values are
0.7 mol·m−3, 0.5 mol·m−3, and 0.3 mol·m−3.

Table 1. The configuration of inlet boundary conditions for the demonstrated example in Figure 1B.

N/A Inlet 1 Inlet 2 Inlet 3 Inlet 4 Inlet 5 Inlet 6

Flow rate
(mm·s−1) 0.68 0.87 0.41 0.15 0.91 0.28

Concentration
(mol·m−3) 0.69 0.77 0.29 0.22 0.59 0.083

3. Materials and Methods
3.1. Building a Database of the Concentration Gradient Generators with Different
Inlet Configurations

In this work, supervised learning [27] is used to train an artificial neural network
(ANN) to replace the FEA for predicting the upper and bottom boundaries of the reactive
region. Thus, the very first step is to build a database of the concentration gradient
generators with various inlet configurations, which will be used as the training dataset in
the following steps.

As shown in Figure 2, the behaviors of the proposed gradient generator were simu-
lated using the FEA software COMSOL Multiphysics 5.5 (COMSOL Inc., Burlington, MA,
USA). The whole process was automated with MATLAB 2020a by using an official API
(LiveLink for MATLAB) provided by COMSOL. The velocity field of each gradient gen-
erator configuration was simulated in the laminar flow (LF) physics module in COMSOL
multiphysics, and the concentration profile was simulated in the Transport of Diluted
Species (TDS) physics module. A stationary solver was used to compute both LF and
TDS physics. Besides, mesh independence was investigated. The value of the diffusion
coefficient was set to 4.25× 10−10 m2·s−1. More detailed simulation parameters can be
found in Table 2.
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MATLAB

Control Return results

Insert results
…20,000 

concentration profile

ID Input1
_v

Input1
_c

… Input6
_v

Input6
_c

Output
_1

Output
_2

… Output
_81

1 0.000356 0.611339 … 0.000211 0.267555 0.53962 0.539251 … 0.442252

2 0.000863 0.998692 … 0.00038 0.441696 0.952641 0.952175 … 0.342571

3 0.00031 0.708128 … 0.000758 0.448953 0.743789 0.743955 … 0.283484

… … … … … … … … … …

… 20,000 dataset

Figure 2. The overall flow of automating COMSOL to prepare the dataset of the proposed gradient
generator with different inlet configurations. The linear flow rate of all six inlets varies from 0 mm·s−1

to 1 mm·s−1, and the inflow concentration varies from 0 mol·m−3 to 1 mol·m−3.

Table 2. Simulation parameters in COMSOL.

Parameter Value

Inlet flow rate Randomly generated from 0 to 1 mm·s−1

Inflow concentration from six inlets Randomly generated from 0 to 1 mol·m−3

Diffusion coefficient 4.25× 10−10 m2·s−1

Mesh max element size 175 µm
Mesh min element size 5 µm

Mesh max element growth rate 1.13
Mesh curvature factor 0.3

Mesh resolution of narrow regions 1
Tolerance to convergence 0.001

After varying the value of all twelve parameters of inlets in a certain range (as men-
tioned in the above section), totally 20,000 different inlet configurations of the proposed
gradient generator were investigated. The corresponding dataset and concentration profiles
were stored in a local MySQL database. The dataset was used as the training and test set in
the following ANN training process. And the COMSOL-predicted concentration profiles
were used as the standard to be compared with the concentration profiles generated by our
proposed method.

3.2. Training an ANN for Predicting the Two Boundaries of the Reactive Region

As shown in Figure 3, to train the target ANN, twelve parameters of inlet boundary
conditions were used as input, while the concentration of upper and bottom boundaries of
the reactive region were used as output. To capture the behavior of the two boundaries,
81 points on each boundary were taken as samples with a 0.1 mm gap between each other.
Therefore, totally 162 (81 + 81) data points were applied to the output layer. The details of
the configuration of the proposed ANN were clarified in Table 3.

The training process was implemented in Python 3.10 with the help of PyTorch. Mean
squared error (MSE) was used to calculate the loss during the training process, whose
formula is described in Euqation (1).

Loss =
1
n

n

∑
i=1

1
162

162

∑
j=1

(Ci,j − C′i,j)
2 (1)
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where n indicates the total items in the training set, which is 70% × 20,000 = 14,000;
162 indicates 81 sampling points on the upper boundary and 81 sampling points on the
bottom boundary; Ci,j indicates the concentration values predicted by COMSOL; and C′i,j
indicates the concentration values predicted by the ANN in the training process. The calcu-
lation process was implemented in Python by using the built-in PyTorch loss calculation
function (torch.nn.MSELoss). In addition, the accuracy rate was determined by using R
Square [28], whose values were determined by the built-in Python accuracy calculation
function (torchmetrics.R2Score).

… …

Input 
layer

Output 
layer

Hidden 
layer

Predict

The boundary of the reactive region

Inlet
boundary 
conditions

Figure 3. The flowchart of the proposed ANN.

Table 3. The configuration of the proposed artificial neural network.

Layer Type Depth Activation

1 Input layer 12 Linear
2 Fully-connected layer 120 ReLU
3 Fully-connected layer 120 ReLU
4 Fully-connected layer 120 ReLU
5 Output layer 162 (81 + 81) Linear

3.3. Completion of the Concentration Profile by Interpolation Algorithm

Interpolation is a type of estimation, a method of constructing new data points based
on the range of a discrete set of known data points [29]. As shown in Figure 4, the data
points on the upper and bottom boundaries were used as known data points to predict all
the unknowns between them, and the unknowns were defined into a Numpy array. Then,
a two-dimensional linear interpolation algorithm was implemented by using the official
Numpy package in Python 3.10 [30] to complete the concentration profile of the reactive
region, which was finally ready for researchers to analyze.

Interpolation 
algorithm…
…

…
…

Upper boundary data 1, 2,…81, predicted by ANN

Bo�om boundary data 1, 2,…81, predicted by ANN

data

data

data

data

data

data

Known

Unknown

The concentration profile 
to be predicted

Input th
e ANN-predicte

d 

boundary c
onditio

n

Output
Input the ANN-predicted 

boundary condition

The concentration profile 
completed by interpolation

algorithm

Figure 4. The flowchart of completing the unknown data points of the reactive region based on the
linear interpolation algorithm.

4. Results and Discussion
4.1. Training of the Proposed ANN

The training process and the performance of the proposed ANN are shown in Figure 5.
Seventy percent of 20,000 datasets are used as the training set, and the other thirty percent
are used as the test set. As we can see from Figure 5A, the loss rate is 6.74 × 10−4, the
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accuracy rate of the training set is 98.72%, and the accuracy rate of the test set is 97.68%
after training of 2000 epochs. Figure 5B shows the absolute error in concentration from the
test set. The absolute errors of over 40%, 27%, and 13% of the concentration data points on
two boundaries are less than 0.001 mol·m−3, 0.002 mol·m−3, and 0.003 mol·m−3, respec-
tively. The error of less than 0.5% of the predicted data points is larger than 0.009 mol·m−3,
which is still a relatively small error for actual experiments. This indicates high consistency
between the COMSOL-predicted concentration and ANN-predicted concentration.

A) B)

Figure 5. (A) The training curve of the proposed ANN during 2000 epochs. (B) The histogram of the
absolute error in concentration of each data point on two boundaries from test set.

To further investigate the actual performance of the proposed ANN, eight designs
(A to H) were randomly selected from the test set. The comparison between ANN-predicted
concentration and COMSOL-predicted concentration values of 81 points on the upper
boundary is visualized in Figure 6. It is clear that most data points predicted by the
proposed ANN are right-matched with the results predicted by COMSOL. Only a small
number of the ANN-predicted points are not covering the COMSOL-predicted results but
are still standing closely. Similar results and conclusions can be drawn from Figure 7, which
indicates high consistency between the COMSOL and ANN for predicting the concentration
values on the bottom boundary.

4.2. Completion of the Concentration Profile by Interpolation Algorithm

As mentioned in the above section, the proposed ANN is able to predict the upper and
bottom boundary of the concentration of the reactive region with 97.68% accuracy. Then, a
two-dimensional linear interpolation algorithm was implemented to achieve a complete
map of the concentration profile of the reactive region. To investigate the performance from
the combination of ANN prediction and interpolation algorithm, the results from the same
eight designs are shown in Figure 8. It is quite interesting that the concentration profiles
from all eight designs between COMSOL and ANN predictions show high-level similarities.
In addition, the predicted (ANN + Interpolation) concentration profiles from design C, D,
E, F, and G look almost identical to COMSOL ones from the view of human beings.

To quantify the similarity from a statistical point of view, image similarity analysis was
performed on all eight designs. The algorithm we used is the structural similarity index
measure (SSIM), which has been widely applied for measuring the similarity between
two images in many different fields [31,32]. The SSIM values of all eight designs (A to H)
are 0.9553, 0.8971, 0.9063, 0.9588, 0.9638, 0.9537, 0.9344, and 0.9277, respectively, with an
average value of 93.71%. Except for the fact that the SSIM value of design B is less than
0.9, the values of all the other cases are greater than 0.9, which indicates a successful
concentration completion process of our proposed method.
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A) B)

C) D)

E) F)

G) H)

A) B)

C) D)

E) F)

G) H)

Figure 6. The comparision between ANN-predicted and COMSOL-predicted concentration values
on the upper boundary of the reactive region from design (A–H).
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A) B)

C) D)

E) F)

G) H)

A) B)

C) D)

E) F)

G) H)

Figure 7. The comparision between ANN-predicted and COMSOL-predicted concentration values
on the bottom boundary of the reactive region from design (A–H).

In microfluidic situations, the Reynolds number is usually smaller than 1, which
indicates a laminar flow physics with fluid particles following smooth paths in different
layers. This makes the proposed linear interpolation algorithm suitable for our scenes.
However, if the Reynolds number increases and the laminar flow becomes turbulent flow,
the interpolation algorithm shall fail. In other words, the concentration profile can be
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predicted based on the boundary concentration in low Reynolds number conditions instead
of high Reynolds number conditions.

Though our proposed method cannot achieve a 100% accuracy rate with finite el-
ement analysis provided by COMSOL, the overall computational time is reduced from
around 5 to 10 min to less than one second, which has at least 300× acceleration effect in a
normal desktop.

A) B) C)

D) E) F)

G) H)

0.9553 0.8971 0.9063

0.9588 0.9638 0.9537

COMSOL

ANN
&

Interpolation

SSIM 0.9344 0.9277

COMSOL

ANN
&

Interpolation

SSIM

COMSOL

ANN
&

Interpolation

SSIM

Figure 8. The concentration profile of the reactive region predicted by COMSOL and proposed ANN
and interpolation method. The corresponding SSIM values are listed for quantification analysis as
well between two methods. The SSIM values of design (A–H) are 0.9553, 0.8971, 0.9063, 0.9588, 0.9638,
0.9537, 0.9344, and 0.9277, respectively.

5. Conclusions

This work has presented a microfluidic concentration gradient generator with its
corresponding manipulation process to generate an arbitrary concentration gradient. With
the help of machine-learning techniques and interpolation algorithms, a brand new con-
centration profile can be provided in less than one second to facilitate users to analyze
and determine whether to apply the new settings. The trade-off is the accuracy rate of our
proposed method is 93.71% on average (based on SSIM), which is still acceptable consid-
ering the over 300× acceleration effect. In addition, to present a new type of microfluidic
concentration gradient generator, our proposed method provides an example and shows
the inherent potential of the design automation of microfluidics by leveraging both ANN
and computer algorithms.
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Potential Limitations

Since our proposed methods are based on the combination of an ANN and inter-
polation algorithm, two major limitations are mainly come from the limitations of both
algorithms. Firstly, if the geometry of the gradient generator is changed or modified, the
pre-trained ANN shall be re-trained by the newly generated dataset. This limitation can be
partially addressed by applying the transfer learning algorithm with the recycle use of the
pre-trained ANN [33]. Secondly, thanks to the low Reynolds number (Re� 1) situation in
microfluidics, the linear interpolation algorithm works reasonably well. However, as the
Reynolds number increases (Re� 1), a turbulent phenomenon might intervene and make
the interpolation algorithm invalid [34,35].
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